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ABSTRACT
Models of cyber-physical systems are inherently complex
since they must represent hardware, software, and the physi-
cal environment. Formal verification of these models is often
precluded by state explosion. Fortunately, many important
properties may only depend upon a relatively small portion
of the system being accurately modeled. This paper presents
an automatic abstraction methodology that simplifies the
model accordingly. Preliminary results on a fault-tolerant
temperature sensor are encouraging.

Categories and Subject Descriptors
D.2 [Software Engineering]: Software/Program Verifica-
tion

1. INTRODUCTION
Verification of cyber-physical systems is complicated by

their heterogeneous nature as well as their sheer complexity.
Cyber-physical systems include hardware, software, and a
physical environment, so a formal model must integrate all
of these concerns. Unfortunately, modeling a system with
all of its details results in state explosion. Therefore, it
is necessary to automatically abstract the model to include
only those details necessary to verify the property of interest.
Constructing such a model is the focus of this paper.

One candidate model for cyber-physical systems are hy-

brid automata [3, 4], but their use of invariants make them
cumbersome to generate from higher level descriptions. Hy-

brid Petri nets are another alternative [5], but their use of
separate continuous places and transitions makes them also
difficult to generate. The labeled hybrid Petri net (LHPN)
model has been developed and applied to the verification
of analog/mixed-signal circuits, and compilers have been
developed from VHDL-AMS as well as SPICE simulation
data [8, 9, 14]. This model includes both Boolean variables
for representing digital circuits and continuous variables for
representing analog circuits. In [12], the LHPN model is
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extended to support discrete variables for representing soft-
ware variables as well as expressions to check and modify
them. These extensions allow for both hardware and soft-
ware to be represented in a single model along with their
continuous physical environment. A compiler and a model
checker have been developed to support the use of this model
for the verification of cyber-physical systems [12, 13].

Verifying LHPN models of cyber-physical systems at full
detail is not possible due to the state explosion problem.
This paper presents an automatic abstraction technique for
simplifying these LHPN models. The basic idea is to apply
LHPN transformations to remove details from the model
that are irrelevant to the property of interest. These trans-
formations are inspired by transformations for ordinary Petri
nets [11] and timed Petri nets [15]. They are also inspired
from various static analysis techniques used by compilers [1].
Other related work includes reduction techniques for timed
and hybrid automata described in [6, 7, 10].

This paper is organized as follows. Section 2 describes a
motivating example of a fault-tolerant temperature sensor
for a nuclear reactor cooling system. Section 3 introduces
the LHPN model. Section 4 briefly introduces our state
space exploration algorithm, and Section 5 briefly describes
a compiler to generate LHPN models. The core of the pa-
per is Section 6 which presents our LHPN transformations.
Section 7 presents results for our example, and Section 8
presents our conclusions and future goals.

2. MOTIVATING EXAMPLE
A traditional cyber-physical system example is the cool-

ing system for a nuclear reactor [2]. In this example, the
temperature of the nuclear reactor core is monitored, and
when the temperature is too high, one of two control rods
is inserted to cool the reactor core. In our modified version
of the example, there are two temperature sensors to add
fault tolerance. Namely, each temperature sensor is periodi-
cally sampled and if at any point the temperature difference
between them is too large, it is assumed that one of them
has become faulty and the reactor is shut down. A block
diagram for this example is shown in Fig. 1.

This example is interesting because it includes an interface
with a physical environment (i.e., the temperature sensors),
mixed-signal components (i.e., the analog/digital convert-
ers (ADCs)), digital components (i.e., the microcontroller),
and embedded software (i.e., the program running on the
microcontroller). The verification problem is to determine
if a temperature mismatch error can occur even when the
temperature sensors are operating correctly. On the surface,
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Figure 1: Fault-tolerant temperature sensor for a

nuclear reactor.

this does not appear to be a problem, but there are a num-
ber of implementation details that make this not so obvious.
First, there is typically only one ADC on a microcontroller
which is multiplexed to sample from each ADC input one
at a time. This means that the temperature sensors are not
sampled at exactly the same time. A second problem is that
since the comparison of the results is not done with a single
atomic instruction at the assembly level, it is possible that
the results are not even from the same sampling cycle.

3. THE LHPN MODEL
An LHPN is a Petri net model originally developed to

represent analog/mixed-signal (AMS) circuits [8, 14], and it
has recently been extended to represent software [12, 13].
The LHPN model is inspired by both hybrid Petri nets [5]
and hybrid automata [3]. While the models in this paper
could certainly be represented using these traditional for-
malisms, we have found it extremely difficult to develop an
automatic compiler that targets these formalisms. There-
fore, the LHPN model has been developed with the goal of
being easy to generate from various higher-level representa-
tions of cyber-physical systems. An LHPN is a tuple N =
�P , T , Tf , B, X, V , ∆, V̇ , F , L, M0, S0, Y0, Q0, R0�:

• P : is a finite set of places;

• T : is a finite set of transitions;

• Tf ⊆ T : is a finite set of failure transitions;

• B : is a finite set of Boolean variables;

• X : is a finite set of discrete integer variables;

• V : is a finite set of continuous variables;

• ∆ : is a finite set of rate variables;

• V̇ : V → ∆ is the mapping of variables to their rates;

• F ⊆ (P × T ) ∪ (T × P ) is the flow relation;

• L : is a tuple of labels defined below;

• M0 ⊆ P is the set of initially marked places;

• S0 : B → {0, 1,⊥} is the initial value of each Boolean;

• Y0 : X → (Z∪ {−∞})× (Z∪ {∞}) is the initial range
of values for each discrete variable;

• Q0 : V → (Q∪ {−∞})× (Q∪ {∞}) is the initial range
of values for each continuous variable;

• R0 : ∆ → (Q∪ {−∞})× (Q∪ {∞}) is the initial range
of rates of change for each continuous variable.

