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Abstract

We study the problem of applying adaptive
filters for approximate query processing in a
distributed stream environment. We propose
filter bound assignment protocols with the ob-
jective of reducing communication cost. Most
previous works focus on value-based queries
(e.g., average) with numerical error tolerance.
In this paper, we cover entity-based queries
(e.g., a nearest neighbor query returns object
names rather than a single value). In par-
ticular, we study non-value-based tolerance
(e.g., the answer to the nearest-neighbor query
should rank third or above). We investigate
different non-value-based error tolerance def-
initions and discuss how they are applied to
two classes of entity-based queries: non-rank-
based and rank-based queries. Extensive ex-
periments show that our protocols achieve sig-
nificant savings in both communication over-
head and server computation.

1 Introduction

Due to the rapid development of low-cost sensors and
networking technologies, stream applications have at-
tracted tremendous research interests lately. In par-
ticular, long-standing continuous queries are common
in a stream environment for monitoring various net-
work activities. Some examples include intrusion de-
tection over security-sensitive regions; identification of
Denial-of-Service (DOS) attacks on the Internet [6];
road traffic monitoring; network fault-detection; email
spams detection; and web statistics collection.

In such systems, streams are installed that col-
lect and report the states of various entities. Typi-
cally, this information is analyzed by a stream man-
agement system in real time. For example, in DoS

detection, routes through which traffic is abnormally
high are identified. Addresses from and to which
packet frequencies rank among the top few might sig-
nal alerts. There are two characteristics that are com-
monly shared by such systems: (1) Massive data vol-
umes — the number of streams could be large and
they are continuously reporting updates. This leads to
large message volumes and high computation load at
the server; (2) Reactive Systems — a stream manage-
ment system is often also a reactive, real-time system.
It detects and responds to special events, typically
with certain timing requirements. Timely processing
of standing queries is an important requirement.

The two characteristics, unfortunately, are con-
flicting. A stream server could be crippled by the
large volume of data, slowing its response to stand-
ing queries [1]. One possible solution is to trade query
answer accuracy for speed. For example, a sensor that
is reporting a temperature reading can be instructed
not to transmit updates to the server if the current
value does not deviate from the last reported value by
a certain bound. This method could result in a signifi-
cant reduction in message volume and thus the server’s
load. The drawback is that the server is processing
queries based on inaccurate data. For many standing
queries, however, a user may accept an answer with
a carefully controlled error tolerance in exchange for
timeliness in query processing. For example, for an ag-
gregate query that asks for the average of some sensors’
readings in a sensor network, a 1% error in the answer
might be acceptable. Other examples where query er-
rors are acceptable include stock quotes services, on-
line auctions, wide-area resource accounting and load
balancing in replicated servers. Several efforts (e.g.,
see [20, 28, 23, 8]) produce approximate answers to
achieving better overall performance. In particular, in-
telligent protocols are proposed in [17, 10, 5] to wisely
control when streams should report updates. The goal
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Figure 1: Different tolerance constraints for maximum
query. By using a large value ¢;, the user may not be
aware that many streams are actually ranked above
the returned answer; if the tolerance is too small (e;),
the system may not benefit much from the tolerance
scheme. A rank-based tolerance can be used to accu-
rately specify that the returned answer must be ranked
second or above.

of the protocols is to reduce communication overhead
while at the same time user-specified error tolerances
are met. These protocols make use of filter bounds
— a system-specified range of values. A stream only
reports an update if its value crosses the bound. An
interesting challenge is how one could translate a user-
specified error tolerance into filter bounds for streams.

Although effective, most filter-bound-based approx-
imation techniques assume that a maximum tolerable
error is specified by a numerical value. However, in
many cases, a numerical error tolerance fails to cap-
ture the user’s desired degree of accuracy. This is par-
ticularly true for queries that concern not only stream
values, but also the relative ranks of the values as well.
As an example, consider a network of sensors that re-
port temperature readings. How would a user express
an error tolerance if he is interested in the identity of
the sensor with the highest temperature? One possibil-
ity is to let the user choose a numerical error tolerance,
say €, and the system guarantees that the answer re-
turned to the user, say, Sensor S7, has a value no more
than e smaller than that of the true highest sensor, say
Simaz- Figure 1 illustrates the idea.

However, the above strategy is not without prob-
lem. In particular, choosing an error tolerance is un-
intuitive. As an example, in a typical location-based
application a user can inquire about his closest neigh-
bor. Should the error tolerance specified be one meter,
ten meter or one hundred meter? The user needs to
have a good sense of the size of the numerical error
value, which may not always be the case. In a sensor
network, for instance, various kinds of data like hu-
midity, temperature, UV-index can be collected [12].
The user may then be required to know a reasonable
range of error for each data type. Moreover, if a data
stream contains multi-dimensional data, (e.g., loca-

tion) or multimedia data (e.g., shape), a value-based
error can be inconvenient to specify.

Choosing a reasonable error tolerance € is impor-
tant, however. In particular, if € is set too large, the
returned stream could rank far from the true maxi-
mum (see Figure 1). To solve this problem, a user
then has to be careful not to set e too large. Unfortu-
nately, unless the user has already some ideas about
the data values, setting a “good” e value is not easy.
If € is too small, then the system cannot fully benefit
from the tolerance protocol. For example, in Figure 1,
if the user can accept an object that ranks second or
above, then the filter bound €, is too small.

An alternative approach would be to express the er-
ror tolerance in terms of a rank rather than an absolute
value. Using our previous example again, a user could
specify the error tolerance as the number of positions
the returned sensor could rank below the highest one.
For example, if the rank-based error tolerance is set to
1, then only the highest and the second highest sensors
could be returned as an answer to the query. Figure 1
illustrates this example. We remark that a rank-based
error tolerance could be more intuitive, particularly
for queries that concern the ranking of the sensor val-
ues (e.g., top-k queries, k-NN queries, etc.) Moreover,
translating a rank-based tolerance to a filter bound
could also be easier. For example, after the system
has taken a global snapshot of the sensors’ values, it
would have distinguished the sensors that are the top
two from the rest of the pack. We can set a filter bound
somewhere between the second highest value and the
third highest value (see Figure 1). No sensors need to
report updates as long as their values do not cross the
bound. This is because sensors that were originally
top two remain so even as the sensors’ values change.
Thus, either one is a good answer with respect to the
rank-based error tolerance.

The above example illustrates how a rank-based tol-
erance can be used instead of wvalue-based tolerance
in a ranking query. A rank-based tolerance is just
an example of non-value-based tolerance. This kind
of tolerance is particularly suitable for entity-based
queries — those that return sets of entities, rather than
numerical values as answers [21]. Typical examples
of entity-based queries include range queries and k-
nearest neighbor queries, which are common in appli-
cations such as location monitoring [29], sensor net-
works [12] and computer-aided manufacturing (CAM)
systems [19]. Observe that the user of an entity-based
query is not concerned about the numerical value of the
answer. Ideally, he should not need to hassle about set-
ting a reasonable numerical error. Thus a non-value-
based tolerance is a good match to this class of queries.

