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Abstract— This paper presents a new updating algorithm to
reduce the complexity of computing an observability index for
kinematic calibration of robots. An active calibration algorithm
is developed to include an updating algorithm in the pose
selection process. Simulations on a 6-DOF PUMA robot with
27 unknown parameters shows that the proposed algorithm
performs more than 50,000 times better than exhaustive search
based on randomly generated designs.

I. INTRODUCTION

In robot calibration, pose selection is an important topic
since different poses and different combinations of poses
contribute to the calibration very much differently. Past
research in kinematic calibration has adapted optimal design
algorithms from the experimental design literature for pose
selection [7], [18], [20], [13], [14], [6], [5]. The algorithms
are often iterative algorithms using exchange schemes. Fe-
dorov and Dubova (1968) developed the first general algo-
rithm (translated to English in [11]). It allows the variance
of the observation error to be a function of the design point.
Mitchell [16] developed an algorithm called DETMAX that
allows the number of design points to increase or decrease
for a better search and to escape from local optima. Since
then, many improvements have been made with respect to
computational time and space [12], [3], [9], [22], [1], [21],
[8].

Current robot calibration algorithms usually search for an
optimal pose set with an adapted DETMAX in that the
optimal criterion is replaced with an observability index.
The computation of observability index is the most frequent
computation in such algorithms. For each iteration, the ob-
servability index is computed for every new possible design.
Usually there are hundreds of thousands of candidates. The
computational complexity of the observability index directly
decides the capability of the search for the optimal pose.
If the observability index can be computed more efficiently,
more candidate pose sets can be included in the search and
the search will more likely reach the optimal pose set.

The existing observability indexes are all eigenvalue-based
(or singular-value-based). In the DETMAX, after adding
a pose or exchanging a pose, a new Jacobian matrix is
formed and the new eigenvalues need to be computed. The
computation complexity of eigenvalues is proportional to the
size of the design matrix. When the number of the unknown
parameters is large, computing its eigenvalues becomes a big
burden.

This paper replaces the eigenvalue-based observability in-
dex with a determinant and provide formulas to update it for
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adding and removing a pose. The computation complexity is
significantly reduced. An exchange-add-exchange algorithm
is designed to select poses for optimal robot calibration with
such an alternative criterion.

The new robot calibration pose selection routine is demon-
strated with a 6-DOF PUMA 560 simulation. 27 unknown
kinematic parameters are calibrated with the goal of mini-
mizing the variance of parameters. The results show that the
new active robot algorithm performs more than 50,000 times
better than exhaustive search on randomly generated designs.

II. EXISTING ROBOT CALIBRATION ALGORITHMS

A robot kinematic model can be calibrated with a set of
poses. The measurements of the end-effector and the joint
encoder readings at selected poses are collected. We define
a pose set as a design, namely D = {p1, p2, ..., pn}. The
Jacobian matrices Xi of poses pi’s are computed. For pose
i, there are 3 or 6 equations depending on the measurements
of the end-effector. For simplicity, we only consider the
case where each pose has 3 measurements, namely x, y,
and z positions of the end-effector. There are 3 rows in Xi

and denoted as xx, xy , and xz . We also assume that the
distribution of the measurement errors are independent and
identically distributed.

Assuming each design has N unique poses, if there are
M candidate poses, there are (MN) = M !

N !(M−N)! unique
designs. For a robot with s-DOF, if each joint angle has k
samples, there are ((ks)N) = ks!

N !(ks−N)! possible designs.
For example, a 6-DOF Puma robot with 10 samples of each
joint angle, there are 106 candidate poses. If the unknown
parameter number p = 30, it needs at least 30 equations to
just possibly avoid singularity. To achieve an optimal design,
it needs at least p ∗ (p − 1)/2 to fully determine the design
matrix. For p = 30, it needs p ∗ (p − 1)/2/3 = 145 poses.
Then there are 106!

145!(106−145)! possible designs. To search
an optimal design from such a big design set is a factorial
complexity problem. It is infeasible with current computation
power.

The same problem has been faced in the general experi-
mental design literature, where many design algorithms have
been developed. The one mostly used in the robot calibration
literature is DETMAX, developed in [16]. DETMAX starts
with a randomly selected initial N-pose set and exchanges a
pose at each iteration.

1) Begin with a randomly selected N-pose design ξξξ0(n).
2) Find a pose p from the remaining candidate pose set

such that the new design ξξξi after including the pose p
has the maximum increase.



