
ProProv: A Language and Graphical Tool for
Specifying Data Provenance Policies

Kevin Dennis* Shamaria Engram† Tyler Kaczmarek† Jay Ligatti*

*Department of Computer Science and Engineering
University of South Florida

Tampa, USA
{kevindennis, ligatti}@usf.edu

† Secure Resilient Systems and Technology Group
MIT Lincoln Laboratory

Lexington, USA
{shamaria.engram, tyler.kaczmarek}@ll.mit.edu

Abstract—The Function-as-a-Service cloud computing
paradigm has made large-scale application development
convenient and efficient as developers no longer need to deploy
or manage the necessary infrastructure themselves. However,
as a consequence of this abstraction, developers lose insight
into how their code is executed and data is processed. Cloud
providers currently offer little to no assurance of the integrity of
customer data. One approach to robust data integrity verification
is the analysis of data provenance—logs that describe the causal
history of data, applications, users, and non-person entities. This
paper introduces ProProv, a new domain-specific language and
graphical user interface for specifying policies over provenance
metadata to automate provenance analyses.

To evaluate the convenience and usability of the new ProProv
interface, 61 individuals were recruited to construct provenance
policies using both ProProv and the popular, general-purpose
policy specification language Rego—used as a baseline for com-
parison. We found that, compared to Rego, the ProProv interface
greatly increased the number of policies successfully constructed,
improved the time taken to construct those policies, and reduced
the failed-attempt rate. Participants successfully constructed 73%
of the requested policies using ProProv, compared to 41% using
Rego. To further evaluate the usability of the tools, participants
were given a 10-question questionnaire measured using the
System Usability Scale (SUS). The median SUS score for the
graphical ProProv interface was above average and fell into the
“excellent” category, compared to below average and “OK” for
Rego. These results highlight the impacts that graphical domain-
specific tools can have on the accuracy and speed of policy
construction.

Index Terms—Data Provenance, Usability, Policy Specification

I. INTRODUCTION

Cloud service providers have revolutionized computing by
delivering applications and computing resources over the
internet, allowing end users and application developers to
accomplish tasks they otherwise may not have the resources or
expertise to accomplish themselves. The Function-as-a-Service

DISTRIBUTION STATEMENT A. Approved for public release. Distribu-
tion is unlimited.

This material is based upon work supported by the Under Secretary of De-
fense for Research and Engineering under Air Force Contract No. FA8702-15-
D-0001. Any opinions, findings, conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily reflect the
views of the Under Secretary of Defense for Research and Engineering.

(FaaS) cloud computing paradigm has made the development
of large-scale applications both convenient and efficient by
allowing developers to build, run, and manage their appli-
cations as functions without having to deploy or manage
the infrastructure required by such applications themselves.
However, by outsourcing parts of the compute stack to third-
party cloud providers, developers, as well as end users, of such
applications lose insight into how their code is executed and
data is processed—making it difficult to confirm the integrity
of such data. Data integrity is a key metric for ensuring data
correctness, quality, and reliability, which is becoming more
and more important as the processing of data is outsourced.
To facilitate widespread adoption of the FaaS computing
paradigm for security-critical applications, additional tools are
needed to give both cyber analysts and end users confidence
in the integrity of their data.

Currently, end users of cloud services rely on data integrity
checking techniques such as redundant data storage, RAID
parity, and checksums [1], [2], and while these techniques
can determine whether data was tampered with, they fail
to provide more comprehensive details such as how and by
whom. Such details are even more important for cyber analysts
when filtering through security incident reports produced by
threat detection software to distinguish between true incidents
and false positives. For example, having insight into how a
particular incident report was produced and what anomalous
inputs triggered the report can be vital in responding to an
incident in an appropriate and timely fashion.

Data provenance—logs describing the causal history of data,
applications, users, and non-person entities—is a robust ap-
proach for the collection of information regarding the integrity
of data. Such metadata is traditionally used as a forensic tool,
due in part to the massive volume of log data that needs to
be collected to gain a clear picture of cause-and-effect in a
complex compute system.

The functional decomposition of monolithic applications
into microservices that break down opaque workflows into a
series of ‘jobs’ brokered by cloud service providers and exe-
cuted in a hardware-agnostic manner is integral to the adoption
of the FaaS paradigm for security-critical applications [3]. In
the context of data provenance, this breakdown of function-

ality can be seen as atomic “activities”, thereby facilitating
lightweight provenance collection and reducing the volume of
data to be analyzed to ensure data integrity. One such FaaS-
like schema providing lightweight provenance collection is
the Automatic Cryptographic Data Centric (ACDC) security
paradigm [4].

By analyzing a provenance record, both developers and end
users of ACDC applications can make stronger determinations
about the integrity of their data. For example, an end-user of a
batch-processing application may require that the application
output is derived from a specific set of inputs. Engram et
al. [4] present an approach called proactive provenance in
which end users and developers can proactively reason about a
datum’s provenance record before consuming it for reading or
computation. However, for such an approach to be effective,
tools must be developed to automate such analyses.

This paper introduces ProProv, a new domain-specific lan-
guage and graphical user interface for specifying policies over
provenance metadata to automate provenance analyses. Such
policies can be automatically evaluated by end users wishing to
consume data returned from an application based on the data’s
provenance record. The ProProv language was designed with
the goal of providing features not available in general-purpose
policy specification tools to help users quickly and accurately
develop provenance policies. Expert users can use the text-
based language directly with conveniences such as syntactic
sugar for common policy types and non-experts may use the
graphical user interface to the ProProv language to assist with
policy development. This paper also presents the results of
a usability study that measured the effectiveness with which
non-expert users could construct provenance policies using the
ProProv interface.

The usability study was also conducted using Rego, a
general-purpose policy specification language. The Rego lan-
guage, described in more detail in Section IV-A, does not
have a graphical user interface for defining policies similar
to ProProv. To the author’s knowledge, no existing industry-
standard policy specification languages provide such an inter-
face. GUIs limit the expressiveness of the tool, but are much
more convenient to use, particularly for non-experts. The loss
of expressiveness is acceptable, however, for a domain-specific
tool like ProProv. The team hypothesizes that the convenience
of the graphical interface will greatly improve efficiency and
accuracy during policy specification.