While most previous works in filter bound appli-
cations assume value-based queries (e.g., aggregate
queries), in this paper we study extensively different
kinds of entity-based queries. In particular, We study



two types of entity-based queries, namely, rank-based
and non-rank-based. Rank-based queries are those
that concern a partial order of the stream values. Ex-
amples include top-k queries and k-nearest neighbors
queries.Non-rank-based queries only concern the val-
ues of individual streams. An example is a range query.

Another dimension of our study deals with how an
error tolerance is specified. Again, we are interested
in error tolerance measures that are non-value-based.
We have already discussed an example in which rank
is used as a measure. Another possibility is to ex-
press the degree of inaccuracy through false positive
and false negative [15]. Recall that the answer of an
entity-based query @ is a set. Let X¢g be the correct
answer set and Yy be the answer set returned by the
system. A false positive a is an element in Yo — Xg,
i.e., a is not a correct answer but is returned as one.
A false negative b is an element in Xg — Yy, ie., bis a
correct answer not returned. (The concepts are simi-
lar to precision and recall in the IR literature [27].) A
user of an entity-based query can specify the error tol-
erance by the maximum fraction of returned answers
that are false positives, and the maximum fraction of
correct answers that are false negatives. We call this
kind of tolerance specification fraction-based tolerance.

In this paper we study how rank-based and fraction-
based tolerance constraints can be exploited in a
stream management system. We develop protocols
that reduce communication costs between the server
and stream sources, and consequently, reduce server
load. Specifically, we assume each stream is equipped
with an adaptive filter [6, 10]. A stream reports up-
dates to the server only if the filter condition is met
(e.g., “do not send an update unless the temperature
value is outside the range [20°F,30°F]). The filter
constraint is usually set based on the maximum error
tolerance. Since streams are refrained from sending
updates, communication between stream sources and
the server is reduced. Interestingly, as we will also see,
our fraction-based tolerance protocols requires some
stream sources to be shut down completely. This
can be potentially beneficial for sensors with limited
battery power since they can be operating in “sleep
mode”.

Another important component of our filter bound
protocols is how one could map a non-value-based
tolerance (either rank-based or fraction-based) to the
adaptive filter constraints of the streams. As we will
see later, the mapping depends on the type of the
entity-based queries. In this paper we derive different
protocols for rank-based queries and range queries. We
will also discuss the issue of constraint resolution, i.e.,
how the adaptive filters are updated as stream values
change so that the query correctness is maintained.

Although the protocols and examples presented in

this paper are one-dimensional, our techniques are gen-
eral and can be applied to higher dimensions.

As a summary, our contributions are:
e Motivate the need for non-value-based tolerance;

e Propose the definitions of rank-based and
fraction-based tolerance for entity-based queries;

e Present protocols to exploit non-value tolerances
for rank-based and non-rank-based queries; and

e Perform experimental results to test the effective-
ness of the protocols on both real and synthetic
data sets.

The rest of this paper is organized as follows. We
discuss related work in Section 2. In Section 3, we
present the assumptions of our model, and formally de-
fine the semantics of non-value-based error constraints.
Section 4 presents protocols for maintaining filter con-
straints for rank-based tolerance, while Section 5 dis-
cusses how to do so for fraction-based tolerance. Sec-
tion 6 presents our experimental results. Section 7
concludes the paper.

2 Related Work

Research in data streams has received significant in-
terest in recent years. Issues of data streams have
been surveyed in as [7].Due to the high-volume and
continuous nature of data streams, systems such as
STREAM [2], AURORA [11] and COUGAR [30] have
been recently developed to manage them more effi-
ciently. The goal of these systems is to conserve system
resources such as memory [1], computation [19, 23, 8,
28, 20, 18] and communication costs [17, 10, 5, 22].
Most of these works reduce resource consumption by
relaxing correctness requirements. Typically, a user
specifies a maximum error tolerance, and the toler-
ance is exploited by various techniques such as ap-
proximate data structures, load shedding, filters etc.
The error tolerance is often assumed to be in the form
of a numerical value, and usually only value-based
queries Our work investigates the possibility of exploit-
ing non-value-based tolerance for continuous entity-
based queries. Figure 2 illustrates our contribution in
more details.

The idea of using adaptive filters in which filter
bounds are installed to reduce communication costs
was first proposed in [10]. However, that paper only
considers value-based tolerance over aggregate queries
such as average and minimum. Babcock et al. [6] ap-
plied a similar idea to answer top-k queries for dis-
tributed stream sources, but again the tolerance is
value-based. More recently, Jain et al. [5] used Kalman
Filters to exploit value-based tolerance. The Kalman
Filter is installed at every stream, and with its predic-
tion techniques it is shown to be more effective in con-
serving communication costs. The extension of adap-
tive filters in a sensor network is studied in [4]. Our
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Figure 2: Our contributions (shaded).

works distinguishes from this work in that we use adap-
tive filters to exploit non-value-based tolerance. In ad-
dition, we study continuous k-NN queries that are used
in applications such as computer aided manufacturing
and traffic monitoring [19]. Notice that k-NN queries
are more general than top-k queries studied in [5].

The classification of queries into value-based and
entity-based has been proposed in [21]. To the best of
our knowledge, the use of non-value-based tolerance
for entity-based queries has only been addressed by
a few researchers. Vrbsky et al. [26] studied approx-
imate answers for set-valued queries, where a query
answer contains a set of objects. They propose an
exact answer E can be approximated by two sets: a
certain set C' which is the subset of F, and a possible
set P such that C'U P is a superset of . Khanna et
al. [24] proposed a rank precision model: an answer a is
called a-precise if the true rank of a lies in the interval
[r — a, 7+ ], where r is the rank of a informed to the
user. Cui et al. [9] proposed precision and recall as a
quality metric for approximate k-NN queries. We gen-
eralize the definitions of non-value-based tolerance to
include rank-based and fraction-based tolerance, and
we study how to exploit them in stream systems that
has not been addressed before.

The idea of viewing a k-NN query as a range query
was proposed by Iwerks et al. [13]. They propose the
use of a closed bound which encloses at least k objects
so that continuous k-NN queries can be answered more
efficiently. We use a similar idea to convert a continu-
ous k-NN query to a range query, but our focus is on
how to use this technique to design filter bounds in a
distributed stream environment.

3 Problem Description

In this section we describe our stream management
system model, and our query model for both rank-
based and non-rank-based queries. We also give formal
definitions of two types of non-value-based error con-
straints, namely, rank-based tolerance and fraction-
based tolerance.
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Figure 3: Stream Management System Model.