3) Find a pose p∗ in the current design pose set such that
the new design ξξξ∗i after removing the pose p∗ has the
minimum decrease.

4) Repeat steps 2 and 3 until no increase in the value of
the observability indices is obtained by an exchange.

The main idea of this algorithm is that the initial design set
is improved by adding a new pose that maximally increases
the criterion and removing a pose in the design set that
minimally decreases the criterion. Each time, an excursion
improves the currently best pose design. The algorithm stops
when the added pose is instantly removed.

The algorithm has numerous variations. [4], [18] used the
DETMAX algorithm in optimal experimental design to select
robot poses. [6] used a GA algorithm to generate new poses.
For each search step, an eigenvalue-based criterion needs
to be computed. The eigenvalues can either be computed
from the design matrix X by singular value decomposition
(SVD) or from the covariance matrix X′X by eigenvalue
decomposition. In either case, the computation is expensive.
For example, in [17] the computation complexity of eigen-
values was proved to be bounded by O(n3+(n log2 n) log b)
where n is the number of unknown parameters and b indicates
the error is bounded by 2−b. Also the complexity of matrix
multiplication is O(m2.376) [2] where m is the number of
measurements. When the number of unknown parameters
and the number of measurements are large, the computation
of the eigenvalues is very expensive.

For both the optimal experimental design literature and the
robot calibration literature, the local optimization problem
has been recognized. The problem is tackled by randomly
selecting initial runs many times.

III. ALTERNATIVE CRITERION

As proved in [19], if the goal of the calibration is to
achieve minimum variance of estimated parameters, the best
observability index is

OI =
L
√

σ1 σ2 . . . σL

L
(1)

where σ2
i s are the eigenvalues of the covariance matrix

X′X, L is the number of non-zero eigenvalues. Its inverse
represents the volume of the confidence hyper-ellipsoid for
the parameters. For parameter estimation, L is equal to
the number of the unknown parameters. It is a constant.
So, the real criterion is the multiplication of all the non-
zero eigenvalues, which is the determinant of the covariance
matrix, denoted as OID .

When adding a new row x′
i into the design matrix X0, the

new design matrix becomes

X1 =
[

X0

x′
i

]
. (2)

The covariance matrix is

M1 = X1
′X1 (3)

=
[
X0

′ xi

] [
X0

x′
i

]

= X0
′X0 + xix′

i

= M0 + xix′
i

As we know, the determinant of the new covariance matrix
can be updated with

OID = |M0 + xix′
i| (4)

= |M0|(1 + x′
iM0

−1xi). (5)

The determinant updating method has been used in the
experimental design literature since the 1970’s [10], [11].
[15] also provides a procedure to update M and M−1.

The inverse of the covariance matrix M−1 can be updated
as

(M + xix′
i)

−1 = M−1 − M−1xix′
iM

−1

1 + x′
iM−1xi

. (6)

When removing a row xi from the design matrix X0,
the relation between the new design matrix X1 and the old
design matrix X0 is

X0 =
[

X1

x′
i

]
. (7)

Similar to Equation 8, the new covariance matrix is

M1 = M0 − xix′
i (8)

The determinant of the new covariance matrix after re-
moving a row can be updated with

OID = |M0 − xix′
i| (9)

= |M0|(1 − x′
iM0

−1xi). (10)

The inverse of the covariance matrix for removing a row
is

(M − xx′)−1 = M−1 +
M−1xx′M−1

1 − x′M−1x
. (11)

With such formulas, the matrix inverse and the determinant
can be updated with vector-matrix multiplications. Its com-
plexity is only O(n2) where n is the number of unknown-
parameters. Its complexity is independent of the number of
measurements.

