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Abstract—Data centers are well known to consume a large amount of energy. As databases are one of the major applications
in a data center, building energy-aware database systems has become an active research topic recently. The quantification of
the energy cost of database systems is an important task in design. In this paper, we report our recent efforts on this issue,
with a focus on the energy cost estimation of query plans during query optimization. We start from building a series of physical
models for energy estimation of individual relational operators based on their resource consumption patterns. As the execution of
a query plan is a combination of multiple relational operators, we use the physical models as a basis for a comprehensive energy
model for the entire query. To address the challenge of maintaining accuracy under system and workload dynamics, we develop
an online scheme that dynamically adjusts model parameters based on statistical signal modeling. Our models are implemented
in a real database management system and evaluated on a physical test bed. The results show that our solution achieves a high
accuracy (worst-case error 13.7%) despite noises. Our models also help identify query plans with significantly higher energy
efficiency.
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1 INTRODUCTION

Data centers (DCs) are known to be the “SUVs of the tech
world” for their enormous energy consumption. Triggered
by this phenomenon, recently there are a lot of efforts
on energy management in data centers [1], [2], [3], [4],
[5], [6], [7], [8]. However, by focusing on the operating
system (OS) level, such work cannot be directly applied
to application-level energy management, due to the lack
of sufficient knowledge of the application behavior. In this
paper, we study energy management mechanisms in a very
important type of DC application – database management
systems (DBMSs). The energy reduction in DBMSs are
of high economical significance for DCs. In a typical DC,
database servers consume the majority of the computing
resources, making DBMS the largest application consumer
of energy. For example, [9] reported a power consumption
ratio of 11 : 9.9 for the back-end DBMS services to the
front-end web services.

Energy management has become an active research topic
in the database research community. The main theme in
such endeavors is to design DBMSs with energy con-
sumption as a first-class performance goal, as advocated
by the Claremont report [10]. Current work in energy-
aware DBMS has focused on energy-aware query opti-
mization that considers both processing time and energy
consumption ([11], [12]), and power management policies
in distributed databases ([4], [13]). Unlike other studiesthat
focus on the implementation of energy-aware DBMS, this
paper addresses on a key issue that has so far received little
attention – modeling the energy cost of database systems.
In particular, we report the results of our study inenergy
cost estimation in DBMS during query optimization, with

a focus on the quantification of the energy consumption of
query plans.

Energy cost in database operations carries high technical
significance in energy-aware database design. In database
systems, the query optimizer evaluates different computa-
tional paths (namedplans, as shown in Figure 1) by explic-
itly labeling their resource consumption. The knowledge
of the energy consumption of query plans is indispensable
in identifying those with a low energy profile [14]. For
example, recent studies [11], [12] have shown that in a
typical database, there exist many query plans that consume
much less energy with little performance degradation. Thus,
energy conservation can be achieved by selecting those
query plans. Note that information needed for making the
decision is hidden inside the database system, thus cannot
be captured at the OS or the hardware level. To harness the
energy saving opportunities provided by energy-efficient
plans, a practical approach is to provide accurate energy
cost estimation during the query optimization process.

Energy cost estimation in the DBMS serves two pur-
poses. First, like the traditional cost estimation mechanism
in the DBMS that helps select faster query plans, energy
cost estimation enables selection of query plans with lower
energy cost [12]. Second, knowing the accurate energy cost
of each selected query plan helps quantify the energy cost
of the entire workload. Therefore, we believe our work is
important for query optimization design in an energy-aware
DBMS, and it also provides valuable insights for other
energy management policies, such as energy consolidation
and projection in DCs [3].

Specifically, we design and evaluate a two-level frame-
work to fulfill the above design goals. In a DBMS, each
query plan is a unique path to execute a series of re-
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Fig. 1. The query plan of Q5 from the TPC-H bench-
mark [15]

lational operators (Figure 1) and maintenance operations
(e.g., update/delete), each of which encompasses a set of
basic operations (e.g., processing a tuple in CPU). We first
introduce our study on the energy consumption of each
basic operation from the energy profile of hardware in a
typical database server. Based on which, we build a static
model that describes the energy consumption of relational
operators and maintenance operations according to their
estimated resource demand (i.e., the CPU cycles). Those re-
source data are provided by the traditional DBMS optimizer
and their energy cost coefficients are derived from a training
process. Such models show a high accuracy in predicting
energy consumption in a static environment. However, the
energy cost coefficients (e.g., number of joules needed to
process an indexed tuple) in the model depend on the
system dynamic (e.g., CPU utilization) and the workload
statistic (e.g., table cardinality). To further improve the
static model by making it adaptable, we propose an online
scheme that uses a Recursive Least Square (RLS) estimator
to periodically update the parameters in the static models.

The problem we tackle is to build a comprehensive
model that can predict the energy cost of query plans in
a DBMS. To be more specific, given one query, our goal
is to accurately quantify the active energy consumption if
that plan is executed. The desired energy cost model should
possess the following features:

- Accuracy: the model provides accurate prediction of
energy consumption;

- Robustness: the model maintains high accuracy regard-
less of variations from system states and workload
characteristics;

- Fast Response: the computational overhead is accept-
able;

- Non-disruptive: the modeling process does not inter-
fere with the normal operations of the DBMS.

Among the four, accuracy and robustnessare the key
requirements, and thus the main metrics for evaluating our
models in this paper.