A simple LHPN is shown in Fig. 2. The places are la-
beled p0, p1, and p2 with p0 and p2 initially marked. The
transitions are labeled t0, t1, and t2 with transition t2 being
a failure transition. The flow relation is represented by the

Initial values:

g:=false

x:=5

y:=14

x'dot:=1

p0

t0

{x!9}

[0,3]

<g:=true,x'dot:=-2>

t1

{x"3}

[0,0]

<x:=y+2>

p1

p2

t2

{x"-3}

[5,5]

<y:=(x*25)/2>

Figure 2: Example LHPN.

arcs connecting the places and the transitions. This example
has a Boolean variable, g, which is initially false, a discrete
variable, y, with an initial value of 14, and a continuous
variable, x, with an initial value of 5 and rate of 1.

Every transition t ∈ T has a preset denoted by •t = {p |
(p, t) ∈ F} and a postset denoted by t• = {p | (t, p) ∈ F}.
Presets and postsets for places are defined similarly. The
functions •T =

S
t∈T • t and T • =

S
t∈T t• apply to sets

of transitions. The set of all possible successor transitions
reachable from a set of transitions T is defined with the re-
cursive function post(T ) = (T ••)∪ (post(T ••)). Similarly,
pre(T ) = (• •T )∪ (pre(• •T )) defines the set of all possible
predecessor transitions from which T may be reached. Tran-
sitions in an LHPN that are connected by the flow relation
are said to reside in the same process, and all transitions
in the same process as transition t can be determined us-
ing the recursive function proc({t}) = pre(T ) ∪ post(T ) ∪
proc(pre(T ) ∪ post(T )). The LHPN in Fig. 2 includes two
processes (i.e., {t0, t1} and {t2}).

Before defining the labels formally, let us first introduce
the grammar used by these labels. The numerical portion
of the grammar is defined as follows:

χ ::= ci | ∞ | xi | vi | v̇i | (χ) | − χ | χ + χ |
χ− χ | χ ∗ χ | χ/χ | χ^χ | χ%χ |
NOT(χ) | OR(χ, χ) | AND(χ, χ) |
XOR(χ, χ) | INT(φ)

where ci is a rational constant from Q, xi is a discrete vari-
able, and vi is a continuous variable. The function v̇i returns
the rate variable associated with the continuous variable vi.
The functions NOT, OR, AND, and XOR are bit-wise logical
operations, and they are only applicable to integers and as-
sume a 2’s complement format with arbitrary precision. The
function INT converts a Boolean true value to an integer 1
and false value to an integer 0. The set Pχ is defined to be
all formulas that can be constructed from the χ grammar.

The Boolean part of the grammar is as follows:

φ ::= true | false | bi | ¬φ | φ ∧ φ | φ ∨ φ | χ = χ |
χ ≥ χ | χ > χ | χ ≤ χ | χ < χ | BIT(χ, χ)

where bi is a Boolean variable, and BIT(α1, α2) extracts bit
α2 from α1. The set Pφ is defined to be all formulas that
can be constructed from the φ grammar.
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The analysis algorithm restricts enabling conditions to a
subset of the χ and φ grammars. The χe grammar does
not allow continuous variables to be used, nor does it allow
Boolean expressions to be converted into integers. The set
Pχe is defined to be all formulas that can be constructed
from the χe grammar. The φe grammar is restricted such
that enabling conditions only allow continuous variables to
appear on the left side of relations of the form vi ≥ χe

or vi ≤ χe. This guarantees that the right side of these
relations remains constant between transition firings as time
advances. The set Pφe is defined to be all formulas that can
be constructed from the φe grammar.

Each transition in an LHPN is labeled with an enabling
condition as well as a set of assignments. These are formally
defined using the tuple L = �En, D , BA, XA, VA, RA�:

• En : T → Pφe labels each transition t ∈ T with an
enabling condition.

• D : T → Q+×(Q+∪{∞}) labels each transition t ∈ T
with a lower and upper delay bound, [dl(t), du(t)].

• BA : T × B → Pφ labels each transition t ∈ T and
Boolean variable b ∈ B with the Boolean assignment
made to b when t fires.

• XA : T × X → Pχ labels each transition t ∈ T and
discrete variable x ∈ X with the discrete variable as-
signment that is made to x when t fires.

• VA : T × V → Pχ labels each transition t ∈ T and
continuous variable v ∈ V with the continuous variable
assignment that is made to v when t fires.

• RA : T×∆ → Pχ labels each transition t ∈ T and con-
tinuous rate variable v̇ ∈ ∆ with the rate assignment
that is made to v̇ when t fires.

For convenience, AV = B ∪ X ∪ V ∪ ∆ denotes the set of
all variables, and AA = BA ∪ XA ∪ V A ∪ RA denotes all
assignments to these variables. Note that most assignments
are vacuous (i.e., reassign the existing value) and are there-
fore not represented in the graphical representation. This is
defined formally as follows: vac(t, v) ⇔ (AA(t, v) = v).