3.1 System Model

We assume a distributed stream management model
similar to those described in [6, 10, 17]. The sys-
tem consists of a set S = {S1,S52,...,5;,...,5,} of n
data streams with Stream S; reporting a value V; € .
We assume that stream values are updated at discrete
time instants. Each stream may be associated with
an adaptive filter that specifies a constraint. With
the filter mechanism, not all the updates are reported
to the server. A filter constraint is a closed interval
[l;, us], where l;,u; € R. Let V/ be the last reported
value from Stream S;. When the stream’s value (V;)
changes, the filter constraint is wviolated if either (1)
V;/ S [li,ui]/\Vi ¢ [li,ui] or (2) V;»I & [ll, ul]/\V; S [li, ul]
Only when the constraint is violated will the updated
value be sent to the server. If no filter is installed at
a stream, all updates from the stream are sent to the
server.

Figure 3 shows a general architecture of such sys-
tems. Each stream source is equipped with a filter that
is adaptive whose parameters can be changed at any
time by the processor. A user submits her queries and
tolerance requirements to the central processor. The
constraint assignment unit then determines the rele-
vant filter constraints to be installed in each stream.
The query processing unit processes user queries and
updates their results if necessary. It also receives up-
dates from the stream sources. It communicates with
the constraint assignment unit, which decides if con-
straints need to be revised for relevant filters.

3.2 Query Model

We are interested in a broad class of queries, called
entity-based queries, which are those that return names
or identifiers of objects as answers [21]. We further
classify entity-based queries into rank-based queries
and non-rank-based queries:

(1) For a rank-based query, the relative ranking
of data items is important to the query answer. Typ-
ical examples include k-nearest-neighbor (or k-NN)
query where the objects with the k£ shortest distances
to a query point ¢ are reported [14, 19]; and top-
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k queries, where answers with the k-highest ranking
scores are returned [19, 6]. In this paper we use k-NN
queries as an example of how filter bound protocols
are applied, since it is common in streaming systems
like similarity matching in computer-aided manufac-
turing, mobile environments, and network traffic mon-
itoring [19, 14, 9]. Note that a k-NN query can be eas-
ily transformed to a k-minimum or k-maximum query,
by setting the query point ¢ to —oo or 400, respec-
tively.

(2) A non-rank-based query is any query that is
not rank-based. In this paper we study range queries
as an example, which are useful in stream management
systems like moving-object databases [29] and sensor
networks [12]. A range query is specified by an interval
[[,u]. Streams whose values fall within the interval
should be returned to the user. It is apparent that
a range query is non-rank-based since the decision of
whether a stream is part of the answer is independent
of other streams.

For notational convenience, we use () to denote an
entity-based standing query and A(t) to denote the
answer set returned at time ¢. We use |A(t)] to denote
the cardinality of A(¢).

A standing query @ is associated with a tolerance
constraint. We study two kinds of non-value-based tol-
erance constraints, namely, rank-based tolerance and
fraction-based tolerance. The rest of this section ex-
amines the tolerance constraints in more detail.

3.3 Rank-based Tolerance

For a rank-based query, a user may be interested in
whether the rank of an answer returned by the sys-
tem matches the true rank, and if not, how close it is
to the correct answer. For example, for a maximum
query, the user may be satisfied with an answer which
carries the third maximum value, but not anything fur-
ther than that. A rank-based tolerance is important
in situations where a large error in ranking of answers
is not desirable. For example, in a distributed system,
requests from different users possess various priority
values, and the system should process jobs with the
highest priorities. As another example, in an online
game, if rewards are given to the players with high-
est scores, it may be unfair to give the reward to the
player ranked 20th, instead of to the one ranked third.

Here, we formally define rank-based tolerance for
rank-based queries. Let rank(S;,t) be the true rank
of Stream S; w.r.t. a rank-based query ) at time t.
For example, if @) is a maximum query, and the system
returns Sg as the answer at time ¢; whose value actu-
ally is the third largest among all the streams, then
rank(Ss,t1) = 3. We note that the function rank de-
pends on the query. For example, if the query is a
k-NN query, then rank will be defined based on the
differences from the query point.

Definition 1 Rank-based Tolerance. Given a
rank-based query Q, an answer set A(t) returned at
time t, and a maximum rank tolerance €, =k +r, the
answer set A(t) is said to be correct w.r.t. €}, if and

only if |A(t)| = k, and ¥S; € A(t), rank(S;,t) < €},.

As an example of the above definition, consider a
k-NN query with £k = 3 and r = 2. Then an answer
set A(t) is correct w.r.t. €3 = 5 if it contains exactly

three streams all of which rank fifth or above.

3.4 Fraction-based Tolerance

As we have discussed, another way to express an error
tolerance is to use the concept of false positives and
false negatives. The advantage of this tolerance defi-
nition is that it applies to all entity-based queries, i.e.,
both rank-based and non-rank-based queries. An ex-
ample of fraction-based tolerance for non-rank-based
queries is the sending of warning messages to soldiers
that enter a danger region, in which case it is accept-
able that the messages are sent to a fraction of soldiers
who are not in the region (or false positive). For rank-
based queries, k-NN queries are often used to mine
multimedia data streams (e.g., images) for unknown
patterns in computer-aided manufacturing [19], and
fraction-based tolerance can be used to measure the
quality of results [9].

Definition 2 False Positive and False Negative.
Given a query Q and an answer set A(t), let ET(t)
denote the number of streams in A(t) that do not sat-
isfy Q, and E~(t) denote the number of streams that
satisfy Q but are not in A(t). The fraction of false
positives and the fraction of false negatives of )
at time t, denoted by FT(t) and F~(t), respectively,
are defined as

Fr(t) = (1)

PO mamrerm P

Note that the total number of streams that satisfy @ is
given by |A(t)|—E* (t)+E~ (t). Hence F*(t) gives the
fraction of the returned answers that are not correct,
while F'~(t) gives the fraction of the correct answers
that are not returned. Figure 4 illustrates the relation-
ship between these quantities. With those notations,
we now define fraction-based error tolerance.

Definition 3 Fraction-based Tolerance. Given a
query Q, an answer set A(t), a mazimum false positive
tolerance €T, and a mazimum false negative tolerance
€~, the answer set A(t) is correct w.r.t. €t and e~ if
and only if FT(t) < et and F~(t) <e™.
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Figure 4: Definition of False Positives (E*(¢)) and
False Negatives (E~(t)). A(t) is the answer set re-
turned to the user.

The parameters et and €~ are user-specified. The
system has to guarantee that the fraction-based toler-
ances are met. In this paper we assume that et and
€~ are both smaller than 0.5. The rationale for this
assumption is that we suppose users are not interested
in results with too many incorrect answers. Another
reason is that this value is required for guaranteeing
the correctness of our protocols.

