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Binary Decision Diagrams

• Binary decision diagrams (BDDs) are graphs representing Boolean
functions.

• They can be made canonical.

• They can be very compact for many applications.

• They are important since many applications can be converted to
sequences of Boolean operations.

• References:
• R. Bryant, Graph-Based Algorithms for Boolean Function Manipulation,

IEEE Transactions on Computers, 1986.
• R. Bryant Symbolic Boolean Manipulation with Ordered Binary Decision

Diagrams, ACM Computing Surveys, 1992.
• Textbook, 6.7.3− 6.7.4
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Representing Switching Functions

• Truth Tables
• Satisfiability and equivalence check: easy; boolean operations also easy.
• Very space inefficient: 2n entries for n variables.

• Disjunctive Normal Form (DNF)
• Satisfiability is easy: find a disjunct without complementary literals.
• Negation and conjunction complicated.

• Conjunctive Normal Form (CNF)
• Satisfiability problem is NP-complete (Cook’s theorem).
• Negation and disjunction complicated.
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Representing Switching Functions

representation compact? sat equ ∧ ∨ ¬
truth table never hard hard hard hard hard

DNF sometimes easy hard hard easy hard

CNF sometimes hard hard easy hard hard

propositional
formula often hard hard easy easy easy

reduced ordered
binary decision diagram often easy easy∗ medium medium easy

∗ Provided appropriate implementation techniques are used.
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Symbolic Encoding: An ExampleExample Symbolic Representation of a Transition System
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Switching function: ∆(x1, x2︸ ︷︷ ︸
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Binary Decision Tree: Example
Transition Relation as a BDT
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A BDT representing � for our example using ordering x1 < x2 < x 01 < x 02.
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• The BDT for function f on ~x = {x1, . . . , xn } has depth n.

• Every node is labeled with a variable.
• Every node labeled with xi has two outgoing edges.

• 0-edge: xi = 0 (dashed) and,
• 1-edge: xi = 1 (solid).
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Binary Decision Tree: ExampleTransition Relation as a BDT
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• Every non-terminal node n has two successor nodes.
• low(n): the node at the end of the 0-edge of node n.
• high(n): the node at the end of the 1-edge of node n.
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Binary Decision Tree: ExampleTransition Relation as a BDT
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A BDT representing � for our example using ordering x1 < x2 < x 01 < x 02.
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• The edge labelings of a path from the root to a terminal is an
evaluation s = [x1 = b1, . . . , xm = bm], where bi ∈ {0, 1}.

• The labeling of the terminal node is the output of f(s).
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Binary Decision Tree: Example
Transition Relation as a BDT
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The subtree of node v at level i for variable ordering x1 < . . . < xn
represents:

fv = f |x1=b1,...,xi−1=bi−1

which is a switching function over {xi, . . . , xn } and where x1 = b1, . . . ,
xi−1 = bi−1 are the decisions made along the path from root to node v.
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Binary Decision Tree

• The BDT for function f on Var = {z1, . . . , zm} has depth m with
outgoing edges for node at level i stand for zi = 0 (dashed) and zi = 1
(solid).

• For evaluation s = [z1 = b1, . . . , zm = bm], f(s) is the value of the leaf
reached by traversing the BDT from the root using branch zi = bi.

• The subtree of node v at level i for variable ordering z1 < . . . < zm
represents:

fv = f |z1=b1,...,zi−1=bi−1

which is a switching function over {zi, . . . , zm} and where z1 = b1, . . . ,
zi−1 = bi−1 are the decisions made along the path from root to node v.
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Considerations on BDTs

• BDTs are a different form of truth tables.

• BDTs are not compact:
• A BDT for switching function f on n variables has 2n leafs.
• The size of a BDT does not change if the variable order changes.
⇒ They are as space inefficient as truth tables!

• BDTs contain a lot of redundancy:
• All leafs with value one (zero) could be collapsed into a single leaf.
• A similar scheme could be adopted for isomorphic subtrees.