Transition t0 from the first process of Fig. 2 has an en-
abling condition of {x ≥ 9}. The delay of this transition
varies from 0 to 3 time units. When t0 fires, the rate, ẋ , is
assigned to -2. The firing of transition t0 also assigns the
Boolean variable g to true. The firing of transition t1 as-
signs the continuous variable x to the value of the expression
y + 2. The firing of t2 results in a discrete variable assign-
ment to y which sets its value to the value of the expression
(x ∗ 25)/2. Note that this assignment scales a continuous
variable and assigns a truncated value to an integer.

The formal semantics are in [12, 13], and briefly described
here using the example in Fig. 2. In the initial state, p0
and p2 are marked; g is false; y has a value of 14; x has a
value of 5 and changing at a rate of 1. Since t0 is guarded
by the Boolean expression {x ≥ 9} and t2 by {x ≤ −3},
and neither is satisfied in the initial state, no transitions are
initially enabled. After 4 time units, x reaches a value of 9,
and {x ≥ 9} becomes true, enabling transition t0. Since the
delay assignment on t0 is [0,3], transition t0 fires within the
next 3 time units. When t0 fires, g is set to true, x is set
to change at a rate of -2, and the marking is moved from
p0 to p1. In this new state, p1 is marked, but transition
t1 is not yet enabled. Since x now has a value between 9

and 12, it can take anywhere from 3 to 4.5 time units for
{x ≤ 3} to become true. When this happens, transition t1
fires instantly setting x to a value of 15. The right process
is monitoring if the value of x ever drops below -3 for five
time units or more. If this happens then transition t2 fires
indicating a failure. While this does not occur for these
parameters, it fails if the delay of transition t1 is set to 8.

4. STATE SPACE EXPLORATION
State space exploration is required to analyze and verify

properties of LHPNs. This exploration is complicated by the
fact that LHPNs typically have an infinite number of states.
Therefore, to perform state space exploration on LHPNs,
this infinite number of states must be represented by a fi-
nite number of convex state equivalence classes called state

sets. In particular, these state sets use zones represented
using difference bound matrices (DBMs). State exploration
proceeds as a depth first search of the state space, and it ter-
minates either when all state sets have been found or when a
failure transition is fired. It should be noted, however, that
state space exploration for LHPNs is undecidable, so it actu-
ally may not terminate. Details about the state exploration
method have been reported earlier in [8, 12].

5. LHPN COMPILER
Constructing LHPN models by hand is quite tedious. To

address this issue, we have developed a compiler that maps
a higher-level description into the low-level LHPN model.
An LHPN model for a cyber-physical system is composed
of three parts: the hardware (both analog and digital), the
software, and the physical environment. The hardware and
physical environment models tend to be more stable and
more reusable. For example, a model of a microcontroller
can be reused in every system that uses that microcontroller.
On the other hand, the software is typically unique for ev-
ery system and may be updated and modified easily and
thus often. Software is developed in some high-level lan-
guage that is then compiled to an assembly language for the
microprocessor or microcontroller on which it runs. Pre-
cise analysis of timing is often critical for the correctness
of cyber-physical systems. This information is not available
in the high-level language used for software development,
so our analysis must focus at the assembly language level
where timing of individual instructions is known. However,
compilers for high-level languages are leveraged to produce
the assembly language input to our compiler.

Our compiler takes as input a language definition that
defines how each instruction is mapped to LHPN constructs
and a description of the process using this language. The
language definition only needs to be constructed once for
each type of process. Using this definition, the compiler di-
rectly translates each instruction into a portion of an LHPN
which is then stitched together to form a model of the com-
plete process. Constructs have been developed for represent-
ing subroutines, interrupts, and threads using this modeling
approach, and details can be found in [13].

Modeling the temperature sensor requires three processes.
The first models the environment, the second the processor
ADC hardware, and the last the software. To simplify the
presentation, only the portion of the model related to the
temperature sensors is presented. The environment model is
shown in Fig. 3(a). This uses the set_rate instruction that
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has operands of an enabling condition, continuous variable,
new rate for the variable, and lower and upper delay on the
rate change, and it creates a transition with these parame-
ters. Neglecting the control rods, the reactor temperature
is simply modeled as a triangle wave. The temperature is
allowed to fall at a rate of two temperature units per time
unit until reaching a value of 2200. The temperature then
rises at a rate of two temperature units per time unit until
reaching a value of 9800. At this point, the temperature
begins to decrease again. The analog circuitry in the model
(the low pass filters and amplifiers) are encapsulated in this
model, and the variable temp is provided as the input to
the ADC subsystem. The compiled LHPN process for the
environment model is shown in Fig. 3(b). The description of
the ADC subsystem is omitted due to space limitations [13].
The LHPN process for part of the ADC subsystem is shown
in Fig. 3(c). In particular, this model shows two of the ten
operating modes, as the others are similar. Finally, the as-
sembly software and corresponding LHPN process is shown
in Fig. 4. This model implements the initialization and re-
dundant temperature sensor check, but does not implement
the cooling rod control loop. Storing 48 to the ADCTL reg-
ister initiates a sample of an0 through an3. The program
then busy-waits until it receives the adc ccf flag from the
ADC subsystem, which shows up as the high order bit of a
read from the ADCTL register. Once a complete cycle has
finished, the program then repetitively reads the contents
of ADR1 and ADR2 and compares their values. If they are
within a tolerance, the loop repeats. If not, an error code
is written to PORTB and the program enters a stall loop.
Note that ;@ fail_set marks the following transition, t36,
as a failure transition.