This paper presents the following contributions: 1) ProProv,
a language and graphical interface for constructing provenance
policies, and 2) the results of a usability study comparing the
ProProv graphical interface with Rego, illustrating the need
for graphical domain-specific tools to improve the efficiency
and accuracy of the policy specification process.

The rest of the paper is organized as follows: Section II
provides background on data provenance and how it can be
used to ensure data integrity, Section III introduces the ProProv
policy language and interface used for the specification of
provenance policies, Section IV provides the methodology for
our study, Section V describes the results of the study, Section

VI discusses the implications of the study results, and Section
VII concludes.

II. BACKGROUND AND RELATED WORK

This section discusses the importance of data integrity for
ensuring the quality and reliability of data in computing
systems and data provenance as a solution for comprehensive
data integrity verification. We then examine prior work on
provenance-based tools for various security-related tasks and
show that little attention has been given to provenance-based
tools for ensuring data quality before it is consumed for
reading or computation. Lastly, we summarize related work
on tools designed to simplify policy specification and discuss
the lack of such tools for provenance policies.

A. Data Integrity and Data Provenance

Data integrity is a key metric for ensuring data quality
and reliability—two characteristics important for ensuring the
intended behavior of computer systems and their applications.
Currently, the most popular mechanisms for ensuring data
integrity include redundant data storage (i.e., mirroring), RAID
parity, and checksums [1]. While these mechanisms can reveal
whether data has been tampered with, they are inadequate for
providing low-level details about such tampering, such as how
and by whom.

To comprehensively assess data integrity, one must know the
complete history of data, including all the manipulations it has
underwent from its origin to its current state, how such ma-
nipulations occurred, and who influenced such manipulations.
Two mechanisms for capturing such detailed data interactions
include audit logs and data provenance.

The granularity at which audit logs capture data interactions
vary from system to system, as they are manually configured
by system administrators. System administrators typically con-
figure audit logs to capture only the events that they deem
security relevant. Because the set of security-relevant events
considered by both a system administrator and system user
may vastly differ, system users may, consequently, not be able
to comprehensively verify the integrity of data they consume
from the system. Furthermore, audit logs are generally not
available to general users of computing systems and are
typically used by system administrators to distinguish between
normal and abnormal system behavior.

Data provenance is another way of recording the complete
history of data, and a standard model for capturing such history
is the W3C PROV Data Model [5], thus ensuring uniformity
between systems. Data provenance is represented as a graph
consisting of entities, activities, and agents. Entities represent
data, activities represent functions that compute on data, and
agents represent individuals or computer systems responsible
for the state of data at a specific point in time [5]. The graphs
also contain seven relations describing the causal relationships
between entities, activities, and agents. A table describing the
meaning of each relation and an illustration of the model can
be found online [6].

B. Data Provenance Analyses

Several provenance-based analysis tools have been proposed
for data-integrity checking. However, in most computing sys-
tems, data interactions can result in a mass of information that
cannot easily be queried and analyzed in real time. As a result,
many provenance-based analysis tools perform their analyses
in retrospect, as a way of conducting a forensic analysis or
security audit (e.g., [7]–[9]).

Provenance-based analysis tools can also be useful for a
number of runtime-security checks [10], such as intrusion
detection [11], [12], advanced persistent threat detection [13],
[14], and data quality before it is consumed for reading or
computation [4], [15].

FRAPpuccino [16] is a framework for detecting malicious
behavior in cloud applications by building a benign-behavioral
model using provenance data at runtime. FRAPpuccino can
then detect malicious behavior when the execution of the
application diverges from the benign model. NoDoze [17] is a
tool for automatically triaging threat alerts based on runtime
provenance analysis and is designed to be a more effective
tool for threat detection by minimizing the number of false
alerts for cyber analysts. While FRAPpucino and NoDoze
are user-friendly, turn-key solutions for effectively detecting
malicious runtime behavior, both tools rely on machine learn-
ing techniques and do not allow system administrators to
specify application-specific policies to detect precisely defined
behavior.

CamQuery [10] is a framework for analyzing live prove-
nance at runtime to mediate security-relevant events; it al-
lows users to construct policies using a vertex-centric API
based on the graph-processing frameworks GraphChi [18] and
GraphX [19]. While CamQuery is an effective framework
for the construction of runtime provenance policies to me-
diate security-relevant events, it requires expert knowledge
of sophisticated graph processing frameworks. We argue that
in order for provenance-based analysis tools to be widely
adopted, they must provide users with the flexibility to specify
application-specific policies while remaining usable by non-
experts and have a low-barrier to entry.

Proactive provenance is a runtime provenance-based method
for verifying the integrity of data before it is consumed for
computation in the Automatic Cryptographic Data-Centric
Security (ACDC) architecture [4]. ACDC leverages various
technologies to ensure the security and integrity of data in an
environment similar to the FaaS paradigm.

ACDC coarsely captures provenance metadata in its envi-
ronment, thereby limiting the explosion of provenance graphs.
That is, ACDC provenance captures the executing function, a
reference to the function’s implementation (i.e., the defining
contract), the function’s inputs and output, a reference to the
node agent performing the computation, and a reference to the
account agent(s) responsible for a function’s execution. ACDC
provenance does not capture the internal execution steps of
functions nor the internal workings of node agents. This is
because functions are defined by contracts and therefore can

be analyzed by static or dynamic code analysis tools; node
agents are treated as black-box execution engines, but can also
be subject to code analysis and tools purposed for the analysis
of the node’s hardware. While code and hardware analysis
are important for ensuring a secure system, such analyses
are outside the scope of, and should be done in conjunction
with, provenance-based analysis. For a more detailed review
of ACDC and its provenance model, we refer the reader to [4].

This paper extends the work presented in [4] by introduc-
ing a language and user interface for expressing proactive
provenance policies. The user interface is designed to make
it easier for non-expert policy writers to express provenance
policies. While the user interface is designed specifically for
provenance policies in ACDC, based on the results presented
in this paper we believe the design principles of user-friendly
interfaces for non-experts are broadly applicable to existing
provenance-based analysis frameworks.

C. Tools for Specifying Complex Policies

Constructing security policies is a challenging and error-
prone task, typically requiring policy writers to reason about
all possible security-relevant actions, and in the context of
provenance policies, all possible data interactions. Manually
constructing these policies can be difficult due to the com-
plexity of policy-specification languages and the sheer volume
of security-relevant actions that need to be considered. This
is a recognized problem in the literature, even for expert
policy writers, and for non-expert policy writers the issue is
exacerbated [20]–[22].