1.1 Contributions and Paper Organization

Previous studies on database energy management have
focused on either high-level ideas [11] or energy profiling

of hardware used in data processing [16]. In this paper,
we introduce a systematic solution with all aforementioned
properties. The main technical contributions of this paper
are:

- We propose a comprehensive mechanism to estimate
the energy cost of query processing at the DBMS
level and develop a general energy model based on
an extensive system identification study.

- We develop a series of physical models based on
the general model for evaluating the energy cost of
individual relational operators in a static environment.

- We design an online scheme to automatically adjust
parameters of the static model in response to the
system dynamics and the workload variations;

- We implement our model in the kernel of a real
DBMS, and evaluate it on a physical testbed with a
comprehensive set of workloads generated from TPC
benchmarks and scientific database traces.

The remainder of this paper is organized as follows: we
first compare our work with other projects in Section 2. We
then provide our system identification studies in Section
3. We describe the technical details of our static energy
estimation models in Section 4, evaluate those models,
and discuss their limitations in Section 5. We present the
online scheme to improve the applicability of the model
and evaluate it with many experiments in Section 6. We
study the impact of the energy efficient query optimization
in Section 7. Finally, we conclude the paper in Section 8.

2 RELATED WORK

Energy modeling in operating systems:there are many
proposals that treat energy as a first class resource in
the operating system, such as [17], [18], [19]. The first
formal analytic energy model in the operating system is
proposed by Heathet al. [20]. Following the similar idea,
many other articles reported various models towards energy
optimization, such as [21], [22], [23], [24], [25]. Comparing
with our work, all such solutions focus on the operating
system level. As a result, none of the models can be directly
applied to DBMSs, due to the lack of knowledge of the
DBMS resource demand and the data processing patterns.

Energy management in database systems:work in energy-
efficient database systems can be traced back to the early
1990’s. In [26], query optimization with energy as one of
the performance criterion was proposed within the context
of mobile databases. In this paper, we are interested in the
energy consumption of servers. Motivated by the increasing
energy-related cost of database servers, the database com-
munity has only recently identified building energy-efficient
database systems as an worthy direction of exploration
[10]. Early papers [27], [28] advocated query optimization
with energy as the target, which implicitly argue for a
mechanism for estimating the energy cost of a query plan.
Supported by initial experimental results, [14] presented
two specific techniques to save energy in databases: de-
creasing CPU frequency and throttling user queries. Our
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previous work [12] revealed the existence of many energy-
efficient query plans that carry little/acceptable performance
penalty. By showing some plans of high energy efficiency
coincides with performance, a subsequent report [29] stirred
up discussions on whether energy-aware query optimization
is a worthwhile approach towards green databases. Our
opinion is that, when the search space is sufficiently large
and energy/performance estimations are accurate enough,
we would find energy-efficient plans that could most likely
be ignored by existing query optimizers. This standpoint
is supported by more recent evidence provided by [11]
and [16], and verified by our experimental results shown
in Section 6.2. Other related research in green databases
diverges to several directions. The Transaction Performance
Council (TPC) announced TPC-Energy [13] in 2007. Poess
and Nambiar [9], [30], [31] reported extensive results on
power consumption patterns in typical database servers.

Modeling power/energy in databases:it is worth notic-
ing that power/energy modeling has been addressed in
some of the work mentioned above. As a position paper,
[11] proposed a general formula for quantifying power
cost of a query plan. Another work [16] delivered more
comprehensive results in modeling the peak power of
database operations. As the peak power and the energy
are very different concepts, the modeling processes (and
apparently the models) are also different. A shorter version
of this paper [32] focuses on building physical models on
energy consumption and significantly improves the static
models from [12]. Aiming at a robust solution with high
accuracy in realistic relational database environment, we
use a dynamic modeling approach to continuously update
key parameters of our model so that it adapts quickly
to system dynamics and workload variations. Compared
to [32], this paper provides a broader discussion on the
energy profile of important relational operations and many
database maintenance operations. We also present our study
on the energy efficiency of popular join algorithms based
on our understanding of their energy consumption patterns.
Furthermore, we highlight our online solution with a study
on how accurate energy estimation helps save more energy
by altering query plan selection, and share insights on query
optimization towards low energy cost.

Other related work:there are numerous reports on dynamic
power management (DPM) at the operating system level,
and many DPM techniques are summarized in the survey
[3]. Cost modeling of relational operators is a well-studied
problem in the database field. Work related to this topic
can be traced back to the late 1970’s. Initially, Astrahan
and co-workers presented some critical ideas implemented
in System R [33]. Christodoulakis [34] summarized the
early work and well-accepted assumptions for query cost
estimation. In [35], the authors extend the work to a
distributed environment. Standing on their shoulders, we
build up our physical models based on similar assumptions
and techniques. However, as we attempt to model a different
cost, variants and constraints are no longer the same.

