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Abstract— This paper relates 5 observability indexes for
robot calibration to the “alphabet optimalities” from the
experimental design literature. These 5 observability indexes
are shown to be the upper and lower bounds of one another.
All observability indexes are proved to be equivalent when the
design is optimal after a perfect column scaling. It is shown that
when the goal is to minimize the variance of the parameters,
D-optimality is the best criterion. When the goal is to minimize
the uncertainty of the end-effector position, E-optimality is the
best criterion. It is proved that G-optimality is equivalent to
E-optimality for exact design.

I. INTRODUCTION

Positioning the end-effector of a robot accurately requires
precise calibration of the robot’s kinematic parameters. Since
kinematic models are ordinarily mildly nonlinear, lineariza-
tion is an effective means for iteratively solving the nonlinear
optimization and for qualitative analysis [2]. With a regres-
sion matrix X, which is the Jacobian of the forward kine-
matics equation in terms of the kinematic parameters, most
of the kinematic parameter estimation methods are based on
least-squares estimation through redundant measurements on
the robot position [11].

Redundant measurements serve as constraint equations to
minimize the effect of noise associated with sensors. It is
well known that different poses and different combinations
of poses contribute to the calibration differently. Choosing a
set of poses that can optimally increase the calibration goal
has been an active area of research.

In order to measure the goodness of a pose set, several
observability indexes have been proposed. Menq and Borm
[10], [3] proposed a measure, here termed O1, that is based
on the product of the non-zero singular values of the Jacobian
matrix X. O1 represents the volume of the data scatter, and
maximizing it means that the errors of the parameters can
be best observed.

Driels and Pathre [5] proposed to use the inverse of the
condition number as an observability index, termed O2 here.
The condition number is the smallest non-zero singular value
divided by the largest singular value of X. O2 reaches its
maximal value at 1 when all singular values are equal; then
the regression matrix X is well-conditioned. The error of the
kinematic parameters can be observed equally well from the
measurements.

Whereas O1 emphasizes the volume of a hyper-ellipsoid
whose directions are represented by the singular values, the
condition number O2 emphasizes that the singular values
should all be close to each other. One criticism of O1 has
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been that considering the volume of the regression matrix
may result in favoring one direction over another, and this
has been an argument for using O2.

Nahvi and Hollerbach [13] proposed the minimum singu-
lar value of X as an observability index, here termed O3. The
minimum singular value uses the worst observability of the
parameter error as the criterion. Nahvi and Hollerbach [12]
also proposed as an observability index the square of smallest
non-zero singular value divided by the largest singular value
of X, called the noise amplification index and referred to
here as O4. Nahvi and Hollerbach [12] compared different
observability indexes, and found that O1 was worse than the
others. Indexes O2 to O4 were not significantly different.

In statistics, optimal experiment design theory has given
rise to several data measures, of which the most significant
are:

• A-optimality minimizes the trace of (X′X)−1 to obtain
regression designs, and was first proposed by [7], [4].
There is no counterpart in the robot calibration litera-
ture.

• D-optimality maximizes the determinant of X′X, and
was proposed by Wald [17] and later given the D label
by Kiefer and Wolfowitz [8]. It is similar to O1.

• E-optimality maximizes the minimum singular value of
X′X and was proposed by [6]. It is similar to O3.

• G-optimality minimizes the maximum prediction vari-
ance, and does not have a simple expression in terms
of singular values. It was first proposed by Smith [15],
and given the G label by Kiefer and Wolfowitz [8].

Since these early works, other less popular alphabet opti-
malities have been proposed for different purposes. Optimal
experimental design theory provides another point of view
and a theoretical foundation for robot calibration observabil-
ity indexes.

There are few papers on a basic comparisons of observ-
ability indexes, and their differences and properties are not
fully understood. There is no convincing guidance on which
observability indexes should be used under what conditions.
In this paper, after studying the physical meanings and
properties of each observability index, several theoretical
conclusions are reached:

1) O1 (D-optimality) is the best observability index to
minimize the variance of the parameters.

2) Since a perfectly column scaled covariance matrix
is the correlation coefficient matrix, the observability
index can be computed from the correlation coefficient
matrix without worrying about scaling.

3) After a perfect column scaling, all existing observ-



ability indexes are equivalent for optimal experimental
design.

4) G-optimality is equivalent to E-optimality for exact
design.

5) O3 (E-optimality) is the best criteria to minimize the
uncertainty of the end-effector position of a robot.