6. LHPN TRANSFORMATIONS
Most system models are too complicated to analyze at a

low-level of detail, but too high a level of detail may not
allow the properties of interest to be verified. For exam-
ple, verification of programs in a high-level language such
as C omit timing information, but verification of assembly
level software quickly results in state explosion. This section
presents several LHPN transformations that can simplify
the system model by removing unnecessary details. The
LHPN transformations essentially transform assembly lan-
guage programs back into higher level expressions while pre-
serving the timing of critical operations. While most LHPN
transformations presented do not change the state space,
in the worst-case, they are conservative and do not pro-
duce false positive results. This section illustrates the LHPN
transformations using the LHPN model for the fault-tolerant
temperature sensor shown in Figs. 3 and 4.

6.1 Preliminaries
A transition t is said to read a variable v if it contains any

reference to v other than its own vacuous assignment. This
is defined formally as follows:

reads(t, v) ⇔ (v ∈ sup(En(t))∨
∃v� ∈ AV.(¬vac(t, v�) ∧ v ∈ sup(AA(t, v�)))).

Note that the function sup(e) returns the set of all variables
that occur in the expression e.

Many of the LHPN transformations can only be applied
to variables that are local to a process. Formally, a variable

include <example.inst>
e_start set_rate temp<=2200 temp 2 5 5
dr_rod set_rate temp>=9800 temp -2 5 5

link e_start
(a)

t0

{temp!2200}

[5,5]

<temp'dot:=2>

dr_rod

t1

{temp"9800}

[5,5]

<temp'dot:=-2>

e_start

t2

{adc_start!adc_mult!¬adc_cc}

[0,0]

<adc_start:=false>

ins0

t3

{¬adc_start}

[32,32]

<ADR1:=(temp-VRl)*255/(VRh-VRl)>

ins1

t4

{¬adc_start}

[32,32]

<ADR2:=(temp-VRl)*255/(VRh-VRl)>

ins2

t5

{¬adc_start}

[32,32]

<ADR3:=(temp-VRl)*255/(VRh-VRl)>

ins3

t6

{¬adc_start}

[32,32]

<ADR4:=(temp-VRl)*255/(VRh-VRl),adc_ccf:=true>

i0

t7

{¬(adc_scan)}

[0,0]

a_start

t8

{adc_scan}

[0,0]

t9

{adc_start}

[0,0]

t10

{adc_start}

[0,0]

t11

{adc_start}

[0,0]

t20

{adc_start}

[0,0]

t12

{adc_start}

[0,0]

t21

{adc_start}

[0,0]

t13

{adc_start!adc_mult!adc_cc}

[0,0]

<adc_start:=false>

ins4

t22

{adc_start}

[0,0]

t14

{¬adc_start}

[32,32]

<ADR1:=(temp-VRl)*255/(VRh-VRl)>

ins5

t23

{adc_start}

[0,0]

t15

{¬adc_start}

[32,32]

<ADR2:=(temp-VRl)*255/(VRh-VRl)>

ins6

t16

{¬adc_start}

[32,32]

<ADR3:=(temp-VRl)*255/(VRh-VRl)>

ins7

t17

{¬adc_start}

[32,32]

<ADR4:=(temp-VRl)*255/(VRh-VRl),adc_ccf:=true>

i1

t18

{¬(adc_scan)}

[0,0]

(c)

t19

{adc_scan}

[0,0]

(b)

Figure 3: (a) Reactor environment model. LHPN

representing the fault-tolerant temperature sensor

(b) environment and (c) ADC circuitry.
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main

t24

[1,1]

<regB:=48,ccrN:=BIT(48,7),ccrZ:=(48=0),ccrV:=false>

i2

t25

[3,3]

<adc_ca:=BIT(regB,0),adc_cb:=BIT(regB,1),adc_cc:=BIT(regB,2),

adc_ccf:=false,adc_cd:=BIT(regB,3),adc_mult:=BIT(regB,4),

adc_scan:=BIT(regB,5),adc_start:=true,ccrN:=BIT(regB,7),

ccrZ:=(regB=0),ccrV:=false>

test

t26

[3,3]

<regB:=(adc_ccf*128)+(adc_scan*32)+(adc_mult*16)+(adc_cd*8)+(adc_cc*4)+(adc_cb*2)+(adc_ca),

ccrN:=adc_ccf,ccrZ:=¬adc_ccf!¬adc_scan!¬adc_mult!¬adc_cd!¬adc_cc!¬adc_cb!¬adc_ca,ccrV:=false>

i3

t27

{¬ccrN}

[3,3]

t28

{ccrN}

[1,1]

loop

t29

[3,3]

<regB:=ADR1,ccrN:=BIT(ADR1,7),ccrZ:=(ADR1=0),ccrV:=false>

i4

t30

[3,3]

<regA:=ADR2,ccrN:=BIT(ADR2,7),ccrZ:=(ADR2=0),ccrV:=false>

i5

t31

[2,2]

<regA:=(regA-regB),ccrN:=BIT(regA-regB,7),ccrZ:=((regA-regB)=0),

ccrC:=(¬BIT(regA,7)!BIT(regB,7))"(BIT(regB,7)!BIT(regA-regB,7))"(BIT(regA-regB,7)!¬BIT(regA,7)),

ccrV:=(BIT(regA,7)!¬BIT(regB,7)!¬BIT(regA-regB,7))"(¬BIT(regA,7)!BIT(regB,7)!BIT(regA-regB,7)),

>

i6

t32

[1,1]