3 OVERVIEW OF MODELING PROCESS

In a traditional DBMS [35], query execution cost is treated
as a linear combination of three components: CPU cost,
I/O cost, and communication cost. Such costs are normally
measured as the product of the number of basic operations
in the query plan and the resource consumption of each ba-
sic operation. The operations involved are: number of tuples
(Ntuples) to be processed in the CPU, number of pages to
be retrieved from disks (Npages), and the number of bytes
to be transmitted via networking system (Nmsg). With the
derived energy coefficients from experiments, an intuitive
model can be built to describe the energy consumption of
the query plan. This heuristic model follows the intuition
of treating energy as a resource consumed by the internal
processing in the DBMS, and can be treated as the starting
point of our work in energy cost estimation. Specifically,
the energy cost̂E of a query plan can be expressed as

Ê = WcpuNtuples +WI/ONpages +WmsgNmsg (1)

whereWcpu, WI/O andWmsg are the energy coefficients
of one tuple processed in CPU, one page obtained from
disks and one byte processed in network, respectively. Our
work focuses on modeling energy consumption of process-
ing relational operators on a single-node database server,
therefore we do not consider the network transmission cost
in this paper. However, our model could be easily merged
with other state-of-art network power models, such as those
described in [36] and [37], to provide an overall energy
profile in a distributed database system. As a result, the
above model becomes:

Ê = WcpuNtuples +WI/ONpages (2)

As a general linear model, parameters of Equation (2) are
obtained by a series ofsystem identification studieson
energy consumption of hardware components and typical
database workloads. In the experiments, we build a set of
queries, each of which performs a single table scan or
a two-table join, to examine the energy profile of each
relational operator. At the same time, the query optimizer
is modified to only pick the algorithms we specify for
processing a relational operator. We pick the scaling factor
of TPC-H tool from 1 to 1000, which leads to 1GB to 1TB
data stored in our local drive. The system identification
study picks the number of tuples as the metric for the data
size. Each tuple represents a row in the data table. Queries
are based on the TPC-H query generator using the standard
22 query templates. We collect the runtime statistics (e.g.,
resource consumption) and energy consumption data of
most relational operators at a frequency of 1000Hz using
the multi-meter and the Linux system monitor. Based on
those data, we calculate the coefficients of the physical
models using the solvers from GAMS1. More details of
our experimental setup can be found in Section 5.1.

1. http://www.gams.com
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TABLE 1
The maximum active power consumption of major
hardware components in a R710 Dell 2U server.

Component Active Power (Watt) Citation

CPU: Xeon E5645 118.9 [29]
Memory: 32 GB 20.5 [21]
HDD: Seag. 2TB 7200RPM 0.42 [30]
Other parts 0.23 N/A
Total 140.05

3.1 Observations on Hardware

First, we start to explore the energy profile of the hardware,
as part of the system identification study. To that purpose,
we measure active power consumptions of major hardware
components (shown in Table 1) of a database server as
our testbed. The results exhibit the fact that CPU and
memory contribute the most to the active power (about
99%), as shown in Figure 2. The active power consumption
contributed by other components (e.g., hard disk) are negli-
gible. From Figure 2, we found that (1) the CPU power cost
is proportional with the workload density, which indicates
the system utilization, (2) memory rarely stays idle, thus
its energy consumption is only related to the processing
time. Meanwhile, as shown in Figure 2b, the disk power
is not affected by data access patterns – both sequential
and random access consume the same power. This is due
to an important physical feature of commonly-used storage
hardware for database servers – their leakage power cost
always dominates (solid-state drives could be different but
they are rarely used for storing large databases).

To estimate the energy cost of a query plan, we are
essentially interested in itsmarginal energy consumption
(namely active energy) if we assume the baseline power
is always the same as the leakage power.2 Note that,
without specification, the energy consumption discussed
throughout this paper is the active energy consumption. In
the experiment, we have confirmed our intuition that the
marginal energy consumption of a query plan is propor-
tional to its resource demand (i.e., number of operations
Ntuples), which captures the processing time of such query.
Thus, to estimate the energy consumption of a database
operation, we need to know the total resource demand (e.g.,
Ntuples andNpages), and the energy coefficient parameters,
which represent the processing time and the power cost of
executing such query plan, respectively.

3.2 Observations on Relational Operators

Scan: We are interested in verifying whether above models
hold in different query processing patterns. Therefore, we
extend the identification experiments on each relational op-
erator. The results of our extensive experiments using typi-
cal database workloads in Figure 3, however, show that the
CPU energy consumption doesnot always linearly increase
with the number of processing tuples (e.g., Equation (2). In
other words, power does not always increase - it levels out
beyond a certain value ofNtuples. In such experiments, we

2. This assumption will be relaxed in Section 6.
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run the same query repeatedly in databases with different
names and sizes to avoid the impact of resource sharing.
Figure 3 shows the CPU energy consumption of two types
of queries: one with the sequential scan and the other with
the indexed scan. For both queries, we can observe that, the
CPU energy consumption first exhibits a non-linear growth
with the total number of tuples accessed until reaching its
“hockey point”. After this point, the relationship between
energy cost and query size becomes linear. By looking
deeper into the low-level operations, we believe reasons for
the above observations are: when the number of processing
tuples is small (i.e., before the hockey point), the energy
consumption is dominated by the CPU usage, which has
a quadratic growth with the size of the input (shown in
Figure 2). When the system is fully utilized, the CPU
energy coefficient (i.e., power) is almost a constant, shown
as the tail of the curve in Figure 3. Meanwhile, we can also
observe that the shape and hockey point of the curve are
different in different scan methods.Therefore, we need to
consider models for each individual relational operation.
To represent the piecewise curve in Figure 3, we revised
the energy model as:

Ê =

{

WcpuN
m+1
tuples +W I/ONpages for Ntuples ≤ N

WcpuNtuples +W I/ONpages for Ntuples > N
(3)

whereN is the hockey point of the energy cost curve. Based
on the regression curve obtained from system identification
experiments,m ≈ 0.5 in our platform.
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Join: We also run similar experiments for join-based
queries, which contains only one join operation for exam-
ining different join algorithms. After eliminating the energy
cost of the scan operations (because a join always happens
after a scan of the two input tables), we find that the
energy cost of the join operation has a linear relationship
with the input of the join operation (number of tuples),
as illustrated in Figure 4. This input, provided by the
optimizer engine in the DBMS kernel, is the estimated size
of the temporary table after low-level scans. Furthermore,
different join algorithms carry different energy cost. For
example, hash joins always consume more energy than
the other two joins under the same input. Therefore, to
model the linear relationship between one join operation
and its energy cost, we are looking for the unique energy
coefficient for each join algorithms.
Update and Insert: Update and insert are representing the
major operations for write queries in the DBMS. We start
examining the energy consumption of the update operations
by changing values of records in various data tables with
different sizes. All experiments are running in a batch
mode to avoid interference from other database operations.
As highlighted in Figure 5, the energy consumption of
updating records increases monotonically with the size
of the affected table. Most of the energy consumption is
contributed by the scan to find the victim record(s) to be
updated. At the same time, due to repeatedly scanning
the same file for finding the victim records and related
operations for writing back data, the non-linear behavior
from scanning is less observable for update operations. A
linear model fits the curve withR2 > 93%. Therefore,
we model the energy cost of update operations as a linear
model.

We further investigate the behavior of update operations
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on multiple table. In a relational database, many data tables
are created with foreign keys for cross references. In this
case, if one record is updated in a table, the content of
multiple tables are updated as well for consistency. We
conduct experiments on updating records that may affect
single table and multiple tables. We conduct experiments on
updating records that affects single and multiple database
tables, as shown in Figure 6. The results show that the
energy consumption data of updating one record on one
table file with 1 million rows and on multiple table files
with a total size of 1 million rows are close. Thus, it is
safe to only use the number of affected records (rows), or
the input size, as the variable in the linear regression model.
Deletion: We consider the deletion operation in two sce-
narios: (1) removing different number of rows in one
data table. The purpose of this scenario is to check the
impact of the size of the deletion operation on the energy
consumption. (2) removing the same number of rows in
two tables with different sizes. We run this experiment
with different deletion sizes to confirm our findings in
scenario (1). The results are shown in Figure 7. The deletion
operation contains a scan operation that finds the victim
row(s), and a follow-up operation that marks the data
location as invalid and rebuilds indices of the affected
tables. According to Figure 7, the energy consumption
shows a linear increase with the number of deleted tuples.
When the query tries to remove tuples from different files,
the size of the affected table files also have an impact on
the energy consumption, as illustrated in Figure 3. Thus,
there are two parameters in the modeling, (1) the number
of affected rows and (2) the size of affected table.
Create and Delete Tables: Detecting the energy consump-
tion of create and delete operations are hard because com-
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paring with other operations, creating/deleting a database
or a table is very fast. Therefore, we conduct a script to
create a large number of databases and tables. The energy
cost is calculated as the average among all runs.

As illustrated in Figure 8(a), the energy consumption
of creating a table is almost a constant. It is because the
creating operation only affects the hardware once. The
number of columns of a table does not affect the energy
consumption of creating/deleting a data table.

The cost of the table deletion operation is not correlated
with the size of tables (Figure 8(b)). This is because
deleting a table only involves marking a certain block of
data in the physical storage as invalid. The buffer manager
of DBMS would use it for other purposes and the OS
overwrites this physical address space afterwards. In all,
the energy cost of table deletion operation is constant.

Based on the findings of the above system identification
experiments and refined model Equation (3), it is necessary
to quantify the number of operationsNtuples, the model
parameters (i.e.,Wcpu, W I/O) and the hockey pointN
for the table scan operation.W I/O is a hardware-specific
constant. The quantityNtuples is readily available from the
existing query optimizer.

4 STATIC MODELING

For each operator, the model (Equation (3)) should be
modified based on its processing behavior. In the remainder
of this section, we introduce energy models for a set of
popular relational operators. Readers interested in more
detailed work on the model calibration can refer to [38].
A summary of the operator energy models can be found in
Table 4 with all the symbols introduced in Table 2. Note
here, all the variables in Table 2 exceptwx andNx can be
obtained from the existing DBMS optimizer.

4.1 Scan

For single table relational operators (i.e.,selection and
projection), we only consider two file organizations – heap
files and indexed files, and their corresponding scanning
algorithms –sequential scanandindex-based scan, respec-
tively. In addition, we consider a special type of index
scan –bitmap scanthat is implemented in the PostgreSQL
system.Sortingis a very important step in processing many

TABLE 2
Key quantities in energy estimation models

Symbol Definition
n Number of tuples retrieved for CPU usage
p Number of pages retrieved from storage
R Sorting algorithm coefficient
x Indicator of chosen relational operator
wx CPU unit-energy cost of relational operator x
w Per-page I/O energy cost of relational operator x
Nx Hockey point of relational operator x
Cx Constant cost of relational operator x

TABLE 3
Energy cost coefficients for relational operators

Var Seq Idx Sort Bmap Nested
wx 0.0078 0.0093 0.1098 0.0193 0.153
Nx 1153 2109 N/A 2654 N/A

Merge Hash Update Remove
wx 0.165 0.189 0.0027 0.0039
Nx N/A N/A N/A N/A

TABLE 4
Energy cost functions for relational operators

Methods Cost function

Sequential Scan wsn
3

2 +wp, n ≤ Ns ;
wsn+wp,n > Ns

Index Scan win
3

2 + wp, n ≤ Ni ;
win+wp, n > Ni

Sorting wtnR

Bitmap Scan wbn
3

2 + wtnR+ wp, n ≤ Nb ;
wbn+wtnR+wp, n > Nb

Nested Loop Join wln+ wp

Sort Merge Join wmn+wtnR+ wp

Hash Join whn+wp

Update win+wup+wp

Deletion win+wrn+ wp

relational operators, thus its energy cost in DBMS is also
considered (although it is not a relational operatorper se).