Several domain-specific policy management and visualiza-
tion tools (e.g., access control and firewall configuration) have
been proposed to ease the burden of constructing correct
policies. Such tools vary widely on how they simplify the
policy-specification process. For example, the Firewall Pol-
icy Advisor [23] analyzes large specifications and alerts the
policy writer upon finding redundant policies or conflicts, it
also provides a policy editor to assist policy writers when
making modifications. Brostoff et al. [24] developed a policy-
specification tool that incorporates education of access-control
policies to increase policy writers’ understanding of how to
construct correct policies and found that the instructional
features improved the efficiency with which expert policy
writers could construct policies and the correctness of poli-
cies constructed by non-experts. Other tools use visualization
techniques to increase understanding, efficiently spot errors,
and ensure constructed policies align with the policy writer’s
intent [25]–[27].

PoliSeer [27] is the most closely, visually related tool to
the ProProv interface. PoliSeer is a graphical user interface to
the Polymer policy specification language [28]—a language
for implementing application-specific runtime security policies
for Java applications. PoliSeer relies on expert policy writers
to upload policy specifications to the tool, after which non-
expert policy writers can compose policies from the provided
policy suite. When policy writers make a selection from the
policy suite, the tool will parse the specification and display

the policy to the user in a tree structure, which may include a
tree with modifiable leaf nodes, to indicate to the user how to
correctly construct the policy. Policy construction may include
making an additional selection from the policy suite or typing
in policy-relevant information. ProProv differs from PoliSeer
in that 1) the ProProv interface is designed specifically for
provenance policies and not application-specific policies for
Java applications, and 2) ProProv does not rely on expert
policy writers to provide pre-defined policies for use by non-
expert policy writers.

To the best of our knowledge, almost no attention has been
given to tools that simplify the policy-specification process for
provenance policies. Due to the importance of ensuring data
quality and reliability, it is important that provenance policies
be specified correctly and according to the policy writer’s
intent. ProProv is designed to address these issues.

III. THE PROPROV LANGUAGE AND INTERFACE

ProProv consists of two components: 1) a domain-specific
policy specification language, and 2) a graphical user interface
for constructing policies in the language. This section intro-
duces the ProProv language and interface.

A. ProProv Language

The ProProv language is a first-order query language, where
queries are assertions on provenance graphs. These queries
define policies that specify sets, or instances, of provenance
graphs that satisfy the expected provenance of data before it is
to be consumed. When policies are evaluated over a specific
provenance graph, they evaluate to either true or false. A
policy evaluating to true indicates that the provenance graph
under consideration satisfies the policy. Conversely, a policy
evaluating to false indicates that the provenance graph under
consideration violates the policy.

Figure 1 shows the core syntax of the ProProv language.
The language contains types for each ACDC provenance
node type, provenance node lists, and booleans. The edge
operators consist of all possible graph edge labels and can be
constructed as a policy by following the edge operator with
two provenance nodes enclosed in parentheses and separated
by a comma. For example,
wasDerivedFrom(AverageSalary,EmployeeSalaries)

represents a policy that ensures a dataEntity named Aver-
ageSalary was derived from a dataEntity named Employ-
eeSalaries, which represents a data set containing all employee
salaries. Such a policy is useful for ensuring that function out-
puts are derived from expected function inputs. Additionally,
other possible policies in the language include boolean poli-
cies, negation policies, conjunction policies, universal policies,
and universal policies with lists.

A boolean policy is specified with either the value true
or false. A true policy is an “allow-all” policy. Such a
policy means to trust, or consume, all data because true
means that the provenance graph under consideration satisfies
the policy; therefore, a true policy explicitly states that all

graphs satisfy the policy. Conversely, false is a “disallow-
all” policy, which means to reject all data. Negation policies
can be constructed by prefixing a policy with the ! operator.
This policy evaluates to true iff the policy following the
! operator evaluates to false. Conjunction policies combine
two policies via the ∧ operator such that both policies must
evaluate to true when evaluated over a provenance graph.
For example, a policy writer might consider AverageSalary
to be a trusted dataEntity iff it was derived from expected
input EmployeeSalaries and was attributed to the company’s
human resources department HR. Such a policy can be
specified as a conjunction policy in the following way:

wasDerivedFrom(AverageSalary,EmployeeSalaries)

∧ wasAttributedTo(AverageSalary,HR).

Universal policies assert that a policy p is true for all
provenance nodes of a specified type. For example,

forall x : dataEntity.wasAttributedTo(x,HR)

ensures that every dataEntity in a given provenance graph
was attributed to HR. Lastly, universal policies with lists
allow policy writers to assert that a policy p is true for all
provenance nodes in a given list. A provenance node list can
be constructed by using the :: operator to prepend nodes to
the list. All provenance nodes in the list must have the same
type. For example, consider the policy

forall x : dataEntity in AverageSalary

:: EmployeeSalaries :: nil.wasAttributedTo(x,HR).

This policy ensures that AverageSalary and
EmployeeSalaries, which have type dataEntity, were
attributed to HR—nil is the empty list. Universal policies
with lists may also be useful when policy writers want to
constrain applications from consuming data with known
untrustworthy interactions. Such a policy can be constructed
by including all untrustworthy account agents, for example,
in a list.

While Figure 1 shows the core syntax of the language,
some policy writers may need to existentially quantify over
variables or express disjunction or implication policies. For
convenience, the language contains syntactic sugar for these
types of policies. Existential policies can be expressed using
the following syntax: exists x : ν. p (existential policies with
lists can be constructed similarly). Disjunction policies can be
expressed by including the ∨ operator between two policies
(i.e., p1 ∨ p2) and mean either p1 or p2 should evaluate to
true. Implication policies can be expressed by including the
⇒ operator between two policies (i.e., p1 ⇒ p2) and mean
p1 implies p2. However, such policies can still be constructed
using the core syntax. Existential policies can be constructed
by combining the negation and universal policies. Disjunction
and implication policies can be constructed by combining the
negation and conjunction policies.