For robot calibration, since each Jacobian matrix associ-
ated with a pose has more than one row, in each iteration
more than one row is added or exchanged simultaneously.
For adding two rows, the new Jacobian matrix is

X1 =


 X0

x′
x

x′
y


 . (12)

The covariance matrix is

M1 = X1
′X1 (13)

=
[
X0

′ xx xy

]

 X0

x′
x

x′
y


 (14)

= X0
′X0 + xxx′

x + xyx′
y (15)

= M0 + xxx′
x + xyx′

y. (16)



|M1| = |M0 + xxx′
x + xyx′

y|
= |Mx + xyx′

y|
= |Mx|(1 + x′

yM
−1
x xy)

= |M0|(1 + x′
xM

−1
0 xx)(1 + x′

yM
−1
x xy) (17)

= |M0|(1 + ∆(xx,xy)). (18)

where Mx = M0 + xxx′
x. So,

∆(xx,xy) = x′
xM0

−1xx + x′
yM0

−1xy(1 + x′
xM0

−1xx)

−(x′
xM0

−1xy)2. (19)

For cases with more than 2 rows in a Jacobian matrix, the
formulas gets more complex. Instead of using the explicit
expression as in Equation (19), we use the cascade formula
17. For a Jacobian matrix with t new rows , the cascade
formula can be written as

|M1| = |M0|(1 + x′
1M

−1
0 x1)(1 + x′

2M
−1
0,1x0,2) . . .

(1 + x′
tM

−1
0,t−1xt) (20)

where xi is the ith row in the Jacobian matrix and M0,i is
the covariance matrix that is added with the first i rows. The
inverse of the Mi for i > 0 can be computed with equation
(6) sequentially.

To remove two rows from a Jacobian matrix, the updating
formula for the determinant of the covariance matrix is

∆(xx,xy) = −x′
xM0

−1xx − x′
yM0

−1xy(1 − x′
xM0

−1xx)

−(x′
xM0

−1xy)2. (21)

To remove more than 2 rows, the formula is

|M1| = |M0|(1 − x′
1M

−1
0 x1)(1 − x′

2M
−1
0,1x0,2) . . .

(1 − x′
tM

−1
0,t−1xt) (22)

The inverse of the Mi and Mi,jfor i > 0 can be computed
with formula (11) sequentially.

IV. ACTIVE CALIBRATION ALGORITHM

The calibration algorithm can be carried out to satisfy two
conditions. It stops when either the maximum number of
poses is reached, or some optimal metrics are met such as
the determinant of the covariance matrix reaches a sufficient
level.

There are two basic elements in the calibration algorithm,
add-a-pose and remove-a-pose:

• Add-a-pose:
For a design ξξξk, to add a pose to the design is to find
a new pose pj from the pose pool ΩΩΩ, such that

O(+(pj , ξξξk(n))) = max(+(p,ξξξk(n))), ∀p ∈ ΩΩΩ − ξξξk)
(23)

+(p,ξξξ) is the operation that adds a pose p into the
design ξξξk. It computes with Equation 19 if each pose

has two rows in its Jacobian matrix or with Equation 20
if each pose has more than three rows in its Jacobian
matrix. The M−1 is updated with Equation 6.

• remove-a-pose
For a design ξξξk, to remove a pose to design is to find
a pose p∗ in the current design ξξξk, such that

O(−(pj , ξξξk(n))) = max(−(p,ξξξk(n))), ∀p ∈ ξξξ) (24)

−(p,ξξξ) is the operation that remove a pose p from the
design ξξξ. It computes with Equation 21 if each pose has
two rows in its Jacobian matrix and with Equation 22
if each pose has more than three rows in its Jacobian
matrix. The M−1 is updated with Equation 11.

Some poses are required to be included or can be measured
without cost. They are included in the initial pose set and are
not allowed to be removed. There are poses that are in the
pose space but are not viewable from measurement sensors,
such as laser or stereo cameras. Those poses can not be
included for calibration. In our algorithm, a preprocess is
applied to eliminate the unobservable poses.

The following is the algorithm of selecting optimal poses
for robot calibration.

1) Initialize: A number N of poses are selected as candi-
date poses. The candidate pose set is called the pose
pool ΩΩΩ. n initial poses are randomly selected from the
pose pool ΩΩΩ. The initial Jacobian matrix, its covariance
matrix M0, determinant of the covariance matrix |M0|
and its inverse M0

−1 are computed. The initial design
is denoted as ξξξ0.

2) Exchange Step: A pose p is removed from the current
design ξξξi with remove-a-pose element. The current
OID of the design without such a pose is computed.
A new pose q from the candidate pose pool is selected
with add-a-pose to form a new design. The OI of the
new design is computed. If the OI of the new design
is larger than the OID of the current design, pose p is
replaced with pose q to form a new design ξξξi+1.

3) The step 2 stops either reaching a predefined iteration
number or it does not increase the OID anymore.