Sequential Scan:Sequential scan searches each row of the
heap file (data table) and omits relevant tuples according
to the predicate. The anticipated energy cost, according to
Equation 3, iswsn

3

2+wp, before reaching the hockey point.
After that point, the estimated energy cost iswsn+wp. Note
here, we usen as the estimated number of basic operations
(i.e., resource demand) in the model throughout this paper.

Index Scan:Index scan is similar as sequential scan except
it uses a (tree-based or hash) index to reduce the number of
tuples accessed. The estimated energy cost for index scan
is win

3

2 +wp for searching then anticipated tuples fromp
pages before the hockey point. When the system is saturated
at the hockey point, estimated energy cost iswin+wp. Note
here, the unit energy cost of accessing an indexed tuplewi

is different from that of a tuple in sequential scan (ws).

Sorting: Sorting is a CPU-intensive operation. Although it
is not a relational operatorper se, the sorting operation is
often used before/after multiple joins for the optimization
purpose. For example, sorting is usually used in the sort
merge join, and in the implementation of PostgreSQL, the
sorting operation is usually executed after each join no
matter which join method is used. The sorting size and the
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specific sorting algorithm are the key factors in estimating
energy cost. The energy cost for sorting iswtnR, where
n is the number of tuples fetched to be sorted,wt is the
related energy coefficient, andR is an algorithm-specific
coefficient. For the merge sort algorithm implemented in
PostgreSQL, we setR = 29.89 based on the configuration
of maximum rows in a table and linear regression data.
The R for other sort algorithms implemented in different
database systems may be different and can be derived from
identification studies.
Bitmap Scan:Bitmap scan searches the data file using a
bitmap index, which is based on bit arrays (i.e., bitmaps)
of columns. Then, the scanned result is sorted by the bitmap
index. Thus, its energy cost iswbn

3

2 +wtnR+wp before
the hockey point andwbn+ wtnR+ wp for the rest.

4.2 Join

For any two table joins (using original or temporary tables),
the energy consumption depends on the join algorithm
used. According to Figure 4, the energy consumption grows
linearly with the joined data size after eliminating low-level
scan costs. Thus, we apply the similar linear model to the
nested loop join, the sort-merge join and the hash join.

Nested loop join:Besides the cost of aggregating then
tuples as the output from the low level scans, The energy
consumption of the nested loop join is the aggregated cost
of the CPU computation from iterating the worst-casen
outer loops and related memory accesses. According to
the identification study, the energy consumption is linearly
correlated with the number of affected tuples (in blocks).
Thus, the cost function iswln+ wp.

Sort Merge join: The sort merge join includes the sort
operation of the sub-lists as the intermediate results of the
two lower level nodes. After the sorting, the sort merge join
consumeswmn joule of energy for merging. Meanwhile,
we also consider the cost of related memory accesses. The
total cost iswmn+ wtnR+ wp.

Hash join: The cost model of the hash join is similar as
the one from the block nested loop join. The cost contains
building and probing phase during the computing. Unlike
time estimation, for energy consumption, we consider the
cost of building the hash table during the probe phase. The
hash join identifies the outer and inner table in a subsequent
probing phase, and takes hashing to both relations on the
join attribute. We generate the cost function due to the
energy cost of both phases are proportional to the input size
n and related I/O cost from accessingp pages, aswhn+wp.

Analysis of Energy Profiles of Join Algorithms. The high
cost of joins motivated us to further study the energy
profiles of different join algorithms. In particular, we aim
at an in-depth understanding of the energy consumption
patterns of such algorithms by investigating their hardware
use patterns. Hardware counters are the number of low-level
hardware activities during the execution of a computing
thread. Here we use this tool to learn the runtime hardware
behavior of different join algorithms. In our study, we
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Fig. 9. Normalized performance counters [39] from
three joins.

perform over 1000 queries using the TPC-H scheme that
have join operations in PostgreSQL (Hardware setup details
are in Section 5.1). We record the following performance
counters: number of CPU cycles (CYC), (i.e., all used
CPU cycles related to the thread), last-level cache misses
(TCM), CPU cycles stalled for memory access (SCY). We
choose those counters based on the results from [39], which
represent the energy performance of CPU and memory for
specific processes.

As shown in Figure 9, on average, the nested loop join
only uses 15%-17% more CPU cycles. This is surprising
since the nested loop join, being a quadratic algorithm,
processes much more tuple-to-tuple comparisons than the
other two algorithms. Most cycles are stalled for memory
operations. Compared with the nested loop join, the hash
join has two times more cache misses because it frequently
accesses the in-memory hash table. As a result, the hash
join has a much higher energy footprint than the nested
loop join due to the high power consumption from cache
management. On the other hand, the sort merge join seems
to be a tradeoff between these two joins. the sort merge join
uses slightly more CPU cycles but has much less lower
cache misses than the hash join. Based on results from
Figure 9, we find that the sort merge join is a safe choice to
select for saving energy (more discussions on the selection
choices are presented in Section 7).