To specify provenance policies correctly, in a way that
aligns with the policy writer’s intent, the policy specification
process requires policy writers to think about all the ways in

Nodes n ::= Ed | Ec | Ek | Ga | Gn | A
Node Types ν ::= dataEntity | contractEntity |

keyEntity | accountAgent |
nodeAgent | activity

Node Lists ℓ ::= nil | n :: ℓ
Booleans b ::= true | false
Types τ ::= bool | ν | νlist
Edge Operators ⊕ ::= wasDerivedFrom |

wasAttributedTo |
wasGeneratedBy | used |
actedOnBehalfOf |
wasAssociatedWith |
wasInformedBy

Policies p ::= b |!p | p1 ∧ p2 | forall x : ν.p |
forall x : ν in ℓ.p | ⊕(n1, n2)

Fig. 1. ProProv language core syntax

which relevant data may be considered (un)reliable, whether
it be identifying all the agents who may have influenced the
current state of data or identifying all the ways in which data
may be processed or manipulated—manually doing so can be
difficult and error prone. Additionally, policies are typically
large and complex with sub-components potentially interacting
in unexpected ways, which may result in policy conflicts or
definitions that may not align with the policy writer’s intent.
For advanced policy writers using the text-based language,
we use the Z3 SMT solver [29] to help detect when policy
specifications contain conflicts. For example, a policy writer
may inadvertently construct a policy that both allow and
disallow certain data interactions (i.e., p ∧ !p). Such a mistake
is common, even among expert policy writers [30]. For non-
experts, we aim to simplify the policy specification process
with a graphical user interface to the ProProv language.

B. ProProv Interface

The ProProv interface is a standalone front-end graphi-
cal user interface to the ProProv language; it is designed
to make the language more accessible to non-expert policy
writers. Because the intended audience for the interface is
non-expert policy writers, it abstracts from the complete text-
based language and provides users with the most basic features
to construct meaningful policies and prevent the construction
of policy specifications that may not align with their intent.
Specifically, the interface does not include boolean policies
(i.e. the ”true” or ”false’ policy), as this tool is intended for
non-expert users, and such policies represent an out-sized risk
for misconfiguration. For example, a true policy means allow
all data, essentially disregarding a datum’s provenance record,
and can result in consuming poor-quality and unreliable data.
Conversely, a false policy means disallow all data and can
potentially render a system inoperable because it will reject all
data. Secondly, quantified policies with lists are also consid-
ered an advanced feature because all of the nodes contained
in the list must have the same type, specifically the type of the
variable that is quantified over. If a user includes, for example,
a node of type keyEntity in a list where all nodes must have

type dataEntity, the language will treat the keyEntity as a
dataEntity and not a keyEntity as the user intended. This
is because the variable quantified over in the policy has type
dataEntity (i.e, forall x : ν in ℓ. p, where ν has type
dataEntity, every node in ℓ will be treated as a dataEntity).
This type of semantic error can be difficult to debug.

The interface helps policy writers visualize their policies
and test them on a test suite before being deployed. The
interface consists of a number of selectors that enumerate the
policy constructs of the language. When a selection is made,
additional selectors may appear to aid the policy writer in
constructing a complete policy. For example, for the conjunc-
tion policy p1 ∧ p2, the initial screen of the interface will
contain a selector listing all the different policy types in the
language. The user can begin specifying this type of policy by
first selecting the “conjunction” policy, after which two more
selectors will appear in a tree structure to indicate to the user
that the conjunction policy is made up of two policies. This
selection process can continue until the user has specified a
complete policy.

1) The Main Window: The main window to the ProProv
interface consists of two panels as shown in Figure 2, a
left panel for visualizing and constructing policies and a
right panel consisting of a test suite of provenance graphs
to evaluate policies on.

The left panel consists of selectors that build a tree as
selections are made. The interface consists of four types
of selectors: 1) policy selectors, 2) type selectors, 3) node
selectors, and 4) variable selectors. The interface always
begins with a policy selector containing the text <policy>,
indicating to the user to select a policy to continue. The
policy selector enumerates all of the policy constructs of the
language. Once a policy is selected, more selectors may appear
depending on the selection. The type selector only appears
when either a universal or existential policy is selected from
the previous policy selector. This selector initially contains the
text <type> to indicate to the user to choose a node type. This
selector enumerates all possible provenance node types. Node
selectors appear when an edge operator is selected from the
previous policy selector. This node contains the text <node>
indicating to the user to either enter a name of a provenance
node or select a variable for a previously declared node.
Variables will only appear in this selector if the variable is of
the right type. For example, consider the following partially
constructed text-based policy:

forall x : dataEntity. exists y : accountAgent.

wasAttributedTo(<node>,<node>)

For the left node selector, the selector will only provide an
option to select variable x, and for the right node selector, the
selector will only provide an option to select variable y. This
is because variable x has type dataEntity, variable y has
type accountAgent, and data entities can only be attributed
to account agents. It is semantically incorrect for an account
agent to be attributed to a data entity. The last selector is
a variable selector and appears when either an existential or

Fig. 2. ProProv Interface Main Window

Fig. 3. Policy Selector Menu

universal policy is selected for the previous policy selector.
The selector contains the text <variable> to indicate to
the user to choose a variable name to quantify over.

The right panel consists of a suite of graphs that users can
evaluate their policies on. For the study, discussed at length in
Section IV, we included a test suite of graphs for the policies
we asked participants to specify. Participants were provided
with a test suite because: 1) during the study, the correctness
of participants’ policies needed to be checked automatically,
and 2) the goal of this study was to measure the accuracy
with which participants could specify provenance policies
using the main window and not their ability to correctly
construct provenance graphs. However, in practice, this panel
can consist of graphical provenance nodes and arrows so that
users can draw provenance graphs on which to test their
policies. Alternatively, the interface can support uploading a
JSON file with graph objects consisting of a list of vertices
and a list of edges for users who do not want to physically
draw provenance graphs.

2) Constructing Policies: To construct policies in the Pro-
Prov interface, users begin by clicking the drop down menu
of the policy selector and selecting one of the listed policies,
as shown in Figure 3. After making a selection, the user will
continue this process for any additional selectors that may
appear, until all selectors are filled.

For example, consider the policy ensuring that every data
entity was attributed to an account agent, to verify that
every individual who has influenced the state of data can
be accounted for. Beginning with the initial policy selector,
the user can select the forall policy, after which three more
selectors will appear: 1) a variable selector, 2) a type selector,
and 3) another policy selector, as shown in Figure 4.