II. OBSERVABILITY INDEXES

The parameters of the robot model can be identified from
measurement of the end-effector pose and the joint encoder
reading. Robot accuracy can be substantially improved by
judicious choice of robot poses used for redundant measure-
ments. A robot kinematic model is expressed as

f = f(www,φφφ) + e0 (1)

where f = [x, y, z, θx, θy, θz]′ is the pose of the end effector,
www = [w1, · · · , wm]′ are the robot model parameters, φφφ =
[φ1, · · · , φm]′ are the readings of the encoders, and e0 is
the measurement error of f .

The linearized calibration equations around the nominal
values of the parameters are expressed at iteration i:

∆f i = Xi∆wwwi, (2)

where ∆f i = f̂ − f i is the difference between the measured
pose fi of the end effector and the pose f̂ calculated by
forward kinematics with current parameters, ∆wwwi is the
correction to be applied to the current values of the pa-
rameters, and Xi is the Jacobian matrix computed from the
current parameters and encoder readings. After each step,
the parameters are updated with the estimated differences
∆wwwi, as is the Jacobian matrix. The iteration stops when a
sufficient accuracy is reached.

At each step, there is a regression problem. Equation 2
can be expressed as

y = Xwww + εεε, (3)

where y = ∆f , and www = ∆www. ε is the combination of
measurement error and linearization error.

The end effector usually has 6 components: 3 positions
and 3 orientations. The variances of the measurement error
for positions and orientations are usually different, and so
weighted least squares is typical used. For optimal experi-
mental design, many techniques have been developed that
use weighting with the standard deviations of the endpoint
measurements. To simplify the discussion, here we assume
the end-effector measurement errors have the same variance.

Using the singular value decomposition, equation 3 be-
comes

y = UΣΣΣV′www + εεε, (4)

where U and V are orthonormal matrices, and for n mea-
surements and m parameters,

ΣΣΣ =




σ1 0 · · · 0
...

...
...

...
0 0 · · · σm

0 0 · · · 0
...

...
...

...
0 0 · · · 0




where the σi are the singular values of X with σ1 ≥ σ2 · · · ≥
σm ≥ 0. Let σMIN be the smallest non-zero singular value.
The maximum singular value σMAX = σ1.

Borm and Menq [3] showed that

σm ≤ |y|
|www| ≤ σ1. (5)

y forms an ellipsoid when |www| is constant. The ellipsoid
provides a sensitivity measure of the position error resulting
from parameter error.

In terms of this terminology,
• Observability index O1 [10], [3] is the root of the

product of the singular values:

O1 =
(σ1σ2 · · ·σm)1/m

√
m

(6)

• Observability index O2 [5] is the inverse of the condi-
tion number:

O2 =
σMIN

σMAX
(7)

• Observability index O3 [12] is the minimum singular
value:

O3 = σMIN (8)

• Observability index O4 [12] is

O4 = σ2
MIN/σMAX (9)

III. PHYSICAL MEANINGS OF OBSERVABILITY INDEXES

Depending on applications, there are two different goals
of kinematic calibration. One goal is to obtain the structure
model of the robot. It is to minimize the variance of the
estimated unknown parameters in the robot model. The other
is to build a prediction model to accurately place the robot
end-effector to a certain position. It is to minimize the
maximum possible uncertainty of the end-effector pose.

A. Parameter Estimation Optimization

Obtaining an unbiased estimate of the parameters with
smallest variance is an optimization problem [14], [1]. The
goal is to minimize the variance Var[ŵww]. With least squares,
www can be estimated as

ŵ̂ŵw = (X′X)−1X′y, (10)

where (X′X) is assumed to be invertible.
If we assume the εi’s are independent and identically

distributed, i.e., Var[εεε] = σ2I6×n, then



Var[ŵ̂ŵw] = σ(X′X)−1. (11)

Define

S = (X′X)−1, and M = X′X. (12)

M is called the information matrix, moment matrix, or
covariance matrix in different literatures. The minimization
of a matrix has many expressions corresponding to different
physical meanings.

One expression is the determinant, which represents the
volume of the confidence hyper-ellipsoid for the parameters.
The minimization is expressed as

min det(S) = min
m∏

i=1

1
σ2

i

(13)

where the squared singular values σ2
i are the eigenvalues of

M. This is called D-optimality in the experimental design
literature and is similar to observability index O1.

Another expression is minimizing the norm of the covari-
ance matrix, i.e., min(||S||). Let vi be an eigenvector of M
and σ2

i its corresponding eigenvalue. Since

Mvi = σ2
i vi,

the norm is

||Mvi|| = σ2
i ||vi||.