Again for notational convenience, we use E™** ()
to denote the maximum number of streams that are
allowed to be incorrect in A(t) and E™**~(t) to denote
the maximum number of streams that satisfy the query
but are excluded from A(t). From Equations 1 and 2,
we have

Ema:ch(t) B
Ftt) < W =", (3)
Py < — 2 -y

—A@)] - Emert(t)

3.4.1 Fraction-based Tolerant k-NIN queries

In this section we discuss an interesting property when
fraction-based tolerance is applied to k-NN queries.
For a k-NN query, the number of correct answers is k.
Therefore, Equation 2 becomes

=, )

which means that at any time ¢, the number of false
negatives (E~(¢)) cannot exceed k. Moreover, the
number of correct answers returned in the answer set,
i.e., |A(t)] — E*(t), must not exceed k. Hence,

ET*(t) k
LS Tl S ) ©
This implies
k
|A(t)] T—0 (7)

Equation 8 is obtained by the assumption that ™ <
0.5. In other words, with fraction-based tolerance, the
size of the answer set returned to the user does not
necessarily have to be k. For example, if the 10 nearest
neighbors are queried with a fraction-based tolerance
e™ = 0.1, the system could return 11 streams with
a guarantee that at most one of them is not correct.
(That is, all correct ones are returned.) In fact, the
answer set size can be controlled by €™, and is upper-
bounded by 2k. Finally, since the true answer size is
always k, the following must hold:

A >
A@) =

k(1 —¢) 9)

| F

(10)

when €~ is less than 0.5. As we can see, fraction-based
tolerance limits the answer of a k-NN query to within
% and 2k. This property affects the design of filter

bound maintenance protocols.

3.5 Maintaining Query Correctness

With the system model and tolerance constraints de-
fined, we are ready to describe the protocols in a
stream management system that guarantee query cor-
rectness with specific tolerance constraints. All of
these protocols translate tolerance constraints into fil-
ter constraints installed in the data streams. As long
as the data value of a stream does not violate the filter
constraint, no update is sent from the stream source
to the server. When it is necessary that an update
be sent to the server, the server may need to reconfig-
ure the filter constraints. We call such reconfiguration
constraint resolution. There are two fundamental cor-
rectness requirements for our protocols:

Correctness Requirement 1: At every point in
time, if no resolution is required, then the results of all
running continuous queries remain valid within their
tolerance constraints.

Correctness Requirement 2: Immediately after
a filter resolution process is completed, the tolerance
constraint of a query is satisfied assuming that stream
values do not change during resolution.

In the next section, we describe how to exploit
rank-based-tolerance for rank-based queries. Section 5
develops two protocols for exploiting fraction-based-
tolerance. The first protocol maintains correctness for
range queries (which are non-rank-based), and the sec-
ond deals with k-NN query (which are rank-based).

4 Rank-based Tolerance

Assume that ¢ is the query point for a k-NN query.
The goal of the query can then be formulated as finding
the k objects whose distances from ¢, i.e., |V; — ¢|, are
the shortest. We use |V; — ¢| to decide the value of
rank(S;,t). According to Definition 1, a query answer



A(t) is correct at time ¢ if its size is k and it consists
of stream identifiers S; such that rank(S;,t) < €}.

The rank-based tolerance protocol (RTP) de-
scribed here maintains the correctness mentioned
above, and at the same time exploits tolerance to
reduce communication effort. Its main idea is to
maintain a close interval R that encloses at least the
(k + r)th objects closest to g. The position of R is
halfway between the (k + r)th and the (k + r + 1)th
object. We use R as the basis for assigning filter con-
straints. As long as no object crosses the boundary of
R, the tolerance requirements are fulfilled. An exam-
ple is shown in Figure 6(a), where R lies in between
the positions of the fourth-nearest object, S4 and the
fifth-nearest object, Ss.

RTP consists of two phases: Initialization and
Maintenance, which are responsible for assigning
and maintaining filter constraints respectively. The
server maintains a set of objects, X, where each ob-
ject in X lies within R. Let X (¢) represent the set X
at any given time t. The answer set returned to the
user, A(t), is extracted from X (¢), i.e., A(t) C X (¢).
Figure 5 illustrates these two phases.

The task of the Initialization Phase is to dis-
tribute the constraint R to filters. At time tg, it col-
lects information from all sensors and assigns appro-
priate values to A(ty) and X (to). Then it executes
Deploy_bound(tg), which calculates the constraint R
and sends it to all streams. The phase enforces Cor-
rectness 1 since at any time ¢ after the Initialization
phase, if no updates are received, the server imme-
diately knows that no object crosses the boundaries
of R. This means any object S; € A(t) satisfies
rank(S;,t) < e}. Also, the size of A(t) is still k, and
thus the requirements of Definition 1 are met. As an
illustration, Figure 6(a) shows the position of query
point ¢, the initial state of the objects, and the con-
straint R after the Initialization phase.

After initialization, an update from S; indicates its
value has either left or entered R. Answer correct-
ness can be violated, and the Maintenance Phase
corrects errors by considering three cases:

1. Case 1: When an update from S; € X (¢) — A(t)
is received, V; is no longer within R. Thus S;
is removed from X (t) (Step 1). Correctness 2
is ensured, since any S; € A(t) still satisfies
rank(S;,t) < €, and |A(t)] = k. Figure 6(b)
illustrates this scenario when S3 € X(t) — A(t)
sends its update to the server.

2. Case 2: An update from A(t) indicates that S;
should not be in the answer anymore, since V; is
outside R and there is no longer any guarantee
that rank(S;,t) < €}.. To ensure correctness, we
replace S; with an item S; from X (¢) — A(¢) (Steps
2 and 3) where rank(S;,t) < €. Figure 6(c) gives
an example of this case. As S; moves out of R, it
is replaced by Sy in the result set A(t).

it is possible that the set X (t) — A(t) is empty
due to removals caused by repeated application
of Step 1 above. In this situation, we can re-
execute Initialization phase, but this is expensive
as all streams need to be probed. since we have
to probe all stream values. Note that R now only
contains the objects in A(t). Step 4 looks for can-
didates to judiciously replace S;: it expands its
search region based on the old ranking scores kept
by the server. The search region, R’, is formed
based on the jth-ranked object from ¢, where j
ranges from k+r+1 to n (Step 4(I)(i)-(ii)). The
server then queries the clients if their values are
within the expanded region R’ (Step 4(I)(iii)). If
the number of responses, |U(t)|, is greater than
r + 2, then A(t) and X (¢) will be fixed and the
new bound is deployed (Step 4(I)(iv)) (the nota-
tion min, 1 5,cv() |Vi — ¢| in (iv)(b) means any
object in U (t) ranking (r+1)th or higher in terms
of distance from ¢). The search region expands
until we reach V,,, and if still nothing is found,
the Initialization phase will be evaluated.