The user can then proceed by choosing a variable name x,
dataentity as a type, and exists as a policy, after which three
more selectors will appear for the existential policy. Next, the

Fig. 4. Selection of a universal (forall) policy

user can choose a variable name y, accountAgent for the
type, and wasAttributedTo for the policy, after which two
node selectors will appear. Lastly, the user can complete the
policy by selecting x for the left node selector and y for the
right node selector. A step-by-step illustration of the selection
process for this policy can be found online [6], and the end
result is shown in Figure 2.

After constructing a complete policy, users can evaluate
their policies by clicking the evaluate button at the bottom
of the right panel, shown in Figure 2. If the desired result is
not returned, users may modify any of the selectors to create
a new policy, after which they can again evaluate on the suite
of example graphs provided in the right panel. The text-based
version of the policy also appears at the bottom of the right
panel to show users what their policy looks like in ASCII.

IV. METHODOLOGY

61 participants were recruited to measure the accuracy
with which they could specify provenance policies using the
ProProv interface. The usability of the ProProv interface was
also measured using the System Usability Scale (SUS) [31].

A. Open Policy Agent and Rego

To provide a base for comparison, participants also com-
pleted the study using Rego, the policy specification lan-
guage for the Open Policy Agent (OPA). OPA is a general-
purpose policy engine which was accepted to the Cloud Native
Computing Foundation in 2018. OPA can be used to enforce
policies in a variety of services, including Kubernetes. OPA’s
popularity has increased rapidly in recent years, with a 2020
post from Styra boasting 17 million downloads and several
major adopters [32].

Rego and OPA can be used to implement provenance
policies and the JSON input is well-suited to representing
provenance graphs. However, expressing some common poli-
cies, such as the partially completed policy in Section III-B1,
requires creativity as Rego does not explicitly provide support

for universal policies. Instead, such policies must be con-
structed by negating the opposite existential policy.

Unlike ProProv, a GUI for Rego does not exist. Instead,
Rego policies are text-based and implemented using standard
text editors or other textual tools such as The Rego Play-
ground [33], an online tool for editing and evaluating policies
with Rego. In contrast, ProProv was designed from the ground
up with a GUI in mind, with the textual ProProv language
intended only for the most advanced users.

The modified interface, which can be viewed online [6], uses
the same layout as The Rego Playground with a code editor
in the left panel and a panel for JSON input on the right. Like
The Rego Playground, the panels use CodeMirror [34], a code
editor implemented in Javascript, and the syntax highlighting
for Rego developed by Styra [35]. However, the right panel
cannot be edited and contains five tabs that allow participants
to switch between the different inputs in the test suite. This is
the same test suite provided for the ProProv interface with the
graphs represented using JSON. The graphs are represented as
a list of vertices and edges, with each edge defining the relation
between the source and destination vertices. Upon clicking
the evaluate button, the participant’s code is evaluated against
the test suite using OPA, and the results are returned to the
participant in the same format as the ProProv interface.

B. Scenario

To increase participant engagement and create a more au-
thentic experience, participants were provided with a detailed
scenario that required the construction of provenance policies.
The same scenario was used for ProProv and Rego and
centered around a university career fair asking subjects to
take on the role of a recruiter obtaining attendee information
after the event concluded. Participants were asked to complete
7 tasks to accomplish the goal of distinguishing between
students who attended the career fair and students who did
not. The scenario text is provided verbatim online [6].

The seven tasks participants were asked to complete are
listed below.

1) Write a policy to ensure that the data entity filtered#org
was derived from data entity students#usf.

2) Write a policy to ensure that the data entity students#usf
was not attributed to account agent recruiter#org.

3) Write a policy to ensure that the data entity filtered#org
was derived from data entity careerfairattendees#org,
and careerfairattendees#org was attributed to account
agent recruiter#org.

4) Write a policy to ensure that there is some activity that
used students#usf.

5) Write a policy to ensure that there is some activity
that was associated with a node agent sgx#intel, and
sgx#intel acted on behalf of the account agent re-
cruiter#org.

6) Write a policy to ensure that for every data entity there
is some account agent such that the data entity was
attributed to that account agent.

Fig. 5. The solution for implementing the first policy using the ProProv
Interface

7) Write a policy to ensure that for every data entity,
if filtered#org was derived from that data entity, then
that data entity was attributed to either account agent
recruiter#org or account agent registrar#usf.

The tasks are ordered by perceived complexity with Task 7
being considered the most difficult to construct. The perceived
difficulty closely matches the actual difficulty based on par-
ticipant success, discussed in Section V. Figure 5 shows the
solution for Task 1 using the ProProv interface and the solution
using rego can be found online [6]. The solution for Task 7
using ProProv and the solutions for Task 6 and Task 7 using
Rego can be found online [6].

C. Procedure

The study was conducted in four steps: 1) demographics, 2)
training, 3) policy writing, and 4) exit survey. The experiment
was conducted over a 70-100 minute session. The session
time was managed by the experiment site. In step one,
the participants completed a standard demographics survey.
Participants were also asked about their previous experience
with writing policies. The demographic results are provided
in Section IV-E.

Next, participants watched a training video on the ACDC
provenance model. Links to each of the training videos can
be found online [6]. The training focused on reading and
understanding graphs as participants did not need to create
their own. Participants were introduced to entities, activities,
agents, and the meanings of the edge relations. The video is
7.5 minutes long.

Participants were randomly assigned to use ProProv or
Rego as their first tool. The participants watched a training
video on constructing provenance policies using the tool. For
ProProv, participants were introduced to the various panels
and selectors, and five example policies were constructed that
demonstrated all of the key features. For Rego, participants
were introduced to the Rego syntax and interface, and the same
five examples as ProProv. The ProProv video is 8.5 minutes
long, and the Rego video is 12 minutes long.

The participants were then provided the study scenario to
complete with their assigned tool. Participants had access to
the original training materials, which is analogous to practical
situations in which developers access language documentation
while constructing policies. The participant was allowed to
move to the next task after constructing a passing policy or
spending 2.5 minutes on the task. Participants were required
to move to the next task after 5 minutes for Tasks 1-4 and
10 minutes for Tasks 5-7. Once all 7 tasks were completed,
the participant repeated the process with the other tool. The
maximum possible time spent is 70 minutes, however, the
average was about 15 minutes for ProProv and 30 minutes for

Rego. After completing the tasks with both tools, participants
completed an exit survey, provided online [6]

The survey contained 10 rating scale questions that were
asked twice, once for each tool, as well as additional general
questions about improving the tools or training. The results of
the exit survey are discussed in Section V.