Due to the property of a norm,

||Mvi|| ≤ ||M|| ||vi||.

Therefore

σ2
i ||vi|| ≤ ||M|| ||vi||.

This shows that ||M|| ≥ σ2
i for any σi, and therefore

||S|| ≤ 1
σ2

i

≤ 1
σ2

m

. (14)

This shows that for any matrix norm, 1/σ2
m is the upper

bound of ||S||. To minimize ||S|| is the same as to minimize
1/σm, which is E-optimality and also the observability index
O3.

Minimizing the trace of the covariance matrix is A-
optimality, which has no existing corresponding observability
index. It is

min{
m∑

i=1

1
σi

}. (15)

which we define as O5.

B. End-effector Estimation Optimization

After the parameters are estimated, the response variable
can be estimated with ŷ = Xŵ̂ŵw. For a robot, with the
estimated parameters, the forward kinematic model produces
the estimated position of the end-effector. Since there are
errors in the estimated parameters, the estimated position
of the end-effector has error too. The variance of the error
affects the accuracy of the end-effector.

Robot calibration, in some circumstances, is carried out
to achieve a much smaller end effector position error than
the variance of the measurement of the end-effector for any
poses. So the optimal goal in parameter estimation becomes
to minimize the possible error of the end-effectors for any
poses. From the definition of G-optimality [15], it is the right
criterion for such circumstances.

The optimal design that minimizes the variance of param-
eters (D-optimality) is not necessarily the optimal design that
minimizes the uncertainty of the end-effector (G-optimality).
The relation between G-optimality and D-optimality has been
studied in [9].

The position of an end-effector f is calculated with im-
precise parameters ŵww.

f = f(www,φφφ) (16)

where φφφ are the joint angles. With linearization,

f = ∆f(ŵww,www)φ̂φφ + ∆f . (17)

If we assume the model is correct and the input readings
are accurate, the difference between a real position of an end-
effector and a computed position of the end-effector comes
from two places. One is linearization error e1 and the other
is the error eo caused by imprecisely estimated parameters.
If a linearization converges after several steps of iteration,
the linearization error e1 can be much lower than the error
e0 of the end-effector. The range of the error depends on the
accuracy of the estimated parameter ŵww and on the pose. The
offset error cannot be eliminated in the linearization iteration
since the measurements of the end-effector are noisy and
have much bigger variance.

The linearized model is

∆f = X∆www, (18)

where ∆f = f̂ − f and f is the set of pose measurements. To
minimize the maximal possible variance of f̂ is the same as
to minimize max{Var(∆̂f )} for any row x of Jacobian X,
where ‖x‖ ≤ 1. The formula is

min{max{Var(∆̂f |x)|x}|X} (19)

= min{max{x′Var[∆̂www]x|x}|X}
= min{max{σ2x′(X′X)−1x|x}|X}

subject to ‖x‖ ≤ 1.
Since in practice, all experimental designs are exact, we

suppose that it is an n-point design with one observation at
x. For an exact design, the moment matrix is



M =
1
n
X′X. (20)

The G-optimality is

min{max{nx(X′X)−1x′|x}|X}. (21)

Theorem 1: If the input variable is bounded as ‖x‖ ≤
1, the exact design G-optimality is the equivalent to E-
optimality

min{max{nx(X′X)−1x′|x}|X} ∝ max{σ2
MIN}. (22)

Proof: First, we look at the maximization problem.
After including the constraint as an additional linear term
with Lagrange multiplier η, we have a regularized linear
problem,

F (X,x) = max{n (x′X′X)−1x − η(x′x − 1)} (23)

To maximize for any x, derivatives are taken:

∂F (X,x)
∂x

= n(X′X)−1x − ηx = 0 (24)

∂F (x,X)
∂η

= x′x − 1 = 0 (25)

By the definition of eigenvalues and eigenvectors, the
extrema of Equation 24 are eigenvectors of (X′X)−1 when
x′x = 1. Some of the extrema are local maxima. Let v be
an eigenvector of (X′X)−1. Then

F (X,x) = max{nv′(X′X)−1v}
= n max{v′ρv}
= n max{ρ}
= n ρMAX

(26)

where ρ is the corresponding eigenvalue of (X′X)−1.
F (X,x) reaches a maximum for any design matrix when

the input x is the eigenvector corresponding the largest
eigenvalue of the information matrix.

min{F (X,x)} = min{F (X,v)}
= n min{ρMAX}
= n

max{σ2
MIN} ,

(27)

since ρMAX = 1/σ2
MIN .