Two graphs rooted at nodes u and v are isomorphic, denoted as
u ≡ v when both following conditions hold.

• value(u) = value(v) if u and v are terminals.

• low(u) ≡ low(v) ∧ high(u) ≡ high(v), otherwise.
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Ordered Binary Decision Diagram (OBDD)

• OBDDs rely on compactions of BDT representations.

• Idea: skip redundant fragments of BDT representations.

• Collapse subtrees with all terminals having same value.

• Identify nodes with isomorphic subtrees.

• This yields directed acyclic graphs with outdegree two.

• Inner nodes are labeled with variables.

• Leafs are labeled with function values (zero and one).

• A unique variable ordering is followed by every path.

• Each variable is assigned an unique index.

• Each BDD node v has an index index(v) which is the index of the
variable labeled in v.
• index(v) < index(low(v)) if low(v) is a non-terminal,
• index(v) < index(high(v)) if high(v) is a non-terminal.
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Transition Relation as a BDTTransition Relation as a BDT
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A BDT representing ∆ for our example using ordering x1 < x2 < x′1 < x′2.
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Transition Relation as a BDD
Transition Relation as an ROBDD
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An example ROBDD representing � for our example using x1 < x2 < x 01 < x 02.
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A BDT representing ∆ for our example using ordering x1 < x2 < x′1 < x′2.
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OBBDs and Boolean Functions

• Let ℘ be a variable ordering for Var where ℘ = (z1, . . . , zm).

• Every OBDD is defined wrt a given variable ordering.
• The nodes in every path are labeled with variables in the order as in ℘.

• A terminal node represents a constant Boolean function either 1 or 0.

• For a non-terminal node n labeled with z representing a Boolean
function fn, its two successor nodes represent Boolean functions:
• Node at the end of the 0-edge (low(n)): fn|z=0.
• Node at the end of the 1-edge (high(n)): fn|z=1.

Therefore,
fn = ¬z ∧ fn|z=0 ∨ z ∧ fn|z=1

• A OBDD is reduced (i.e. ROBDD) if for every pair (v, w) of nodes,

v 6= w implies fv 6= fw.
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Universality and Canonicity Theorem

[Fortune, Hopcroft & Schmidt, 1978]

Let ~x be a finite set of Boolean variables and ℘ a variable ordering for ~x.

(a) For each switching function f for ~x there exists a ℘-ROBDD OBDD
with fOBDD = f .

(b) For any ℘-ROBDDs G and H with fG = fH , G and H are isomorphic,
i.e., agree up to renaming of the nodes.
• ROBDDs are canonical for a fixed variable ordering.
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The Importance of Canonicity

• Absence of redundant vertices:

If fB does not depend on xi, ROBDD B does not contain an xi node.

• Test for equivalence: f(x1, . . . , xn) ≡ g(x1, . . . , xn)?

Generate ROBDDs Bf and Bg, and check isomorphism.

• Test for validity: f(x1, . . . , xn) = 1?

Generate ROBDD Bf and check whether it only consists of a 1-leaf.

• Test for implication: f(x1, . . . , xn)→ g(x1, . . . , xn)?

Generate ROBDD Bf ∧ ¬g and check if it just consists of a 0-leaf.

• Test for satisfiability:

f is satisfiable if and only if Bf has a reachable 1-leaf.
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Reducing OBDDs

• Generate an OBDD (or BDT) for a boolean expression, then reduce by
means of a recursive descent over the OBDD.

• Elimination rule:

If low(v) = high(v) = w, eliminate v and redirect all incoming edges to v to
node w.