D. Initial Hypotheses

Since this is the first evaluation of ProProv, our initial
hypotheses are that subject performance will be similar regard-
less of the tool used. Specifically, we expected two outcomes:
[H1]: Subjects would have similar failure rates when specify-
ing policies using the ProProv interface as they do writing the
policies using Rego.
[H2]: It would take subjects the same amount of time to
correctly specify a policy using either tool.
We selected an alpha level of α < 0.05 to evaluate these
Hypotheses.

E. Participants

Participants were recruited from a Secure Coding course
taught by study staff. The course introduced the theory of
security policies and applied concepts such as the specification
of firewall policies, but the course did not cover provenance
policies or other concepts related to the study. Students who
completed the study received extra credit for their participa-
tion. The study was approved by the university IRB, and the
necessary steps were taken to prevent undue influence (e.g.,
the professor was not involved in recruitment or grading the
extra credit, and an alternative extra-credit assignment was
available). Students completed the study in an on-campus lab
with a study staff member and most used their own laptop.

The study recruited a total of 61 students. All interested
participants were accepted. Table I provides the demographic
data. For race and ethnicity, participants could select all
applicable categories, so the final totals do not sum to 61.
Participants were also asked if they had constructed policies
using Rego or another tool. None had used Rego before, and
only eight (13%) had written policies.

V. RESULTS

This section compares Rego and the ProProv interface using
the collected data. SUS scores for the tools are also calculated
based on the exit survey responses.

A. Quantitative Comparison

Table II provides a detailed overview of the data for both
ProProv and Rego. The table begins with the average time
spent in seconds on each task. On average, participants took
about twice as much time constructing policies with Rego. To
test hypothesis [H2], pairwise comparisons using T-Tests were
calculated for each task and the aggregate between ProProv
and Rego. All of the results are statistically significant at a
p-value less than 0.001, which is below the alpha level of
α < 0.05, thereby refuting hypothesis [H2] and allowing us
to assert that subjects are able to specify policies faster with
the ProProv interface.

The number of successful tasks represents the total number
of participants that were able to construct a policy that
passed every test case for the task. No task was passed by
all participants. The hardest tasks, Task 6 and Task 7, had
the lowest success rate. Only 5% of participants correctly
passed Task 6 with Rego. With ProProv, 79% of participants
completed Task 6, which is similar to the success rate for all
tasks. The success rate for ProProv drops to 52% for Task 7.
Across all tasks, participants were successful with ProProv
73% of the time and with Rego 41% of the time.

Finally, the failure rate for each task was calculated. This
is the percentage of attempts that failed due to an error or an
incorrect policy, calculated as the number of failed attempts
divided by the total number of attempts. The aggregate failure
rate for all seven tasks is also included. To test our hypothesis
that subjects are equally likely to fail on a given task with
either tool, a two-by-two contingency table was constructed
to compare subject performance using ProProv versus Rego
on each task, as well as for all tasks in aggregate. Fisher’s
exact test was calculated for each table. All of the results,
both by each task and in aggregate, are statistically significant
at an alpha-level of 0.05, thereby refuting hypothesis [H1] and
allowing us to assert that subjects are less likely to fail when
specifying a policy using the ProProv interface than Rego.

B. Usability

To measure the usability of the ProProv interface and
Rego, participants were asked ten usability questions based
on the SUS framework, listed online [6]. A SUS score above
68 is considered an above average score, and below 68 is
considered a below average score. Scores above the average
can be described as “acceptable”, scores between 50 and 68 as
“marginally acceptable”, and “unacceptable” for scores below
50 [36]. This study also assigns an adjective (from poor to
excellent) based on the SUS score [37].

The ProProv Interface scored a mean of 77.95 and median
of 82.5, which is considered “excellent”, and is well above
the average acceptable score. Rego scored a mean of 49.59
and median of 52.5. This suggests that subjects had an easier
time implementing provenance policies using the ProProv
interface, which provides features specifically for constructing
provenance policies.

VI. DISCUSSION

This section discusses the implications and limitations of
the study.

A. Implications

Subjects were significantly more successful in writing poli-
cies for all seven tasks using the ProProv tool. The difficulty
with Task 6 and Task 7 for Rego likely spiked due to the tasks
requiring features not explicitly supported by the language.
Both tasks require participants to construct universal policies,
which requires the participant to first create the opposite
existential policy and then negate that policy. Task 7 then

TABLE I
PARTICIPANT DEMOGRAPHICS

Gender Age Race/Ethnicity English Fluency Years Programming
Female 12 (20%) 18-24 45 (74%) Asian 21 (34%) Proficient 3 (5%) None 1 (2%)
Male 49 (80%) 25-34 13 (21%) Black 6 (10%) Fluent 11 (18%) Less than 2 years 14 (23%)

35-44 2 (3%) Hispanic or Latino 17 (28%) Native 47 (77%) 2-5 years 41 (67%)
45-54 1 (2%) Other 1 (2%) More than 5 years 5 (8%)

White 30 (49%)
No Answer 4 (7%)

TABLE II
COMPLETION STATISTICS FOR PROPROV AND REGO

Average Time Spent (seconds) Successful Tasks Failed Attempt Rate
ProProv Rego p ProProv Rego ProProv Rego p

Mean Median Mean Median
Task 1 120 81 236 244 < 0.001 49 (80%) 35 (57%) 0.45 0.63 0.0371
Task 2 134 95 223 223 < 0.001 46 (75%) 34 (56%) 0.47 0.59 0.001
Task 3 135 102 240 252 < 0.001 51 (84%) 32 (52%) 0.35 0.6 < 0.0001
Task 4 147 123 220 213 < 0.001 44 (72%) 34 (56%) 0.44 0.58 < 0.0001
Task 5 204 161 314 264 < 0.001 43 (70%) 27 (44%) 0.42 0.66 0.0002
Task 6 152 103 401 401 < 0.001 48 (79%) 3 (5%) 0.38 0.96 < 0.0001
Task 7 239 189 423 450 < 0.001 32 (52%) 8 (13%) 0.58 0.9 < 0.0001

Aggregate 163 133 294 267 < 0.001 313 (73%) 173 (41%) 0.44 0.7 < 0.0001

requires participants to combine this with other features (forall,
implies, and or) seen in the first five tasks.