3. Case 3: S, signals that its value is now within
R. If the size of X (t) is less than €}, we add S;
to X (t) and the correctness is maintained, since
| X (¢)| is not larger than €}, (Step 6(I)), which is
illustrated in Figure 6(d). When | X (¢)| > €}, we
have to evaluate R so that it contains €, or less
objects. To do this, we only need to probe the
objects in X (¢t) (Step 7).

Communication Costs. We state without proof
the communication cost in terms of the number of mes-
sages between the server and the streams. The Initial-
ization phase needs takes O(n) messages. In the main-
tenance phase, the running cost is O(nr). In practice
the number of messages will be much fewer, because
we do not often run into costly situations such as Steps
4 and 7 in the Maintenance phase. As illustrated in
Figure 6, in many cases, objects can leave R (a) or
enter R (d), without incurring any maintenance cost
(corresponding to Steps 3 and 6). As long as the num-
ber of objects in X (¢) — A(t) is between 0 and 7, no
maintenance is required.

5 Fraction-based Tolerance

As mentioned earlier, fraction-based tolerance is a dif-
ferent type of “non-value-based” error, and it can be
used for both classes of entity-based queries: non-rank-
based and rank-based. In Section 5.1, we study a pro-
tocol for exploiting fraction-based tolerance for non-
rank-based queries. We further extend this protocol
to support rank-based queries in Section 5.2.

5.1 Non-rank-based Queries

We now present a protocol for exploiting fraction-
based tolerance for range queries, which are non-rank-



based queries. Recall that a range query is character-
ized by a close interval [I, u], where streams with values
within this interval are to be reported.

To get more insight into our tolerance protocol,
consider a simpler protocol where no tolerance is al-
lowed. This protocol assigns the constraint [I,u] to
each stream filter at the beginning. Any violation in a
filter has to be reported to the server, so that query an-
swers can be updated correspondingly. Correctness is
guaranteed, since essentially each filter evaluates the
range query on the stream it is responsible for. We
call this protocol zero-tolerance protocol for non-rank-
based query (ZT-NRP).

ZT-NRP reduces the amount of communication
since a filter will only emit items when its associated
constraint is violated. Consequently, the workload im-
posed on the processor is reduced. However, this pro-
tocol does not exploit any fraction-based tolerance at
all — it may generate more updates than necessary.
The protocol we describe next utilizes the maximum
false positives and false negatives allowed to achieve a
better performance.

5.1.1 Exploiting Fraction-based Tolerance

Figure 7 shows the fraction-based tolerance protocol for
non-rank-based queries (FT-NRP). Similar to RTP,
it has two phases: initialization and maintenance.
Initialization Phase Fraction-based tolerance re-
quires that no more than a fraction et of the query
answer (i.e., A(t)) should be wrong at any time ¢t. To
use this tolerance, the server first captures the states
of the streams (Steps 1-3). Out of the |A(to)| an-
swers that satisfy the range query, we assign the con-
straint [—oo, 00] to E™* (t) filters, and [I,u] to the
remaining |A(to)| — E™* ™ (to) filters (Step 4), where
E™aet(t4) is given by |A(to)|- €t (Equation 3). Filters
assigned with [—oo, o] (we call them false positive fil-
ters), send no updates to the server. If no stream in
A(t) replies, we can guarantee that F1(t) < et i.e.,
the false positive requirement is met. Since E™**% (¢)
streams are “shut down”, the amount of communica-
tion can be reduced significantly. In a sensor network,
this also implies savings in battery power since the sen-
sors that are “shut down” are essentially running in the
sleep mode. We use n™, initially equal to E™%*F (g),
to denote the current number of false positive filters.
A similar idea can be used to exploit false negative
tolerance. Observe that |Y (to)| = |S — A(to)]| streams
do not satisfy Q. Among these streams, we select
E™**=(tg) of them to install the constraint [—o0, c0]
(called false negative filters), and for the remaining
[Y (to)] — E™** (to) streams, a filter bound of [I,u] is
deployed (Step 5). In essence, the false negative filters
“turn off” E™**(ty) streams. When no data are re-
ceived from any stream in Y (¢(), we guarantee that at
any time ¢, F~(t) < e~. Using Equations 2,3 and 4, we

can derive E™%~ (tg) to be |A(t0)|w.

p— We use

n~, initially equal to E™**~ (¢y), to denote the current
number of false negative filters.

After the Initialization Phase is complete, we can
guarantee that correctness requirement 1 for fraction-
based tolerance is satisfied. That is, if no update is
received at time ¢, F7(¢t) < et and F~(t) <e™.

Maintenance Phase Similar to RTP, updates
can affect the correctness of FT-NRP. Assume the
server receives an update from stream S; at time t,.
The new value reported is V;. Immediately prior to
receiving S;, according to correctness criterion 1, the
following must hold (from Equations 3 and 4 respec-
tively):

Emaer(tu) N

FHt) < A <e (11)

3 Emar—(¢, B
F (t) S |A(tu)| _ En(ma:c)Jr(tu) S € (12)

Now assume t is the current time instant where t > ¢,,.
Depending on the nature of the update, there are two
cases to consider.

Case 1: V; € [l,u]. This means that S; which was
not in the result earlier is now in the result. We han-
dle this update by inserting S; to A(t,) (Step 1(I)).
As E™*(t) remains unchanged, and |A(t)| becomes

|A(ty)] + 1, FT(t) is at most %m (Equation 3),
and is thus less than e (Equation 11). Since E™**~ (t)
is also unchanged, we can establish with similar argu-
ments that Equation 12 also holds. Thus correctness
2 is guaranteed.

An important observation is that the values of both
F*(t) and F~(t) drop. This is because the answer
quality is improved due to more streams satisfying the
query answer. We exploit this fact by using a variable
called count to keep track of the number of new items
inserted to the answer under this scenario (Step 1(I1)).
Let t. denote the time when count is zero. Then,
|A(t)] = |A(t.)] + count for count> 0. Intuitively,
t. is the time when FT and F~ attain their maxi-
mum values without violating the correctness require-
ments. At any time ¢, if count> 0, F*(¢) < FT(t.)
and F~(t) < F~(t.), a result that we will use next.
Case 2: V; & [l,u]. This means S; satisfied Q) imme-
diately after [/, u] was installed to its filter, but it is no
longer the answer to @ at time t,. Step 2(I) removes
this “bad answer” from A(t,). We also decrement
count by one (Step 2(IT)). As explained in case 1, as
long as count is greater than zero, F*(t) < F*({.) and
F=(t) < F~(t.). Since FT(t.) < et and F~(t.) <€,
the correctness requirements are met.

When count becomes 0, correctness is no longer
guaranteed: |A(t,)|, becomes |A(t.)] — 1, and thus
F*(t,) and F~(t,) can be respectively larger than
F*(t.) and F~(t.). Intuitively, there are more items
removed from the answer due to Case 2 than the num-
ber of items inserted to the answer due to Case 1. To



ensure that F'*(t,) and F~(¢,) are restored to a “nor-
mal level”, Fix Error is executed in Step 2(III).