• Isomorphism rule:
• If v 6= w are roots of isomorphic subtrees, remove v, and redirect all

incoming edges to v to node w.
• (Special case) Combine all 0/1-leaves, redirect all incoming edges.
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From BDT to ROBDDTransition Relation as a BDT
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A BDT representing � for our example using ordering x1 < x2 < x 01 < x 02.
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An OBDD representing ∆ for our example using ordering x1 < x2 < x′1 < x′2.
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From BDT to ROBDD
Transition Relation as a OBDD
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Isomorphism rule.
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After isomorphism rule
Next, elimination rule
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From BDT to ROBDDTransition Relation as a OBDD
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Elimination rule.
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Next, isomorphism rule
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From BDT to ROBDDTransition Relation as a OBDD
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Next, elimination rule
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From BDT to ROBDD
Transition Relation as a OBDD
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Next, isomorphism rule
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From BDT to ROBDD
Transition Relation as a OBDD
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Next, isomorphism rule
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From BDT to ROBDD
Transition Relation as an ROBDD
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Isomorphism rule.
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Final reduced BDD
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Variable Ordering Variable Ordering

(b) ordering x1 <0 x 01 <0 x2 <0 x 02
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(a) ordering x1 < x2 < x 01 < x 02
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Variable Ordering and Size of BDDs

• The size of the ROBDD crucially depends on the variable ordering.

• # nodes in ROBDD OBDD = # of ℘-consistent co-factors of f .

• Some switching functions have linear and exponential ROBDDs.

e.g., the addition function, or the stable function.

• Some switching functions only have polynomial ROBDDs.
• This holds, e.g., for symmetric functions.
• Examples f(. . .) = x1⊕ . . .⊕ xn, or f(. . .) = 1 iff ≥ k variables xi are true.

• Some switching functions only have exponential ROBDDs.

This holds, e.g., for the middle bit of the multiplication function.
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The Function Stable with Exponential ROBDD
The Function Stable with Exponential ROBDD
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The ROBDD of fstab(x ,y) = (x1$ y1) ^ . . . ^ (xn$ yn)

has 3·2n�1 vertices under ordering x1 < .. . < xn < y1 < .. . < yn.
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The ROBDD of fstab(x, y) = (x1 ↔ y1) ∧ . . . ∧ (xn ↔ yn)

has 3·2n − 1 vertices under ordering x1 < . . . < xn < y1 < . . . < yn.
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The Function Stable with Linear ROBDD
The Function Stable with Linear ROBDD
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The ROBDD of fstab(x ,y) = (x1$ y1) ^ . . . ^ (xn$ yn)

has 3·n +2 vertices under ordering x1 < y1 < .. . < xn < yn.
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The ROBDD of fstab(x, y) = (x1 ↔ y1) ∧ . . . ∧ (xn ↔ yn)

has 3·n + 2 vertices under ordering x1 < y1 < . . . < xn < yn.
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Another Function with an Exponential ROBDD

Another Function with an Exponential ROBDD

z1

0 1
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y3

ROBDD for f3(z,y) = (z1 ^ y1) _ (z2 ^ y2) _ (z3 ^ y3)

for the variable ordering z1 < z2 < z3 < y1 < y2 < y3.
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ROBDD for f3(~z, ~y) = (z1 ∧ y1) ∨ (z2 ∧ y2) ∨ (z3 ∧ y3)

for the variable ordering z1 < z2 < z3 < y1 < y2 < y3.
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An Optimal Linear ROBDD
An Optimal Linear ROBDD

z1
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ROBDD for f3(·) = (z1^ y1)_ (z2^ y2)_ (z3^ y3).

For ordering z1 < y1 < z2 < y2 < z3 < y3.

As all variables are essential, this ROBDD is optimal.

For no variable ordering, a smaller ROBDD exists.
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• ROBDD for f3(·) = (z1 ∧ y1)∨ (z2 ∧ y2)∨ (z3 ∧ y3).

• For ordering z1 < y1 < z2 < y2 < z3 < y3.

• As all variables are essential, this ROBDD is optimal.

• For no variable ordering, a smaller ROBDD exists.
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The Multiplication Function

• Consider two n-bit integers:

Let bn−1bn−2 . . . b0 and cn−1cn−2 . . . c0 where bn−1 is the most significant
bit, and b0 the least significant bit.