Overall, subjects were correct more often than not when
using the ProProv interface and were incorrect more often than
not when using Rego. This is particularly insidious when taken
out of the context of a (somewhat contrived) user study. When
subjects create a well-formed, but incorrect, policy in this
study, they are told that the policy is not correct and prompted
to try again. However, in practice, an error like this represents
a misconfiguration and can lead to unintended side-effects
during system operation. Therefore, it is critical to minimize
this failure rate, and the difference observed for the ProProv
interface over Rego represents a step towards an acceptable
failure threshold but requires more work and optimization of
the tool to bring it in line with real system requirements.

The difference in subject timings for successful task comple-
tion indicate that subjects were significantly quicker in writing
policies using the ProProv interface than using Rego, with each
task taking about half as long to complete in Proprov than in
Rego. This could be a combination of factors; first off, the
ProProv tool allows for the quick selection of policy elements
via a drop-down menu, and subjects needed only to click twice
to add a policy term, whereas in Rego the subject must fully
type out each term, without the aid of any features such as
autocomplete, which may speed up the process. In addition,
when a policy term describing a provenance relation is added
in the ProProv tool, the subject is immediately prompted to fill
out the elements in the relation by the tool. This is contrasted
by Rego, which requires that the subjects manually type in
each term, and remember the structure of a given relation,
which was found to be an error-prone process.

Subjects had a much harder time using Rego, which has
a broader scope with features designed for access-control
policies. Note that the SUS scores for Rego in this study
represent the usability when constructing provenance policies;
Rego may have different SUS scores for other policies that
can be constructed in Rego.

The differences in usability scoring, as well as the accuracy

and speed of subject responses for the tools indicate that the
ProProv tool is superior for the specification of provenance
policies. There are further steps that can be taken to improve
the overall usability of the ProProv tool, which presents
vectors for future work and are outlined in Section VII.

B. Limitations

The subject population for this study was recruited from the
student body of a large, public university. As a consequence,
subjects were overwhelmingly likely (74%) to fall in the 18-24
age bracket. This does not necessarily reflect the ideal profile
of a person who is likely to write policies using this tool
in their professional life. This is mitigated somewhat by the
subjects having several years of coding experience, with 75%
of them having at least 2 years of experience writing code.

After the study was concluded, a new version of Rego was
released that introduced the keyword ”every” to the language.
This keyword allows for users to define universal policies
without negating an existential policy. It is likely the inclusion
of this operator would have improved the performance of Rego
on Task 6 and Task 7, as those tasks may be defined more
concisely using the ”every” keyword. The remaining five tasks
are unaffected by this addition, and the results remain relevant
for versions of Rego widely deployed at the time of writing.

VII. CONCLUSION

As FaaS deployments become more commonplace, more
cyber analysts and end-users turn over custody of a portion of
their compute stack to third parties. This makes data integrity
mechanisms that can effectively operate with this reduced
visibility increasingly critical to preserve data quality and
confidence. The lightweight collection of data provenance and
the evaluation of policies over those data products can serve
as a tool to accomplish this task.

The ProProv graphical interface provides the convenience of
domain-specific features for quickly and accurately defining
provenance policies. When tasked with constructing prove-
nance policies using the ProProv interface and Rego, partic-

ipants were much more likely to successfully implement a
policy using the ProProv interface, and did so significantly
more quickly. This was especially true for tasks that required
participants to combine multiple policy types or write policies
that place restrictions on nodes of a particular type. Addi-
tionally, participants found ProProv to have higher usability,
earning a SUS classification of “excellent” [37].

Possible directions for future work include: 1) extending the
ProProv interface with advanced editing features such as real-
time error checking and options for managing the visualization
of the policy tree, 2) conduct studies to analyze how well
users can reason about expected provenance, and 3) conduct
studies of more targeted subject populations to assess the real-
world needs of policy writers. Overall, the ProProv language
and interface are tools that can be added to the arsenal of
the integrity policy writer and help move the state of data
provenance from a retroactive, forensic resource to a proactive
one that can be used to ensure that data cannot be laundered
by faulty or malicious services and actors.

REFERENCES

[1] G. Sivathanu, C. P. Wright, and E. Zadok, “Ensuring Data Integrity
in Storage: Techniques and Applications,” in Proceedings of the ACM
Workshop on Storage Security and Survivability, 2005, pp. 26–36.

[2] Y. Sun, J. Zhang, Y. Xiong, and G. Zhu, “Data Security and Privacy
in Cloud Computing,” International Journal of Distributed Sensor
Networks, vol. 10, no. 7, p. 190903, 2014.

[3] S. Tyszberowicz, R. Heinrich, B. Liu, and Z. Liu, “Identifying microser-
vices using functional decomposition,” in International Symposium on
Dependable Software Engineering: Theories, Tools, and Applications.
Springer, 2018, pp. 50–65.

[4] S. Engram, T. Kaczmarek, A. Lee, and D. Bigelow, “Proactive Prove-
nance Policies for Automatic Cryptographic Data Centric Security,” in
Provenance and Annotation of Data and Processes. Springer, 2020,
pp. 71–87.

[5] K. Belhajjame, R. B’Far, J. Cheney, S. Coppens, S. Cresswell, Y. Gil,
P. Groth, G. Klyne, T. Lebo, J. McCusker et al., “PROV-DM: The PROV
Data Model,” 2013.

[6] K. Dennis, S. Engram, T. Kaczmarek, and J. Ligatti, “ProProv
Appendix,” 2022. [Online]. Available: https://github.com/Ktrio3/ProProv

[7] M. Lemay, W. U. Hassan, T. Moyer, N. Schear, and W. Smith, “Auto-
mated Provenance Analytics: A Regular Grammar Based Approach with
Applications in Security,” in 9th USENIX Workshop on the Theory and
Practice of Provenance, 2017.

[8] R. K. Ko, M. Kirchberg, and B. S. Lee, “From System-centric to Data-
centric Logging-Accountability, Trust & Security in Cloud Computing,”
in Defense Science Research Conference and Expo. IEEE, 2011, pp.
1–4.