Fix_Error improves the degree of answer correct-
ness by consulting streams associated with false pos-
itive and false negative filters to update the answer,
S0 as to “compensate” the loss of correctness due to
the removal of an answer in Step 2(I). We now discuss
how Fix Error works, assuming that both false posi-
tive and false negative filters are available (i.e., n* and
n— are greater than zero).

When nt is greater than 0, a stream S, with a false
positive filter is requested to send its value (Step 1(I)).
There are two cases, depending on whether V, is inside
[Z,u].

1. Vy € [l,u]. Sy is now a true positive. Since S,
was assigned a false positive filter, V}, has already
been in A(t,), and so |A(t,)| remains unchanged
(i.e., |A(te)] — 1). We then install the [I,u] con-
straint for S, to make sure V,, € [l,u] when no
update is received from (Step (II)(i)). In doing so,
S, is no longer a false positive, and so E™***(t,,)
is decremented. Thus F(t,) is now less than

%, which is smaller than F7T(t.), and

the false positive constraint is met. The false neg-
ative tolerance constraint is also satisfied, since

B Emamf(tu)
Fo(k) < iy — e Band)
- Emaw—(tc)
(1A(t)] = 1) — (Bmart(t) — 1)

< €

Thus both false positive and false negative con-
straints are satisfied.

2. Vy & [l,u]. S, is now a true negative. Since S,
no longer satisfies @}, We remove S, from A(t,)
(Step 1(II)), and |A(t,)| becomes |A(t.)] — 2.
Since ET(t,) is also decremented, F*(t,) is now

%. Since we have assumed

Emm (t)—1

[A(te)]—2

less than

that €T cannot be larger than 0.5,

max+
cannot be larger than E‘Tt;’fc% and is therefore

less than €.

However,  F™**~(¢,) is now at most

B (¢,
JA(t)[-2) - (Eme=F(t)—-1)°
than e~. To remedy this, we pick one stream
associated with a false negative filter (Step
2(I)). If V, € [l,u], then we include S, into
the answer (Step 2(II)). We also install [I,u] to
the filter of S, (Step 2 (III)). Now |A(t,)| is
increased to |A(t.)] — 1, and F~(¢,) is at most
B ()1
JAt)-D—(Eme T (te)—1)?

(
e~ . Further, F'*(¢,) is now at most

which can be more

which is smaller than

Emam+(tc)71
[A(te)| -1 >

which is still less than e*. Thus correctness 2 is
met.

On the other hand, if V, & [l,u], |A(t,)| and
E™a®*(¢,) remain unchanged and thus the false
positive constraint is still satisfied. Since E~(t,)
is at most E™**~(t.) — 1, F~(t,) is at most
E™MaT= (4 )1
(A(t)[-2)—Em*F (i)’
cause ¢~ < 0.5. Hence correctness 2 is also met.

which is smaller than ¢~ be-

We skip the correctness proofs for special cases: (1)
nt =0An" >0and (2) nt >0An" = 0. We
also remark that when both n™ and n~ become zero,
it implies both the false positive and negative filters
are replaced by the [l,u] constraint. Hence the false
positive and negative constraints are met, and this pro-
tocol reduces to ZT-NRP. It may then be necessary
to re-execute the Initialization Phase in order to have
the tolerance exploited.

Communication Costs. The Initialization Phase
requires O(n) messages, while the maintenance Phase
generates at most five messages when both false posi-
tive and false negative filters have to be consulted by
Fix Error. However, since no messages are required
as long as count is zero, the actual maintainence cost
is low as verified by our experiments.

5.2 Rank-based queries

We now present the fraction-based tolerance protocol
for k-NN query, a typical rank-based query. Our solu-
tion is based on the work in Section 5.1. In particular,
we transform a k-NN query to a range query, and then
adopt the fraction-based protocol designed for range
queries. Let us see how this is done in detail.

5.2.1 Transforming k-NN Query to Range
Query

A k-NN query can be viewed as a range query: if we
know the bound R that encloses the k-th nearest neigh-
bor of the query point ¢, then any objects with values
located within R will be an answer to the k-NN query.

We can use this idea to design a filter scheme for k-
NN query (with zero-tolerance). The protocol, called
ZT-RP, is illustrated in Figure 8. The Initialization
Phase computes R which tightly encloses k nearest
neighbor, and then distributes R to all the stream
filters. Then if no responses are received from the
streams, the server is assured that all k objects are
within R, and they are still the k nearest neighbors
of q. Since no error is allowed, if any object enters
or leaves R, we have to recompute R so that R en-
closes the k nearest objects. The Maintenance Phase
in Figure 8 illustrates how R is maintained.

The main drawback of this simple protocol is that
it is very sensitive to updates when an object’s value
crosses R. Each time R is crossed, it has to be recom-
puted, and its new value is announced to every stream!



Next, we describe how this situation can be improved
by exploiting fraction-based tolerance.

5.2.2 Using FT-NRP for k-NN Query

In the last section, we discussed how to model a k-NN
query as a range query for the purpose of constraint de-
ployment. Recall that the definition of fraction-based
tolerance is the same for k-NN query and range query.
Therefore, to develop a fraction-based tolerance pro-
tocol for a k-NN query, it seems that we can simply
transform a k-NN query to a range query, and then
directly apply the protocol developed for range query
(FT-NRP). Unfortunately, this does not work with-
out some minor changes. In particular, we may not use
the values of et and e~ specified by the k-NN query
to parametize FT-NRP directly.

To understand why, let p™ and p~ be the maximum
false positive tolerance and maximum false negative
tolerance used by FT-NRP to answer a k-NN query
(with tolerance € and €~). Let R be the smallest re-
gion that initially bounds the kth-ranked object and
thus contains k objects. Similar to the initialization
phase of FT-NRP, for objects lying in R we apply
false positive filters to k- p* streams, and R to the re-
maining k-(1—p™) filters. For streams with values out-
side R, we apply false negative filters to k- p~ streams,
and R as the constraint to the remaining filters. Let
us now examine how to set p™ and p~ appropriately.

Meeting false positive requirement. Suppose
R encloses the k nearest objects of q. Let S; be part
of the answer set, and V{ € R is the value of S; last
reported to the server. Hence S7 is one of the k near-
est neighbors. If S; is associated with a false positive
filter, the new value of Sy, i.e., V7, may not be located
within R. Consider the situation in Figure 9. Sup-
pose there exists a stream S5 such that V3 < V5. Then
S1 is no longer a correct answer, since Sz now ranks
higher and pushes the rank of S; to k 4+ 1. Therefore
S1 becomes a false positive. Since we can have at most
|A(t)|-pT streams assigned with false positive filters, in
the worst case |A(t)| - pT false positives are generated
in this manner.