4.3 Other Operators

Update: update operations write the new data into the
row(s) of data table after finding the target row(s). We as-
sume the procedure of finding such target always uses index
scan. Therefore, the energy consumption is the combination
of the scan cost and update cost. We use a linear model to
add those cost up, and it giveswin+ wup+ wp.
Deletion: the deletion operation is similar to the update
operation. The only difference lies on the operation after
finding the target row(s). The deletion operation marks
certain data in memory as invalid and releases the memory
space. This is an atomic operation, thus the energy con-
sumption of a deletion operation iswin+ wrp+ wp.

5 MODEL VALIDATION

5.1 Experimental Setup

Our testbed consists of a 2U Dell R710 (3.0 GHz 12-
core CPU Xeon E5645, 32GB of DDR3 memory, and 2TB
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7200RPM HDD as local storage, as shown in Table 1)
server and various workloads generated from three SDSS
workloads [40] and 22 standard TPC-H queries [15]. We
use another computer to produce database workloads and
collect experimental data including query statistics and
energy consumption. The energy consumption is measured
by power meters (i.e., a 34410A Digital multimeter [41] and
a Wattsup power meter [42]). To measure the CPU power,
we attach current clamp from the digital multimeter to the
CPU power circuit. The energy consumption of the whole
server is measured by the Wattsup power meter at a 1Hz
frequency. The data server is installed with PostgreSQL
8.3.14 under Redhat 5 (kernel 2.6.9). The DBMS’s kernel
is modified to provide runtime information such as the
estimated energy cost, the data histogram/cardinality and
the plan selection.

In the experiments, we set the multi-processing level
(MPL) to one (i.e., only one query is in processing at a time
in the DBMS). We measure the energy consumption of the
entire server and compare it with the estimated energy cost
given by the corresponding models. The following metric
namedEstimation Error Rate(EER) is used to quantify the
model accuracy:

EER =
|E − Ê|

E
(4)

whereÊ stands for the estimated energy given by our model
andE is the measured energy consumption.

5.2 Experimental Results

We use SDSS and TPC-H benchmarks to simulate queries
that retrieve different amounts of data. For example, the
SDSS benchmark simulates a large scientific database en-
vironment with long queries that touch large amount of
data while TPC-H simulates a business data warehouse
with a smaller data size. In this way, we could test the
energy estimation accuracy using real queries that require
processing of various relational operators discussed in our
static model.
SDSS Validation:we materialize a database from the
published SDSS data. Then we create three workloads:
workload I is an equality search based on a sequential table
scan; workload II performs a merge join of two tables after
range search; and workload III is a range search based on
index scan. We repeat each single-query workload for 1,000
times with different search predicates generated randomly.
We present the average energy consumption in Figure 10.
The difference between the estimated energy and measured
energy is very small in almost all cases. The average EERs
of the three experiments are3.32%, 2.66%, and 1.78%,
respectively.
TPC-H Validation:To further validate the static model, we
conduct a similar experiment for all 22 queries of the TPC-
H benchmark. Each workload is a single query extracted
from TPC-H tools. The results (Figure 11) show very high
accuracy, with an average EER of 7.97%. Query 19 has the
highest EER (12.42%) because it has three embedded sub-
queries in the selection process which leads to system errors
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that cannot be modeled in Equation 3. Next, we discuss the
limitation of the static model.

5.2.1 Limitations of the Models
The above experiments exhibit that the models work ef-
fectively in a static setup. However, our modeling task is
far from accomplished. When we change some features,
such as the MPL of the workload, the model could easily
fail. In Figure 12, we change CPU resource availability
by introducing CPU-intensive non-database jobs into the
system. It causes a serious energy underestimation (blue
dash line in Figure 12) and an average EER of 65%.
To accurately model energy cost, our model needs to be
adaptive to capture the changes of system status.

One might argue that the problem is caused only by the
model’s failure in capturing the increased baseline power of
the system, and can be easily solved by reading a runtime
baseline power as a system-level parameter. However, we
believe such a solution would still not be robust. First, com-
petition between concurrent queries has profound effects on
energy consumption. Second, when such effects are mixed
with other situations caused by system state change (such
as that in Figure 12), it is almost impossible to tell them
apart in the model. To verify our claim in the context of
this experiment, we implement and test such anad hoc
solution that measures and adds the baseline energy cost
to the results of the static models as the estimated energy.
The results (pink dash line in Figure 12) clearly show that
the ad hocmodel systematically overestimates the energy
with a large error (i.e., average EER reaches 32.67%). The
overestimation error comes from resource sharing among
concurrent queries.

5.2.2 Source of Errors
Many factors can contribute to errors in energy estimation
of a database system. According to our empirical studies,
such factors can be separated into three categories.
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the impact from non-database workloads. It underesti-
mates the energy cost over 65%

System status:runtime state change of the database system
and even the OS can cause significant errors in energy
estimation. The marginal increase of CPU power is not
linear to the CPU utilization. In other words, the parameters
(e.g., ws) should have different values under different
system status. At the same time, the resource sharing and
the initialization of preemptive non-DBMS jobs can cause
the same problem.
Resource demand estimation error:errors are inevitable
in estimating the number of tuples (e.g.,n in Table 4)
for a relational operator in the plan. In our models, such
values are provided by the existing query optimizer and are
inherently inaccurate. In fact, this is a classic problem in
query optimization as the processing time estimation also
depends on such quantities [43].
Workload dynamics:a workload generally contains queries
with different resource consumption patterns and the in-
teractions among concurrent queries are hard to predict.
Workload features may change over time and significantly
impact energy cost by changing variables such as the
concurrency level and the I/O demand.