<regA:=(regA+6),ccrN:=BIT(6+regA,7),ccrZ:=((6+regA)=0),

ccrC:=(¬BIT(regA,7)!BIT(6,7))"(BIT(6,7)!BIT(regA+6,7))"(BIT(regA+6,7)!¬BIT(regA,7)),

ccrV:=(BIT(regA,7)!¬BIT(6,7)!¬BIT(regA+6,7))"(¬BIT(regA,7)!BIT(6,7)!BIT(regA+6,7))>

i7

t33

[1,1]

<ccrN:=BIT(regA-12,7),ccrZ:=((regA-12)=0),

ccrC:=(¬BIT(regA,7)!BIT(12,7))"(BIT(12,7)!BIT(regA-12,7))"(BIT(regA-12,7)!¬BIT(regA,7)),

ccrV:=(BIT(regA,7)!¬BIT(12,7)!¬BIT(regA-12,7))"(¬BIT(regA,7)!BIT(12,7)!BIT(regA-12,7))>

i8

t34

{(ccrC"ccrZ)}

[3,3]

t35

{(¬ccrC!¬ccrZ)}

[1,1]

i9

t36

[1,1]

<regB:=7,ccrN:=BIT(7,7),ccrZ:=(7=0),ccrV:=false>

i10

t37

[3,3]

<PORTB:=regB,ccrN:=BIT(regB,7),ccrZ:=(regB=0),ccrV:=false>

term

t38

[3,3]

;@ include <6811.inst>

main ldab #48

stab ADCTL

test ldab ADCTL

bpl test

loop ldab ADR1

ldaa ADR2

sba

adda #7

cmpa #14

bls loop

;@ fail_set

ldab #7

stab PORTB

term bra term

Figure 4: Assembly code and LHPN process for the

fault-tolerant temperature sensor software.

v is local with respect to the process containing transition t
as defined below:

local(t, v) ⇔ (v ∈ (B ∪X)∧
∀t� ∈ (T − proc({t})).(¬reads(t�, v) ∧ vac(t�, v))).

Intuitively, this means the variable is neither referenced nor
assigned in any other process.

Some transformations can only be applied to variables
that are locally written within a process. References to
these variables within that process can be reshuffled, but
the timing of assignments must be maintained. Formally,
a variable v is locally written with respect to the process
containing transition t as defined below:

lw(t, v) ⇔ (v ∈ (B ∪X)∧
∀t� ∈ (T − proc({t})).vac(t�, v)).

The function LW (t) = {v ∈ AV | lw(t, v)} returns the set
of all variables which are locally written with respect to the
process containing transition t.

As an artifact of compilation and LHPN transformations,
expressions are often constructed that can be simplified. The
function simplify(e) performs basic arithmetic and logical
simplifications when all operands are constant or in some
cases when one operand is a constant (i.e., 0 and 1 for arith-
metic or true and false when logical).

While applying LHPN transformations, it is occasionally
necessary to substitute an expression for a variable. The
function replace(e, v, e�) substitutes the expression e� for ev-
ery occurrence of the variable v in the expression e. It then
applies the function simplify(e) to the resulting expression.
The function replace(t, v, e) performs replace(En(t), v, e) and
replace(AA(t, v�), v, e) for all v� in AV .

A sequence of transitions ρ = (t0, t1, ..., tn) is defined to be
a path if ∀i ∈ {0, 1, ..., n}.((ti ∈ T )∧((i = n)∨(ti+1 ∈ ti••)).
The set of paths Π(N) is the set of all paths ρ defined by
the flow relation within an LHPN. Note that this is not an
execution sequence, but a graphically connected ordered set
of transitions.

The LHPN transformations presented in this paper are
assumed to be applied only to LHPNs in which each process
may have choice but not concurrency (i.e., ∀t ∈ T.|t • | =
| • t| = 1). This assumption is reasonable since all LHPNs
generated by compilation satisfy this property. Concurrency
is achieved by the use of communicating processes.

6.2 Remove Write Before Write
When a variable is written and then rewritten before it

is referenced, the original calculation is unnecessary, and
the assignment can be made vacuous without changing the
observable behavior. This is formally defined as follows:

Transformation 1. (remove write before write)
Consider a transition t and a variable v. If

1. ¬vac(t, v),

2. local(t, v),

3. ¬∃(t0, t1, ..., tn) ∈ Π(N).(t0 = t) ∧ reads(tn, v) ∧ ∀i ∈
{1, 2, ..., n− 1}.vac(ti, v)

then AA(t, v) := v.

This transformation is illustrated with the LHPN frag-
ment in Fig. 5. If transition t performs a non-vacuous as-
signment to a variable v that is local with respect to the
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{En(t�)}
[dl(t�), du(t�)]

�..., v := AA(t�, v), ...�

p�

t�

{En(t�)}
[dl(t�), du(t�)]

�..., v := AA(t�, v), ...�

�..., v := v, ...�

p�

t�

t
{En(t)}

[dl(t), du(t)]

�..., v := AA(t, v), ...�

t
{En(t)}

[dl(t), du(t)]

Figure 5: Remove write before write.

process associated with t, and along all paths that start
with t and end with a transition that reads variable v, a
non-vacuous assignment occurs to v before the read, then
the assignment to v on transition t can be made vacuous.

Consider the first two transitions of the software model
shown in Fig. 6(a). These represent the instructions ldab
#48 and stab ADCTL. The three condition codes ccrN, ccrZ,
and ccrV are written in both transitions, but not referenced
during the firing of t25. This is quite common as condi-
tion code registers are set by most instructions, but they
are read primarily by branch instructions. Applying Trans-
formation 1, these assignments are made vacuous. Since
these variables are also overwritten by transition t26, they
can also be made vacuous on transition t25. Therefore, this
portion of the LHPN is simplified as shown in Fig. 6(b) after
applying this transformation to the entire software model.