Another kind of false positive is inflicted by false
negative filters. Suppose Sy, being ranked the k-th and
lies within R, is part of the answer set. Also assume
that S5 is associated with a false negative filter, whose
last reported value, V4, does not lie within R. As
illustrated in Figure 9, when the new value of Ss, i.e.,
V3, is within R, the rank of S3 becomes k or higher.
During this process, the rank of Sy is dropped to k+1
and hence S; becomes a false positive. Since we can
assign false negative filters to at most E™**~(t) =
k- p~ streams (c.f. Equations 4 and 5), in the worst
case k - p~ false positives are created in this way.

Combining these two types of false positives, the
total number of false positives is |A(t)| - pT + &k - p~,
where [A(t)| is less than %+ (Equation 7). Also,

the user cannot tolerate more than |A(t)| - et false
positives, which has a minimum value of k- (1—€~ )€™
(Equation 9). Therefore,

AW -p* +k-pm <A@t

ot
et —1

S < +(1—e)et (13)

Equation 13 dictates the possible values of p* and p~
for satisfying the false positive requirement.
Meeting false negative requirement. We have
two types of false negatives for a kNN query. Again
assume R encloses the k nearest objects. As shown
in Figure 9, the first type of false negatives is caused
by streams like S, whose last reported value Vi is
not within R, and is assigned with false negative fil-
ters. Later its new value V3 is within R and its rank
is raised to k or higher. Unfortunately the server does
not know about this, and so S3 becomes a false nega-
tive. The number of false negatives generated this way
is at most kp~, the maximum number of false nega-
tive filters. The second type is caused by streams with
false positive filters like S7. Again S; was among the
top-k objects since its last reported value Vi is within
R. However its new value V; is less than V5, so S
ranks k or higher. The server does not know about
this, since 57 does not update its position. The max-
imum number of false negatives generated this way is
thus |A(t)|- pT, the maximum number of false positive
filters assigned. Since the maximum number of false
negatives for k-NN query is given by k- €™, the sum of
the two kinds of false negatives, kp~ and |A(t)] - pT,
must be less than < ke™. Equation 7 simplifies this
to:
_ pt _
p < 1 +e (14)

Guaranteeing correctness. To make sure both
false positives and false negatives are met, we combine
Equations 13 and 14 so that the following is achieved:

+
p- < +p . +min((1 — e )et,e7) (15)
et —

Essentially, when the user-defined constraints for rank-
based query (i.e., €™ and €~) are implemented using
the non-rank-based error protocol, the values of p*
and p~ so set must satisfy Equation 15. To maximize
the degree of tolerance exploited, the values of p™ and
p~ should be maximized according to the following
equation:

_ pt

T 1

P +min((1 — e )et,e7) (16)

In our experiments, the values of p™ and p~ are derived
from Equation 16.



5.2.3 Fraction-based Tolerant k-NN Query

Once the values of p* and p~ are rightly set, we can
extend FT-NRP to exploit the fraction-based toler-
ance of k-NN queries. The corresponding protocol,
called FT-RP, differs from FT-NRP in two aspects:

1. Unlike a range query with a fixed bound [l, u], the
“range” of k-NN query is defined by R — the tight-
est bound that contains the k-th nearest neighbor.
Thus, FT-RP first finds R before running the ini-
tialization phase of FT-INRP. Notice that the fil-
ter constraint R so calculated will not be changed
even when R contains more or less than k objects
— except when the conditions described next are
met. Essentially, we use R only as an estimate of
the k nearest neighbors.

2. An additional requirement for the answer A(t) of
rank-based query is that k(1 —e™) < |A(t)] <
2+ (Equations 7 and 9). Initially [A(t)] is equal
to k, but as time goes by, the number of items in
A(t) will be increased (decreased) when an object
enters (exits) R. Intuitively, when |A(¢)| exceeds
%, there are too many objects in R — that is,
R is “too loose”. Similarly, when |A(t)| drops
below k(1 — €7), there are not enough objects in
R, implying that R is “too tight”. In either case,
R is no longer an appropriate filter for the k-NN
query. Thus similar to the maintenance phase of
ZT-RP, a new bound has to be found to enclose
the k-nearest neighbors.

The advantage of FT-RP over ZT-RP is easily ex-
plained — it does not have to recompute and broadcast
R each time an object enters or leaves R, but only
when A(t) drops below k(1 — e”) or exceeds 1.
This is because FT-RP exploits tolerance, which is

not allowed by ZT-RP.

6 Experimental Results

We have implemented the non-value-based tolerance
protocols. In this section we present our experimental
results.

We use CSIM 18 [25] and Tecl scripting tools [3] to
develop our simulation programs. We model the envi-
ronment in Figure 3, where we simulate data streams
as well as a continuous query being executed in the
system for a certain period of time. We study the
performance of the tolerance-based protocols over var-
ious degrees of tolerance, and compare with (1) the
case when no filter is used at all, and (2) filter pro-
tocols with no tolerance allowed (i.e., ZT-NRP and
ZT-RP). The performance metric for measuring com-
munication costs is the number of maintenance mes-
sages required during the lifetime of the query'. In the

IWhen no filter is used, a “maintenance message” is essen-
tially an update message from a stream source

rest of this section, we will present two sets of results,
based on real and synthetic data.

6.1 TCP Data

In the first set of experiments, we test the efficiency
of our protocols based on TCP traces [16]. The ex-
periment models the scenario where an Internet host
monitors network traffic from 800 ISPs. We assume
a software is installed at each ISP that implements
our filter bound protocols. The dataset contains 30
days of wide-area traces of TCP connections, captur-
ing 606,497 connections. We model the connections
whose IP addresses share the same 16-bit prefix as
data from the same ISP. We assume 800 data streams,
and use the “number of bytes sent” field in each trace
as a data value. .

Figure 10 shows the result of varying the rank-based
tolerance r for some values of k. We observe that for
different values of k, the performance improves as r
increases. This indicates RTP is able to exploit toler-
ance effectively. Also notice that at k£ = 30 and r = 0,
the performance is worse than when no filter is used
at all. This is because at » = 0, the bound R needs
to be recomputed frequently and many maintenance
messages are generated as a result.

Next, we examine how well FT-NRP exploits
fraction-based tolerance for range queries. In Fig-
ure 11, we observe that the number of messages de-
crease as €' and ¢~ increase. We do not show the
result when no filter is used because it has a very high
cost. We also examine the scalability of FT-NRP in
Figure 12, where we can see that the protocol in gen-
eral scales well. We also observe that for a larger num-
ber of streams, the performance gains more by using
higher tolerance values.