To derive an accurate model that minimizes the above
errors, we could integrate all relevant factors into an
augmented physical model. However, this is an infeasible
solution because the model would be too large to meet
the fast response requirement and there is no guarantee
that the model can locate all the possible factors that have
impacts on energy consumption. Instead, we propose to use
an online feedback mechanism that adjusts parameters in
our static models to minimize those errors.

6 DYNAMIC MODELING

The main idea of the online estimation approach is: we keep
the previous static models, treat the database system as a
black-box and take the cost coefficients as variables that
reflect the combined effects of all possible system/workload
noise sources. We then use a feedback control mechanism
to periodically update those parameters using real-time
energy measurements. As a result, errors are compensated.

6.1 Online Scheme Design

In this section, we introduce our solution based on the
refined Recursive Least Square (RLS) estimator with a
directional forgetting factor, to handle estimation errors,
following ideas from [8], [44], [45].

In each period with lengthTs, we have the opera-
tion vector~o = {n1, n2, · · · , nm, p1, p2, · · · , pm} to hold
values of 2m basic operations (i.e., the number of tu-
ples n to-be-computed, the number of pagesp accessed
by each relational operation) form operators from each
query. Note that, meanings of all notations can be found
in Table 2 and the vector~o is provided by the query
optimizer. In general, the RLS scheme builds the coeffi-
cient vector ~w = {w1, w2, · · · , wn} to record all to-be-
updated parameters and a coefficientk =

∑n
j=1 wj . In our

case, we have~w = {ws, wi, · · · , wh, wu, wr, Ns, Ni, · · · }.
Following the routine of constructing the coefficient vec-
tor in RLS scheme, let us denotek1 =

∑

wx and
k2 =

∑

Nx. The whole coefficient vector for RLS scheme
is ~w′ = {~wx, ~Nx, k1, k2}. ~w′ is denoted as~W (j) for
period j. Similarly, we have the whole operation vector
~o′ = {n1, n2, · · · , nm, e1, e2, · · · , em, 1, 1} (the last two
numbers are used to match the operation vector with the
coefficient vector) and denote the~o′ at periodj as ~O(j).
In each period, the energy consumption of the server (E)
is measured. The model generates the baseline energy as
e(j) from the measurement of the lastj − 1 periods and
the measured energyE as follows:

e(j) =
((j − 1)e(j − 1) + E)

j
(5)

we set the initial energy consumption ase(0) = 0. The next
step is to use this estimator to find the values of energy
cost parameters. The coefficient vector~W (j) is updated as
follows:

~W (j) = ~W (j − 1) +
ǫ(j) ~OT (j)M(j − 1)

λ+ ~O(j)M(j − 1) ~OT (j)
(6)

where ǫ(j) = e(j) − ~OT (j) ~W (j) is the estimation error.
~OT (j) is the transpose of the vector~O(j), M(j − 1) is
the covariance matrix of vector~O(j), and λ ∈ [0, 1] is
the forgetting factor – a smallerλ enables the estimator to
forget the history faster. The RLS estimator adapts itself
so thatǫ(j) is minimized. When the two variables,~O and
e(j), are jointly stationary, this algorithm converges to a set
of tap-weights which, on average, are equal to the Wiener-
Hopf solution [46]. The following routines are repeated at
the beginning of every periodj:

i. Collecting data, including the operation vector~O(j)
and previous baseline energye(j − 1);

ii. Computing~W (j) based on the data and Equation (6).

The RLS estimator needs around 12 microsecond on aver-
age for computing the parameter, as measured in our ex-
periments. Compared to the average query processing time
(around 20 seconds), the computational overhead is very
small. It is also robust despite system dynamics and work-
load variations. Based on the results obtained from the static
models, the initial values for the energy parameters (~W ) in
our testbed are~W (0) = {0.00768, · · · , 1153, 2109, 2654},
as shown in Table 3.

The length ofTs implicitly affects the accuracy of the
RLS model. It is relevant to the query arrival rate. If the
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query arrival rate is high,Ts needs to be set smaller to
sample sufficient variance. Otherwise, we could make it
longer to avoid excessive computational overhead. In our
experiment, we set it to be1/9 seconds, the same sampling
frequency as the energy cost measurement. In all, we build
a two-layer estimation model called RLS model.

6.2 Experimental Setup

We use the same test environment in Section 5.1. However,
as the enhanced online model is meant to provide a high
estimation accuracy despite the workload/system noises, we
design synthetic tests that simulate such noises. In all such
experiments, we set the MPL∈ [2, 31853] (31853 is the
default max threads allowed in Linux) to create a more
realistic database runtime environment, in which multiple
queries are processed concurrently. We simulate the impact
of different error sources described in Section 5.2.2 using
the following three test cases.
Type I: to test the accuracy of RLS model under workload
and system noises, we define this type of workload with
different data sharing patterns among concurrent queries.
Specifically, we have theshare-everything(SE) andshare-
nothing (SN) workloads. The SE workload consists of
queries with small computation and a considerable amount
of data shared with other queries. The SN workload consists
of queries with long processing time and little data shared
with other queries. The results are in Figure 13.
Type II: poor estimation of data distribution (e.g., data
histograms) in database tables is the main reason of the
estimation error in resource demand [43]. We design this
test to examine the performance of our model under good
and poor resource estimation from query optimizer. This
test contains: (i)deterministic access(DA) workload that
always searches similar data from the table; and (ii)random
access(RA) workload that randomly touches all spectra of
the data domain. Upon running the DA workload, the query
optimizer can learn the data distribution quickly due to the
same data location in the table, thus has more accurate
resource estimation for the rest queries. For the RA queries,
query optimizer needs to collect much more information
using a significantly longer time, which leads to inaccurate
resource estimation. The results are in Figure 14.
Type III: in a real-world database server, other applications
running concurrently with database processes (e.g., httpd
and php processes) may affect the resource availability. We
design this test to simulate those noises in two scenarios.
The first one is to test the estimation performance while
competing for the CPU resource. We run multi-thread
Fibonacci programs (Fibo) concurrently with the Postgres
application. The second one is to change I/O bandwidth
at runtime using R/W programs (R/W). R/W is an I/O-
intensive program that frequently reads/writes large files,
thus competing with the DBMS for I/O bandwidth. The
results are in Figure 15 and 16.