For the same number of measurements, G-optimality is
equivalent to E-optimality (O3). This can be verified with the
well know conclusion of G-optimality, which is a sufficient
condition for an experimental design X to satisfy the G-
optimality criterion,

min{F (X,x)} = m. (28)

where m is the number of parameters.
Theorem 2:

n

max{σ2
MIN} = m. (29)

Proof: First we observe that Tr(X′X) = Tr(XX′).
Let x′

i be the ith row of X, or the ith measurement of vari-
able in the experiment design. For an n-point experimental
design,

X =




x′
1
...
x′

i
...

x′
n,




(30)

and

XX′ =




x′
1
...
x′

i
...

x′
n




[x1 . . .xi . . .xn] (31)

The diagonal of the matrix XX′ is

diag(XX′) = [x′
1 x1 . . .x′

i xi . . .x′
n xn] (32)

Since the input variables are bounded, we have x′
ixi ≤ 1.

Thus Tr(X′X) ≤ n and

m∑
i=1

σ2
i = tr(X′X) ≤ n. (33)

For any moment matrix, the maximum of the minimum
eigenvalue is σ2

MIN ≤ n
m . When ‖xi‖ = 1 for all i’s

and all the eigenvalues are equal, then σ2
MIN = n

m . So
n

max{σ2
MIN} = m and n

σ2
MIN

≥ m.
Since G-optimality uses the variance of the end-effector

as the criterion, it is not affected by scaling of the design
matrix or the parameters. Selection of units or scales of the
variables does not influence the end-effectors. For approxi-
mate experimental design, as proved in [9], G-optimality is
equal to D-optimality (O1). Robot calibration seeks designs
with a small number of trials, and D-optimality is usually
not close to being G-optimal.

IV. PROPERTIES OF OBSERVABILITY INDEXES

For parameter estimation optimization, there are a number
of observability indexes to choose from. Each of them has
a different physical meaning and properties. To best select
an observability index for an application, several of their
properties are studied.

A. Inequality

The five observability indexes are

O1 = (σ1 σ2 . . . σm)
1
m (34)

O2 =
σm

σ1
(35)

O3 = σm (36)

O4 =
σ2

m

σ1
(37)

O5 =
1

1
σ1

+ 1
σ2

+ . . . + 1
σm

(38)



All the observability indexes described above use singular
values of X. Since X′X is a covariance matrix and all
variables are linearly independent, it is an m × m positive-
definite symmetric matrix. All singular values σ1, σ2, . . . , σm

are positive. According to arithmetic-geometric-harmonic
means inequality, we have

σMAX ≥ σ1+σ2+...+σm

m

≥ (σ1 σ2 . . . σm)
1
m (D-optimum/O1)

≥ 1
1

σ1
+ 1

σ2
+...+ 1

σm

(A-optimum/O5)

≥ σMIN (E-optimum/O3),
(39)

The relation of the observability indexes is

mean(σ) ≥ O1 ≥ O5 ≥ O3 (40)

When σ1 = σ2 = ... = σm, the observability indexes O1,
O3, and O5 are equal. When σMAX ≥ 1,

σMIN (O3) ≥ σMIN

σMAX
(O2). (41)

If we can further assume σMIN ≤ 1,

σMIN

σMAX
(O2) ≥ σ2

MIN

σMAX
(O4). (42)

It suggests that all observability indexes are related. The
indexes O1, O5, O3, O2, and O4 are the upper bounds of
their following indexes by number and lower bounds of their
previous indexes.

B. Scaling

For parameter estimation, the observability index selection
also highly depends on the properties of robot models. In a
robot model, parameters for different variables can be vastly
different. They may have different units and different scales.
Kinematic parameters can be on the order of 10−3, elasticity
can be on the order of 10−6, and actuator model parameters
can be on the order of 10−9.

Column scaling is usually applied to the variables. The
scaling can be model based or experimental based. The
approaches usually use the ranges of the variables to scale
them to be bounded in [−0.5 0.5] (for simplicity, we omit
the centering). Equation 3 becomes

y = XPP′www (43)

where P is a scaling matrix.
However, different scaling approaches may produce dif-

ferent results if the observability index used is sensitive to
scaling. An observability index that is invariant to scaling is
of interest for robot calibration.

O1 (D-optimality) is an observability index that is invariant
under any non-singular linear transformation [16]. For any
non-singular linear transformation P[m×m], the criterion of
O1 is the determinant of P′X′XP. Since

det(P′X′XP) = det(P′P) det(X′X), (44)

and det(P′P) is a scaler that does not change with experi-
mental design. For any two experimental designs, the scaler
does not affect the comparison result. Therefore any non-
singular linear transformation, including scaling, does not
affect the criterion.