[9] Y. Liu, M. Zhang, D. Li, K. Jee, Z. Li, Z. Wu, J. Rhee, and P. Mit-
tal, “Towards a Timely Causality Analysis for Enterprise Security,”
in Proceedings of the 25th Network and Distributed System Security
Symposium, 2018.

[10] T. Pasquier, X. Han, T. Moyer, A. Bates, O. Hermant, D. Eyers, J. Bacon,
and M. Seltzer, “Runtime Analysis of Whole-System Provenance,”
in Proceedings of the ACM SIGSAC Conference on Computer and
Communications Security, 2018, pp. 1601–1616.

[11] X. Han, T. Pasquier, and M. Seltzer, “Provenance-based Intrusion
Detection: Opportunities and Challenges,” in 10th USENIX Workshop
on the Theory and Practice of Provenance, 2018.

[12] Y. Xie, D. Feng, Y. Hu, Y. Li, S. Sample, and D. Long, “Pagoda:
A Hybrid Approach to Enable Efficient Real-Time Provenance Based
Intrusion Detection in Big Data Environments,” IEEE Transactions on
Dependable and Secure Computing, vol. 17, no. 6, pp. 1283–1296, 2018.

[13] S. M. Milajerdi, R. Gjomemo, B. Eshete, R. Sekar, and V. Venkatakr-
ishnan, “HOLMES: Real-time APT Detection through Correlation of
Suspicious Information Flows,” in IEEE Symposium on Security and
Privacy. IEEE, 2019, pp. 1137–1152.

[14] X. Han, T. Pasquier, A. Bates, J. Mickens, and M. Seltzer, “UNICORN:
Runtime Provenance-Based Detector for Advanced Persistent Threats,”
in Proceedings of the Network and Distributed System Security Sympo-
sium, 2020.

[15] M. Imran, H. Hlavacs, I. U. Haq, B. Jan, F. A. Khan, and A. Ahmad,
“Provenance based data integrity checking and verification in cloud
environments,” Public Library of Science One, vol. 12, no. 5, 2017.

[16] X. Han, T. Pasquier, T. Ranjan, M. Goldstein, and M. Seltzer, “FRAP-
puccino: Fault-detection through Runtime Analysis of Provenance,” in
9th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud
17), 2017.

[17] W. U. Hassan, S. Guo, D. Li, Z. Chen, K. Jee, Z. Li, and A. Bates,
“NoDoze: Combatting Threat Alert Fatigue with Automated Provenance
Triage,” in Network and Distributed Systems Security Symposium, 2019.

[18] A. Kyrola, G. Blelloch, and C. Guestrin, “GraphChi: Large-scale graph
computation on just a PC,” in 10th USENIX Symposium on Operating
Systems Design and Implementation, 2012, pp. 31–46.

[19] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin,
and I. Stoica, “GraphX: Graph processing in a distributed dataflow
framework,” in 11th USENIX Symposium on Operating Systems Design
and Implementation, 2014, pp. 599–613.

[20] X. Cao and L. Iverson, “Intentional Access Management: Making
Access Control Usable for End-Users,” in Proceedings of the 2nd
Symposium on Usable Privacy and Security, 2006, pp. 20–31.

[21] D. Oppenheimer, A. Ganapathi, and D. A. Patterson, “Why Do Internet
Services Fail, and What Can Be Done About It?” in 4th Usenix
Symposium on Internet Technologies and Systems, 2003.

[22] A. Wool, “A Quantitative Study of Firewall Configuration Errors,”
Computer, vol. 37, no. 6, pp. 62–67, 2004.

[23] E. S. Al-Shaer and H. H. Hamed, “Firewall Policy Advisor for Anomaly
Discovery and Rule Editing,” in International Symposium on Integrated
Network Management. Springer, 2003, pp. 17–30.

[24] S. Brostoff, M. A. Sasse, D. Chadwick, J. Cunningham, U. Mbanaso,
and S. Otenko, “‘R-what?’Development of a role-based access control
policy-writing tool for e-scientists,” Software: Practice and Experience,
vol. 35, no. 9, pp. 835–856, 2005.

[25] T. Tran, E. S. Al-Shaer, and R. Boutaba, “PolicyVis: Firewall Security
Policy Visualization and Inspection,” in Proceedings of the Large
Installation System Administration Conference, vol. 7, 2007, pp. 1–16.

[26] S. Marouf and M. Shehab, “SEGrapher: Visualization-based SELinux
Policy Analysis,” in 4th Symposium on Configuration Analytics and
Automation. IEEE, 2011, pp. 1–8.

[27] D. Lomsak and J. Ligatti, “Poliseer: A tool for managing complex
security policies,” Journal of Information Processing, vol. 19, pp. 292–
306, 2011.

[28] L. Bauer, J. Ligatti, and D. Walker, “Composing Security Policies with
Polymer,” in Proceedings of the 2005 ACM SIGPLAN conference on
Programming language design and implementation, 2005, pp. 305–314.

[29] L. d. Moura and N. Bjørner, “Z3: An Efficient SMT Solver,” in
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems. Springer, 2008, pp. 337–340.

[30] J. D. Moffett and M. S. Sloman, “Policy conflict analysis in distributed
system management,” Journal of Organizational Computing and Elec-
tronic Commerce, vol. 4, no. 1, pp. 1–22, 1994.

[31] J. Brooke, “Sus: A quick and dirty usability scale,” Usability Eval. Ind.,
vol. 189, 11 1995.

[32] B. Mann, “Opa trends that prove kubernetes adoption,”
https://blog.styra.com/blog/opa-styra-trends-prove-kubernetes-adoption,
8 2020.

[33] Styra, “The Rego Playground,” https://play.openpolicyagent.org/, ac-
cessed: 2022-02-07.

[34] CodeMirror, “CodeMirror v6,” https://github.com/codemirror/CodeMirror.
[35] StyraInc, “Rego Codemirror Addons,”

https://github.com/StyraInc/codemirror-rego, 2019.
[36] A. Bangor, P. T. Kortum, and J. T. Miller, “An empirical evaluation of

the system usability scale,” International Journal of Human–Computer
Interaction, vol. 24, no. 6, pp. 574–594, 2008. [Online]. Available:
https://doi.org/10.1080/10447310802205776

[37] A. Bangor, P. Kortum, and J. Miller, “Determining what individual sus
scores mean: Adding an adjective rating scale,” J. Usability Studies,
vol. 4, no. 3, p. 114–123, 5 2009.