• Multiplication yields a 2n-bit integer:

The ROBDD OBDDfn−1
has at least 1.09n vertices where fn−1 denotes

the (n−1)-st output bit of the multiplication.
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Optimal Variable Ordering

• The size of ROBDDs is dependent on the variable ordering.

• Is it possible to determine ℘ such that the ROBDD has minimal size?
• To check whether a variable ordering is optimal is NP-hard.
• Polynomial reduction from the 3SAT problem. [Bollig & Wegener, 1996]

• There are many switching functions with large ROBDDs:

For almost all switching functions the minimal size is in Ω( 2n

n ).

• How to deal with this problem in practice?
• Guess a variable ordering in advance.
• Rearrange the variable ordering during the ROBDD manipulations.
• Not necessary to test all n! orderings, best known algorithm in O(3n·n2).
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Dynamic Re-ordering

• Finding an optimal ordering is NP-hard.

• Static ordering does not work well across different applications, or for
BDDs that need to be transformed during different stages of an
application.

• Automated dynamic re-ordering rearranges the variable orders
periodically to reduce the size of BDDs.

• Rudell’s “sifting” is widely used.
• Try moving a variable to all other positions, leaving the others fixed. Then

place variable in the position that minimizes BDD size.
• Do this for all variables.

Hao Zheng (CSE, USF) Comp Sys Verification 36 / 44



Dynamic Re-ordering

• Greatly improved effectiveness of BDDs.

• It is usually performed in the background.

• It may slow down the performance.
• BDD operations stop when re-ordering is activated.

• It makes a difference between success and failure in complete an
application.

• Some functions are inherently hard, e.g. outputs of integer multiplier.
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Logic Operations on BDDs

• Restriction f [b/x]: replacing variable x with a value 0 or 1.
• if b = 0, direct all incoming edges of node labeled with x to low(v), or
• if b = 1, direct all incoming edges of node labeled with x to high(v),
• remove node x and its outgoing edges.

• The result of restriction is a cofactor of f .

a

0 1

b

c

a

0 1

c

f f[1/b]
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Logical Operations on BDDs (cont’d)

• Negation is a constant time operation with OBDDs.
• Swap terminal nodes.

• The binary operations are based on the Shannon expansion.

f ◦ g = x · (f [0/x] ◦ g[0/x]) ∨ x · (f [1/x] ◦ g[1/x]).

where ◦ is some binary logic operator.

• Both BDDs must have the same variable ordering.
• The new BDD for f ◦ g is constructed as follows.

• The root of f ◦ g is the root of f or g with the smaller index.
• For any node in f ◦ g,

low(v) = f [0/x] ◦ g[0/x], and high(v) = f [1/x] ◦ g[1/x]

• Repeat the above step for low(v) and high(v) until either of them becomes
terminal.

• Reduce the constructed BDD to make it canonical.
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Logical Operations on BDDs — Example

a

c

1 0

b

c

0 1

g = b ^ c

a

c

1 0

b

c
f |a=1

f = ¬(a ^ c)

f |a=1 _ g

f |a=1 _ g |b=0 f |a=1 _ g |b=1

f _ g
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Logical Operations on BDDs — Example
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f |a=1 _ g
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b
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f |a=1 _ g

f |a=1 _ g |b=0

f _ gf _ g
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Variants of BDDs

• Various kinds of BDDs for compactness or different applications.

• Compactness
• Multi-rooted BDDs, free BDDs, partitioned OBDDs, etc

• Arithmetic operations
• Multi-terminal BDDs (ADDs), edge-valued BDDs, binary moment diagrams

(BMDs), etc.
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Implementation: Shared OBDDs

A shared ℘-OBDD is an OBDD with multiple roots.

10

Shared OBDD representing z1 ∧ ¬z2︸ ︷︷ ︸
f1

, ¬z2︸︷︷︸
f2

, z1 ⊕ z2︸ ︷︷ ︸
f3

and ¬z1 ∨ z2︸ ︷︷ ︸
f4

.

Main underlying idea: combine several OBDDs with same variable ordering

such that common ℘-consistent co-factors are shared.
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