4) Add step: To expand the design with more poses, a
new pose in the candidate pose pool is selected with
add-a-pose element.

5) Repeat step 4 until either the number of poses reaches
a predefined maximum number n1, or adding a new
pose does not increase the OID anymore.

6) Exchange Step: It is the same as 2. The design after
an exchange-step and an add-step goes through an
exchange-step again.

The algorithm repeats several times to prevent getting
stuck at a local optimum.

V. PUMA ROBOT CALIBRATION

The robot calibration design algorithm is demonstrated
with a Puma 560 with simulation. The robot has 6-DOF
and 27 parameters. The end-effector position (x, y, z) is



Fig. 1. Kinematic model of a PUMA 560 robot. It shows the degrees of
joint rotation and ranges.

expressed in coordinate zero. We suppose it is tracked by an
external measuring device with an 1 cm normally distribution
error. The joint angle errors are assumed negligible.

A. Kinematic Model

The six revolute joints of the robot are shown in Figure 1.
The ranges of each joints are indicated and listed as follows

−250o ≤ θ1 ≤ 70o −110o ≤ θ2 ≤ 170o (25)

−133o ≤ θ3 ≤ 133o −100o ≤ θ4 ≤ 100o

−142o ≤ θ5 ≤ 142o −176o ≤ θ6 ≤ 356o

The unknown parameters are DH parameters and the
offsets and gains of each joint. The real values of the
parameters are in Table I.

Frame γ α a d β
a π

2
π

100
20 0 π

100
0 0 - π

2
0 0.6858 10

1 0 π
100

0.4318 0 π
100

2 0 π
2

-0.0203 0.1491 10
3 0 - π

2
0 0.4331 10

4 0 π
2

0 0 10
5 0 0 0.2 0.1655 10
6 0 0 0 0 10

TABLE I

CALIBRATION PARAMETERS

Twenty-seven nominal parameters are randomly generated
from the real parameters by adding normally distributed
noise with variance of 0.1. Some parameters are not changed
due to being constant. Table II displays the nominal param-
eters.

A mixed Hayati and DH parameterization is used for
calibration since there are joint axes that are nearly parallel
to their previous axis. For each pose, there are accurate mea-
surements of 6 joints angles (θ1, θ2, θ3, θ4, θ5, θ6) and noisy

Frame γ α a d β
a 1.6360 0.1572 19.8820 0 -0.0123
0 -0.0367 -1.4524 0.0603 0.6713 10
1 -0.1455 -0.2622 0.3411 0 -0.1963
2 0.0128 1.6374 -0.1214 0.0074 10
3 0.0024 -1.3948 -0.1029 0.3002 10
4 0.1207 1.6151 -0.0468 -0.0747 10
5 0.0938 0 0.1322 0.3083 10
6 0 0 0 0 10

TABLE II

NOMINAL PARAMETERS

measurements of the location of the end-effector (x, y, z).
The Jacobian matrix is calculated with the joints angles and
the nominal parameters. Column-scaling is not used since the
determinant-based observability index is invariant to column
scaling [19].

B. Calibration Approaches

Usually the observability index increases with the pose
number in a design. Since in this paper we are concentrating
on pose selection, we define the the pose number in a design
as 30.

To better understanding the pose selection, the pose space
is latticed with 5 grids on each joint angle to generate 15,625
(56) poses for the candidate pool ΩΩΩ. All candidate poses are
indexed from 1 to 15,625. The index is assigned according
to the combination of joint angles. For each joint, the angles
are assigned to 0−5. For example, a joint angle combination
030412 is indexed as 54 × 3 + 52 × 4 + 51 × 1 + 2 = 1982.

There are two practical approaches to select an optimal
design. One is randomly composing a number of designs and
pick the best. The other is actively selecting new designs
according to a criteria. Our actively pose selection uses
an exchange-add-exchange routine to update a randomly
composed design. Our criteria is the determinant of the
Jacobian matrix.

C. Random Design Selection

5,000 random designs are selected from the 15,625 poses.
The observability index OI of each design is calculated and
displayed in Figure 2. The highest OI of the 5,000 designs
is 0.096284.

As described in Equation 1, the OI can be converted to
the OID with

OID =
L∏

i=1

(σi)2 = ((OI × L)L)2.

With this formula, the determinant of the covariance matrix
of the best design is calculated as 2.5414× 1022.