6.3 Local Assignment Propagation
The exact timing of local variable assignments is unim-

portant unless they affect the calculation of global variables
or depend on global variables. It is, therefore, possible to
push variable assignments forward to perform “just in time”
assignment. This requires that all transitions immediately
preceding the target transition make exactly the same as-
signment to the variable, and that none make changes to
the support set of the assignment expression. This is de-
fined formally as follows:

Transformation 2. (local assignment propagation)
Consider an assignment v := AA(t, v) on a transition t. If

1. ¬vac(t, v),

2. local(t, v),

3. sup(AA(t, v)) ⊆ LW (t),

4. ∀t�� ∈ •(t•).AA(t��, v) = AA(t, v), and

5. ∀t�� ∈ •(t•).∀v� ∈ (sup(AA(t, v))− {v}).vac(t��, v�)

then

1. ∀t� ∈ (t • •).replace(t�, v, AA(t, v)), and

2. ∀t�� ∈ •(t•).AA(t��, v) := v.

This transformation is illustrated with the LHPN frag-
ment in Fig. 7. If v := AA(t, v) is a non-vacuous assignment
to a variable that is local with respect to the process as-
sociated with transition t, all variables v� that are in the

(a)

main

t24

[1,1]

<regB:=48>

i2

t25

[3,3]

<adc_ca:=BIT(regB,0),adc_cb:=BIT(regB,1),adc_cc:=BIT(regB,2),adc_cd:=BIT(regB,3),

adc_mult:=BIT(regB,4),adc_scan:=BIT(regB,5),adc_ccf:=false,adc_start:=true>

(b)

(c)

(d)

Figure 6: Software initialization transitions. (a) Ini-

tial model, (b) after applying Transformation 1, (c)

after applying Transformation 2, and (d) after ap-

plying Transformation 3.
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�..., v := AA(t, v), ...� �..., v := v, ...�

{En(t)}
t

[dl(t), du(t)]

�..., v� := replace(AA(t�, v�), v, AA(t, v)), ...�

p�

t�

{replace(En(t�), v, AA(t, v))}
[dl(t�), du(t�)]

�..., v� := AA(t�, v�), ...�

p�

t�

{En(t�)}
[dl(t�), du(t�)]

{En(t)}
t

[dl(t), du(t)]

�..., v := v, ...�

{En(t��)}
t��

[dl(t��), du(t��)]

�..., v := AA(t��, v), ...�

{En(t��)}
t��

[dl(t��), du(t��)]

Figure 7: Local assignment propagation example.

support of this expression are locally written, all transitions
in •(t•) make the same assignment to v, and all variables
other than v in the support of AA(t, v) are not assigned in
these transitions, then all occurrences of v in transition t�

can be replaced with AA(t, v) and the assignment to v on
all transitions in •(t•) can be made vacuous.

Consider the application of Transformation 2 to transition
t24 shown in Fig. 6(b). The variable regB is local with re-
spect to the software process, and the assignment to regB on
transition t24 references no variables that are written out-
side this process. Therefore, this assignment can be propa-
gated forward, and its value pushed into the expressions in
t25. The result after simplifying the expressions is shown in
Fig. 6(c).

6.4 Remove Vacuous Transitions
After the previous two transformations, it is often the case

that transitions no longer include any non-vacuous assign-
ments. Therefore, these transitions only mark the passage
of time. When this occurs, the delay can be pushed into
the following transitions, and the transition and its follow-
ing place are collapsed. For this transformation to occur,
all enabling conditions of the transition and all of its succes-
sors transitions must only involve locally written variables.
This prevents the enabling conditions from becoming dis-
abled once they are enabled. This is defined formally as
follows:

Transformation 3. (remove vacuous transitions)
Consider a transition t. If

1. ∀v ∈ AV.vac(t, v),

2. (•t)• = •(t•) = {t},

3. sup(En(t)) ⊆ LW (t),

4. ∀ti ∈ (t • •).sup(En(ti)) ⊆ LW (t), and

5. t �∈ TF .

then

1. T = T − {t}

2. P = P − t•

3. ∀ti ∈ (t • •).dl(ti) = dl(t) + dl(ti)

4. ∀ti ∈ (t • •).du(ti) = du(t) + du(ti)

5. ∀ti ∈ (t • •).En(ti) = En(t) ∧ En(ti)

[dl(tn), du(tn)]

p

tn
{En(t) ∧ En(tn)}

�A(tn)�
[dl(t) + dl(tn), du(t) + du(tn)]

t1
{En(t) ∧ En(t1)}

�A(t1)�
[dl(t) + dl(t1), du(t) + du(t1)]

[dl(t1), du(t1)]

tn
{En(tn)}

�A(tn)�

{En(t)}
[dl(t), du(t)]

p

t

p�

t1
{En(t1)}

�A(t1)�

Figure 8: Remove vacuous transitions.

6. F = (F −R1)∪R2 where R1 = {(p, t) ∈ F | p ∈ •t}∪
{(t, p�) ∈ F | p� ∈ t•}∪{(p�, ti) | (p� ∈ t•)∧ (ti ∈ t••)}
and R2 = {(p, ti) | (p ∈ •t) ∧ (ti ∈ t • •)}

This transformation is illustrated with the LHPN frag-
ment in Fig. 8. If transition t includes only vacuous as-
signments, the structure of the net is exactly as shown, the
support of the enabling condition of t and its successor tran-
sitions include only locally written variables, and t is not a
failure transition then t can be removed and its enabling
condition and delay can be pushed forward.