The other observability indexes do not have such an attrac-
tive property. To optimize the estimation of the parameters
for an unscaled robot model or a robot model without a
convincing scaling approach, O1 (D-optimality) is the best
criterion.

C. Column Scaling and Correlation Matrix

One typical approach to prevent the artifact of unit se-
lection in robot calibration is to scale the Jacobian matrix
column by column. Suppose that the columns of X have
already been centered. To scale them to unit length, let D2

j =∑
i X2

ij and consider the new variables X∗
ij = Xij/Dj .

Let

D =




D1 0
. . .

0 Dm


 , D−1 =




1
D1

0
. . .

0 1
Dm


 (45)

The regression model 4 becomes

y = X∗ψψψ, (46)

where X∗ = XD−1 and ψψψ = Dwww. Instead of estimating www,
we want to estimate the standardized parameter ψψψ.

ψψψ = (X∗′X∗)−1X∗′ = R−1
X X∗′y, (47)

where RX = X∗′X∗. Since X∗
ij = Xij/Dj , the element of

RX at (i, j) is

rj,k =
∑

i

(Xi,j)(Xi,k)
DjDk

. (48)

We can see that the information matrix for a perfectly
scaled design matrix is its correlation coefficient matrix

RJ =




1 r1,2 . . . r1,m

r2,1 1 . . . r2,m

...
...

...
rm,1 rm,2 . . . 1


 . (49)

A nice property of a correlation coefficient matrix is that
the diagonal elements are all 1’s. With such a property, the
scaled design matrix RX introduces a constraint for all the
observability indexes based on eigenvalues. It is

Tr(RJ) =
m∑

i=1

σ2
i = m. (50)

For O1 (D-optimality), with det(RJ) =
∏m

i=1 σ2
i ,

log(O1) = log(det(Rj)
=

∑m
i=1(log(σ2

i ))
= mmean(log(σ2

i ))
≤ m log(mean(σ2

i ))

(51)



which is Jensen’s inequality. Since

mean{σ2
i |i = [1, m]} =

1
m

m∑
i=1

σ2
i = 1,

m log(mean(σ2
i )) = 0.

Therefore,
log(det(RJ)) ≤ 0 (52)

and
σ2

MIN ≤ O1 ≤ 1 (53)

It indicates that O1 is bounded with [σMIN , 1] and its
maximum is 1. To find the eigenvalues to maximize the O1,
the optimal problem is expressed as

max{
m∏

i=1

σi}, subject to
m∑

i=1

σ2
i = m, and ∀σi > 0.

According to inequality of arithmetic and geometric
means, the solution of the optimization problem is

σ1 = σ2 = . . . = σm = 1. (54)

When the hyper-ellipsoid becomes a hyper-sphere, the robot
calibration reaches its maximal observability and the confi-
dence region of the estimated parameters reaches the mini-
mum. The O1 (D-optimality) criterion reaches its optimum
when the design matrix favors all directions. With its in-
variance property to scaling, we can conclude that O1 (D-
optimality) is isotropic even for unscaled data.

For E-optimality or O3, the solution of the optimization
problem of

max{σMIN}, subject to
m∑

i=1

σ2
i = m, (55)

is also

σ1 = σ2 = . . . = σm = 1. (56)

For O2, O4 and O5 with the constraint,
∑m

i=1 σ2
i = m,

the optimal solutions are all the same as Equation 56. For
a perfectly scaled design matrix, no matter what criterion is
used, the optimal experimental designs are the same.

V. CONCLUSION

All 5 observability indexes are related. They are the
upper and lower bounds of one another. For minimizing
the combined uncertainty of the parameters of robot models,
due to different interpretations of minimizing a matrix, there
are a number of observability indexes with valid physical
meanings. For circumstances when convincing scaling fac-
tors are hard to obtained, O1 (D-optimality) is the best
observability index using the covariance matrix for its scaling
invariant property. The coefficient matrix in nature is scaling
invariant. It is proved to be equal to the perfectly column-
scaled covariance matrix. With such an information matrix,
all 5 observability indexes produce the same optimal design.

To minimize the possible uncertainty of the end-effector
pose of the robot, O3 (E-optimality) is proved to be the

best observability index. Since O3 is also the best optimal
criterion to minimize the variance of the parameters when
the robot model is perfectly scaled, O3 in general is the best
observability for robot calibration with correlation coefficient
matrix.
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