6.2 Synthetic Data

In the second set of results, we verify the effectiveness
of protocols by using a synthetic data model, which
gives us better control over data behavior. We assume
5000 data streams in this model, and data values are
initially uniformly distributed in the range [0,1000].
The time between each data item is generated follows
an exponential distribution with a mean of 20 time
units. When a new data value is generated, its differ-
ence from the previous value follows a normal distri-
bution with a mean of 0 and standard deviation (o) of
20.

We first examine the performance of FT-NRP for
a range query with [ = 400 and v = 600, over a wide
range of €™ and e~ values. As shown in Figure 13,
FT-NRP is able to exploit tolerance effectively.

Now let us look at Figure 14 that illustrates the
effect of data fluctuation (i.e., the amount of differ-
ence between two adjacent values in a data stream) on
FT-NRP. As ¢ increases, FT-NRP generates more
messages. When a data value changes abruptly, it has



a higher chance of violating the filter bound constraint
and generate an update.

In another experiment, we explore how the perfor-
mance of FT-NRP is affected by the assignment of
false positive and false negative filters during Steps 4
and 5 of the initialization phase. We compare two
heuristics: (1) random — streams are randomly se-
lected to assign [—oo, o0] and [00, 00| constraints, and
(2) boundary-nearest — only streams whose values are
closest to the user-defined range [I, u] are assigned the
[—00, 00] and [00, 00| constraints. Figure 15 shows the
result. The boundary-nearest heuristic outperforms
random because streams with values close to [, u] are
likely to cross the boundary of [I, u], and so by assign-
ing false positive/negative filters to them, the num-
ber of updates generated can be reduced. As the
amount of tolerance increases, the difference is more
pronounced, because more false positive/negative fil-
ters are available, and they are more appropriately
placed by boundary-nearest heuristic than by random
heuristic.

The final result presented is the performance of ZT-
RP and FT-RP over different values of k. As shown
in Figure 16, for k equals to 60 or 100, the number
of messages drops significantly with a slight increase
in tolerance. This is because the bound R for enclos-
ing k nearest objects is not “tight”, and objects can
cross R without requiring R to be recomputed and as-
signed as a new constraint to the streams. With zero
tolerance, however, R virtually changes everytime an
object crosses it. We also note that the protocol does
not perform well at k£ of 20 and tolerance of 0.1. With
a small values of k£ and tolerance, the number of false
positive and negative filters allocated is very limited.
This little benefit of tolerance cannot overcome the
maintenance overhead. We remark that FT-RP is
not suitable for small values of k£ and tolerance.

7 Conclusions

The performance of data stream management systems
can often be improved by allowing some tolerance. In
this paper we studied how non-value tolerance can be
exploited for entity-based queries. We presented sim-
ple protocols to incorporate rank-based and fraction-
based tolerance into both rank-based and non-rank-
based queries. Through testing with real and simula-
tion data, we showed that our protocols are effective
in reducing communication costs. The concepts of our
protocols can be extended to multiple dimensions.

There are a number of interesting avenues for fu-
ture work. One issue is to see how other entity-based
queries, such as skyline and join queries, can be han-
dled in adaptive filters. It is worthy to examine how
existing data stream algorithms can be modified to
support non-value tolerance. We also plan to extend
these protocols for multiple queries.
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Initialization (at time to)

1. request all streams to send their values
2. A(to) — {Sil’/‘ank(5¢7to) S k}

3. X(to) — {Si|rank(Si,to) < EZ}

4. execute Deploy_bound (o)

Maintenance
Upon receiving a new update V; from stream S; at time ¢ ,
Case 1: S; € X(t) — A(t) /* V; “leaves” R */

1. remove S; from X ()

Case 2: S; € A(t) /* Vi
2. remove S; from A(t )
3. if | X(t)| > k then

(Dinsert to A(t) an object in X (¢) — A(t) with highest rank
4. else /* R only contains |A(t)| = k — 1 objects */
(I)forjzk—i—r—i—l to n do
(i) Let d' be |V; —q| s.t. rank(S;,t0) = j
W R <l o]
({)U () — U{SiIVi e R" A S1 € A(t)}
(iv )1f |U( )| >+ 2 then
2. A() — A(t) U {S1|S1 € U(H) A Vi — g| = ming,cuo Vi — al}
b X (£) — A(t) U {Si]S1 € U(£) A Vi — gl € min,s1,5,c00) [Vi — d
c.execute Deploy_bound(t)
d.quit
5. execute Initialization

Vi “leaves”R */

Case 3: S; € S—X(t) /*
6. if | X (t)| < €, then
(I) insert S; to X (t)
7. else /* Evaluate new R */
(I) VS: € X(t), request for current values S;
(1) A(t) — {Silrank(Si, ) < k}
()X (2) — {Silrank(S:, 1) < &1}
(IV) execute Deploy_bound(t)

V; “enters” R */

Deploy_bound(t)
1. Sz < S; where rank(S;,t
2. Sy « S; where rank(S;,t) =
3. d«— | Ve — ‘Z“Hvy q|

4. VS; € S, deploy constraint [¢ — d, ¢ + d]

Figure 5: Maintaining rank-based-tolerance at the server
by RTP.



‘ LEGEND: . obj € At) Q obj € X(t)-At) O obj € S-X(t)
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Figure 6: Illustrating the rank-based protocol for a
k-NN query with k =2 and r = 2.

Initialization (at time o)
Let count = 0, nt = |A(to)|e", n™ = |A(to)|%;+)
1. request all streams to send their values
2. A(to) < {S:i|Vi € [I,u] at time to}
3. Y(to) « S — A(to)
4. For streams in A(to),
(I) install [—o0, 00] to n' filters
(I1) install [I,u] to remaining |A(to)| — n™ filters
5. For streams in Y (o)
(I) install [co, 00| to n~ filters
(I1) install [I, u] to remaining |Y (to)| — n~ filters

Maintenance
Upon receiving a new update, V; from stream S;,
1. if V; € [l,u] then
(I) insert S; to A(t)
(II)count <« count + 1
2. else
(I) remove S; from A
(IT) if count > 0 then count « count —1
(IIT)else execute Fix _Error

Fix Error
1. if n* > 0 then
(I) request value from S, with [—o0, co] constraint
(I1) if V,, € [I, u] then
(i) install [I, u] for the filter of S,
(i)t —nt -1
(iii)quit
(III)remove S, from A(t)
2. if n= > 0 then
(I) request value from S, with [0o, 00] constraint
(II) if V. € [l,u] then insert S. to A(t)
(IIT)install [, u] for the filter of S.
(IV) n= «—n~ -1

Figure 7: Maintaining fraction-based tolerance of range
query at the server by FT-NRP.
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Figure 11: Effect of €™ and ¢~ on FT-NRP.
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Figure 12: Scalability of FT-NRP.
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Figure 13: Effect of €™ and ¢~ on FT-NRP.
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Figure 14: Effect of data fluctuation on FT-NRP.
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Figure 15: Selection heuristics for FT-NRP.
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