As shown in Fig. 6(c), after applying the previous two
transformations, transition t24 has only vacuous assignments.
Therefore, it can be removed using Transformation 3. The
result is shown in Fig. 6(d).

6.5 Correlated Variables
Occasionally, two or more variables are closely correlated.

Every time one of them is assigned, the other is assigned to
a value which is easily derived from the other. That value
may be the same or a clear function of the other. In either
case, if they are always assigned at the same time and have
the same relationship to each other every time that they
are assigned, it is not necessary to maintain both variables.
This is defined formally as follows:

Transformation 4. (correlated variables)
Consider the variables v and v� from B or X. If

∀t ∈ T.(AA(t, v�) = f(AA(t, v)) ∨ (vac(t, v) ∧ vac(t, v�)))

where f(x) is any clearly defined function of one variable, in-

cluding the identity function, then ∀t ∈ T.replace(t, v�, f(v)).

Let us consider the LHPN fragment shown in Fig. 6(d).
This is the only write to the ADCTL register, so other than
the handshaking signals adc start and adc ccf, the rest of the
ADC control bits are only set here. This makes it clear that
they are highly correlated and that adc ca, adc cb, adc cc,
adc cd, adc mult, and adc scan can be reduced to a single
variable. If Transformation 4 is applied pairwise to these
variables, it is discovered that adc ca, adc cb, and adc cd
can be replaced with adc cc, and adc mult and adc scan
are replaced with ¬adc cc. Consider transitions t2 and t13,
shown in Fig. 9(a). This transformation results in the changes
shown in Fig. 9(b).
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a_start

t2

{adc_start!adc_mult!¬adc_cc}

[0,0]

<adc_start:=false>

t13

{adc_start!adc_mult!adc_cc}

[0,0]

<adc_start:=false>

(a)

a_start

t2

{adc_start!¬adc_cc}

[0,0]

<adc_start:=false>

t13

{false}

[0,0]

<adc_start:=false>

(b)

(c)

Figure 9: ADC enabling transition (a) before and

(b) after Transformation 4. (c) Changes to the ini-

tialization transition after Transformation 5.

6.6 Remove Unread Variables
When a variable is written but never read, the assignment

can be made vacuous with no change in observable behavior.
This is formally defined as follows:

Transformation 5. (remove unread variables) Con-

sider variable v from B or X. If ∀t ∈ T.¬reads(t, v) then

AV = AV − {v}.
After Transformation 4, adc ca, adc cb, adc cd, adc mult,

and adc scan are no longer read, and their assignments can
be removed as shown in Fig. 9(c).

6.7 Remove Dead Transitions and Places
A transition is dead if it can never fire. For example, if

the enabling condition of a transition is a constant false, this
transition is dead. Similarly, if there exist no tokens in any
predecessor places to a transition, it is also dead as its preset
can never become marked. Dead transitions can be safely
removed from the LHPN. This is defined formally as follows:

Transformation 6. (remove dead transitions) Con-

sider a transition t. If (En(t) = false)∨ (pre(•t)∩M0) = ∅
then

1. T = T − {t}

2. F = F − {(p, t) ∈ F | p ∈ •t} ∪ {(t, p) ∈ F | p ∈ t•}.
Removing dead transitions often results in places that no

longer have any transitions in their postset. These places
can be removed. This is formally defined as follows:

Transformation 7. (remove dead places) Consider a

place p. If (p•) = ∅, the net can be transformed as follows:

1. P = P − {p}
2. F = F − {(t, p) ∈ F | t ∈ •p}.
In the example shown in Fig. 9(b), after applying Trans-

formation 4 transition t13 can no longer fire and is removed.
After removing transition t13 from the LHPN shown in
Fig. 3(b), transitions t14 through t23 can no longer have
their preset place become marked, so they are dead as well
and can be removed. This leaves places ins4 through ins7
and i1 dangling, so they can be removed as well. This re-
duces the size of the LHPN for the ADC subsystem in half.

6.8 Remove Arc After Failure Transitions
Since the firing of a failure transition ends state space

exploration, any transitions following it are unnecessary.
Therefore, it is safe to remove the edge between a failure
transition and the place in its postset as follows:

Transformation 8. (remove arc after failure tran-
sitions) Consider a transition t ∈ Tf . The net can be trans-

formed as follows: F = F − {(t, p) ∈ F | p ∈ t•}.
Since t36 is a failure transition, the arc after this transition

can be removed resulting in the removal of all the following
transitions and places using Transformations 6 and 7.

6.9 Timing Bound Normalization
As explained in Section 4, our state space exploration finds

states sets rather than individual states. Representing irreg-
ular sets of states can be difficult. Therefore, it is advan-
tageous to have timing bounds that encapsulate a range of
behaviors. This can be accomplished using a timing bound
normalization in which the delay assignments are enlarged
such that the bounds are a multiple of a given normalization
factor k. This, however, is an abstraction since it introduces
new behavior into the reachable state sets. However, it is
conservative in that no false positive verification results oc-
cur. This transformation is formally defined as follows:

Transformation 9. (timing bound normalization)
For a normalizing factor k, adjust the delay assignment for

each transition t as follows:

1. dl(t) = �dl(t)/k� ∗ k
2. du(t) = �du(t)/k� ∗ k

For our example, a normalization with k = 5 performs well.
This value is chosen as it is the delay bound on the envi-
ronment transitions and is smaller than most of the other
delays in the LHPN model.