D. Exchange-Add-Exchange Active Pose Selection

The pose selection algorithm in Section IV randomly
selected 12 poses as the initial design (Figure 3) and updated
it with the exchange-a-pose, and then added 18 more poses
with the add-a-pose. After the add-a-pose, the exchange-a-
pose was called again. But no exchange was made since



Fig. 2. The observability indices of 5000 randomly selected designs.

no better pose was found. Figure 4 shows the OID’s of
pose selection with our exchange-add-exchange routine from
the same candidate pool. The OID of the final design is
1.4818× 1027.

Fig. 3. The 12 initial poses.

Fig. 4. (A) The selected poses; (B) The determinant of the variance of the
covariance matrix for each pose selection iteration.

Starting with the same initial poses, the same exchange-
add-exchange routine was carried again with original observ-
ability index OI as the criterion. The selected poses and the
OI’s for each iteration are displayed in Figure 5. The optimal
design obtained with our exchange-add-exchange routine has
OI at 0.11798. Comparing with Figure 4 (A), we can see
that the poses selected according to the eigenvalue-based OI
are the same as the poses selected according to the updat-
ing determinant-based observability index. It is indeed that

alternative determinant-based observability index provides
the same criterion as eigenvalue-based observability index.
For each iteration, to compute the observability index, the
computation complexity is O(n3+(n log2 n) log b+m2.376),
where n is the number of unknown parameters, m is the
number of measurements, and b decides the accuracy of the
eigenvalue computation. For this example, n = 27, m = 900,
and b = 10. The computation complexity for observability
index is at the level of 107. To update the determinant in
each iteration, the computation complexity is O(n2) that in
this example is at the level of 103. For designs with large
m, the advantage of using determinant-based criteria would
be much more obvious.

Fig. 5. (A) The selected poses for the optimal design based on the OI .
(B) The observability index (OI) for each pose selection iteration.

The inverse of the determinant of the covariance matrix
represents the volume of the confidence hyper-ellipsoid for
the parameters. Figure 6 shows the inverse of the determi-
nants in the pose selection. We can see that the overall deter-
minant of covariance of the parameters decreases from level
10−1 to level 10−27. It is 50,000 times smaller comparing
with the pose set selected in Section V-C.

Fig. 6. The determinant of the variance of the estimated parameters.

E. Results

Based on the selected poses in Section V-D a robot cali-
bration simulation is carried out. Table III lists the estimated
parameters with the simulation. Table IV lists the residuals
of the estimated parameters.



Frame γ α a d β
a 1.570881 0.031672 20.001537 0 0.030290
0 0.003324 -1.568910 0.004117 0.685666 10
1 0.011386 0.030969 0.431692 0 0.027905
2 0.003694 1.566960 -0.028746 0.149672 10
3 -0.000672 -1.581108 -0.002910 0.433253 10
4 0.006226 1.577711 -0.001479 0.000302 10
5 -0.017604 0 0.199881 0.165315 10

TABLE III

THE ROBOT CALIBRATION RESULTS.

Frame γ α a d β
a 0.000084 0.000256 0.001537 0 0.001126
0 0.003324 0.001886 0.004117 0.000134 0
1 0.011386 0.000447 -0.000108 0 0.003511
2 0.003694 0.003836 -0.008446 0.000572 0
3 0.000672 0.010311 -0.002910 0.000153 0
4 0.006226 0.006914 0.001479 0.000302 0
5 0.017604 0 0.000119 0.000185 0

TABLE IV

THE RESIDUALS OF THE ESTIMATED PARAMETERS AFTER ROBOT

CALIBRATION.

VI. CONCLUSION

A determinant-based updating observability index is pro-
posed to replace the eigenvalue-based observability index.
The determinant-based observability index can be updated
with vector-matrix multiplications. Its computation complex-
ity is much lower than computing eigenvalues. With the
new criterion, more candidate pose sets is afforded to be
included in the optimal pose set search. An active robot
calibration algorithm based on the determinant-based updat-
ing observability index is developed and demonstrated with
a 6-DOF PUMA 560 robot calibration simulation. Based
on two observability indexes, the same set of poses are
selected. It proved that the two observability indexes are
equivalent. The performance of our active robot calibration
algorithm is compared with the exhaustive searching ap-
proach. In terms of the confidence hype-ellipsoid volume
for the estimated parameters, our algorithm out-performs the
exhaustive searching approach more than 50,000 times.
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