6.10 Other LHPN Transformations
There are several other LHPN transformations that have

been developed but not presented in detail here due to space
limitations. These include:

• Constant enabling condition determination,
• Removing dominated transitions,
• Removing vacuous loops, and
• Removing unnecessary transitions with global variables

in their enabling conditions.
For details about these transformations, please see [13].

The final reduced LHPN model of the ADC subsystem
is shown in Fig. 10, and the final reduced LHPN model of
the software process is shown in Fig. 11. Note that the
environment model is unchanged.
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t2

{adc_start!¬adc_cc}

[0,0]

<adc_start:=false>

ins0

t3

{¬adc_start}

[30,35]

<ADR1:=(temp-0)*255/10000>

ins1

t4

{¬adc_start}

[30,35]

<ADR2:=(temp-0)*255/10000>

ins2

t5

{¬adc_start}

[30,35]

ins3

t6

{¬adc_start}

[30,35]

<adc_ccf:=true>

i0

t7

{adc_cc}

[0,0]

a_start

t8

{¬adc_cc}

[0,0]

t9

{adc_start}

[0,0]

t10

{adc_start}

[0,0]

t11

{adc_start}

[0,0]

t12

{adc_start}

[0,0]

Figure 10: Final reduced LHPN model for the ADC

process.

main

t25

[0,5]

<adc_cc:=false,adc_ccf:=false,adc_start:=true>

test

t26

[0,5]

<ccrN:=adc_ccf>

i3

t27

{¬ccrN}

[0,5]

t28

{ccrN}

[0,5]

loop

t29

[0,5]

<regB:=ADR1>

i4

t30

[0,5]

<regA:=ADR2>

i8

t34

{BIT(regA-regB-7,7)!

¬(BIT(regA-regB+7,7))"

(regA-regB-7=0)}

[5,10]

t36

{¬(BIT(regA-regB-7,7)!

¬(BIT(regA-regB+7,7)))!

¬(regA-regB-7=0)}

[5,10]

Figure 11: Final reduced LHPN model for the soft-

ware process.

7. RESULTS
We have updated the LEMA verification tool to support

automatic compilation, transformation, and verification of
models of cyber-physical systems. As a case study, we have
applied LEMA to the fault-tolerant temperature sensor with
several variations in parameter values. The results are shown
in Table 1. For each case, the number of state sets found,
runtime in seconds (including compilation, transformation,
and verification), and whether it verifies to be correct are
reported. Recall that the property being verified is that the
reactor never shuts down since the temperature sensors are
assumed to be perfect in the LHPN model.
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Table 1: Verification results for the reactor example.

Parameters State sets Time (s) Verifies

Original LHPN >1e6 >12 hrs ?
Reduced LHPN 35563 311 Yes
W/o init. loop 5 0.52 No
9-bit ADCs 945 0.79 No
Slow ADC 38 0.38 No
temp rates [−4, 4] 32 0.41 No
temp rates [−4, 4],

21787 94.5 Yes
7-bit ADCs

The original LHPN could not be verified after 12 hours
and finding more than 1 millions state sets. The reduced
LHPN model with normalized parameters completes in 311
seconds (about 5 minutes) after finding 35563 state sets, and
it verifies to be correct. A naive designer might initiate the
ADC conversion and immediately launch into the main soft-
ware loop. LEMA takes 0.52 seconds and finds 5 state sets in
determining that this design fails. The reason for the failure
is that ADR1 and ADR2 are sampled before they can be
loaded from the ADC, so regA and regB are loaded with the
uninitialized reset values. Suppose a new microcontroller is
substituted into a mature design which increases the ADC
resolution from 8-bits to 9-bits. In this case, if the tolerance
value of ±7 is not increased to reflect the greater resolution,
the system fails. LEMA requires 0.79 seconds and found 945
state sets to discover this flaw. Another possible hardware
change might be a microcontroller with a slower ADC sys-
tem. Suppose instead of taking 32 clock cycles to make a
conversion it requires 64 cycles. LEMA encounters 38 state
sets in 0.38 seconds to find this error. New experimental
data may determine that the rate of change of the temper-
ature is ±4 instead of ±2, as in the existing environment
model, the cumulative error between readings exceeds the
allowed ±7, and the system fails. LEMA takes 0.41 seconds
and finds 32 state sets to find this failure. As a final varia-
tion, consider an attempt to rectify the higher temperature
slew rate by employing a lower resolution ADC. This com-
bination proves successful requiring 94.5 seconds and 21787
state sets to verify. Overall these results indicate that the
correctness of this fault-tolerant temperature sensor is quite
sensitive to parameter choices.

8. CONCLUSION
This paper presents a methodology for automatically ab-

stracting models of cyber-physical systems. The models are
described using a user-defined language inspired by assembly
code. They are automatically compiled into a LHPN model
that is capable of representing hardware, software, and the
environment in a single formalism. The model complexity is
reduced using LHPN transformations that in most cases do
not change the result of verification, and in the worst-case
do not generate any false positive results. This methodology
is applied to a practical case study of a fault-tolerant tem-
perature sensor. While preliminary results are encouraging,
there are still a number of interesting directions for future re-
search. In particular, there are numerous additional LHPN
transformations that can be developed. Also, abstraction
refinement should be automated. Finally, more case studies
on a variety of model types should be investigated.
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