We compare the performance of the RLS model with
two baselines: the static model in Section 4 and thead hoc
model mentioned in Section 5.2.1. Note that, since we have
multiple queries running in the system now, the average
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workloads with different data access patterns using the
DA/RA workload for case study Type II

EER that we used to evaluate the system’s performance is
redefined as the average of the EERs of all involved queries.

6.3 Experimental Results

Results of Type I.In such experiments, we create nine
workloads with different sizes to test three models – RLS
model,ad hocmodel and static model. As shown in Figure
13, the EERs generated by the RLS model are significantly
smaller than that of the static model for both SE and SN
workloads, with an all-round average EER of 8.89% and
6.93%, respectively. Clearly, RLS model can effectively
handle the correlation among queries. Thead hoc solu-
tion, which could partially capture the interactions among
queries, shows a better performance than the static model.
However, it is not compatible to the full-fledged RLS model
– its EER often triples (the average EERs are 33.54% and
34.78% for the two workload types). Another observation
here is, the SN workload usually causes more errors than
the SE workload in RLS model but less errors in static
model. Our explanation is that the SN workload provides
more fluctuations in the energy consumption than the SE
workload does during the execution. Thus, depending on
the value of forgetting factorλ, the parameter estimator
generates more errors than that in SE workloads. Static
model favors SN workload since it has no knowledge of
resource sharing among queries and the estimation in the
SN workload only needs to add up the energy consumption
of each individual query.

Results of Type II.As shown in Figure 14, the RLS model
beats other two models in accuracy when handling DA
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Fig. 15. Model performance in case study Type III
using the workload Fibo

workload – the average EER is 7.13% with the highest
being 11.9%. For the DA workload, queries always visit the
same part of the table therefore it leads to very high cache
hit rate. That is likely to be the reason why the estimation
errors of static model show (roughly) a linear increase
in Figure 13. For the RA workload, although the query
optimizer could produce large error in resource estimation,
our dynamic model can capture the trend of such errors and
compensate them. The EERs are lower than 10% for most
cases – the average EER is 7.26% with the highest EER
being 11.07%. For both workloads, the performance of RLS
model is good as it is designed to capture the variations
from resource estimation.

Results of Type III.In Figure 15a, the system starts with
20 Fibo processes. This number rises to 54 at the seventh
second, drops at the 24th second to 10, and increases to
40 at the 33rd second. The change of CPU utilization
leads to a high resource estimation error. By comparing
the number of running Fibo processes (black line) and the
energy estimation error (grey line), the RLS model can
capture the trend of such change and react within a short
period of time (i.e., less than three seconds). It keeps its
average performance by keeping a 90% accuracy of the
energy cost estimation.

When it comes to the I/O resource competition, the
measured energy consumption unpredictably increases with
the number of I/O-intensive applications (RW) in Figure
16. The reason is that the performance bottleneck of data
processing is still the I/O bandwidth. When this critical
resource is “stolen”, most queries are in halt to wait for I/O
resource, which results in huge wasted energy consumption.
As a result, the estimation performance is greatly affected
by those applications that compete with DBMS for the I/O
resource, such the data change at the 7th and 15th second
in Figure 16. When the system status change tends to be
steady, such as in time period of 15 – 19 and 34 – 40,
RLS model tries to get its performance back within a few
periods (a little bit longer than that in Fibo). In all, RLS
model could handle the noise from I/O bandwidth change
to some degree.

Comparison with other estimation methods.To highlight
the benefit of DBMS-level energy models, we compare
them with other energy estimation models deployed at the
OS-level.Systemis a system level energy estimation model
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[20], andSysAdapis an enhancedad hocOS-level energy
estimation model [23]. We use those models to estimate
energy consumption of workloads used in above cases.
The results are shown in Figure 17. It is not a surprise
that Systemhas the worst estimation performance since it
considers the energy cost of all hardware operations which
may not be caused by DBMS operations. Comparing with
System, SysAdapshows a relatively better performance in
those cases because it periodically corrects itself according
to the detected DBMS energy cost. However, the perfor-
mance ofSysAdapis only compatible with the performance
of the Staticmodel. The RLS model gives highly accurate
estimation in all cases. Thus, for energy cost estimation,
we need to build the estimation model inside the DBMS.

Black box validation.We also validate our model within
a closed benchmark environment generated from TPCC-
UVa3, as mentioned before. Since we cannot change data
distribution or the query composition of the workload, this
serves as a perfect tool for black box testing. As seen
in Figure 18, the average EER of our dynamic model is
around 10% in a 100 GB DBMS configuration compared
to the static model’s EER of 51.4% and the ad hoc model’s
23.62%. This clearly shows that our RLS model is robust
even under a random workload.

Effects of forgetting factorλ. Another interesting experi-
ment is the what-if analysis on the important forget factorλ
in our dynamic model. The results of this experiment could
help us fully explore the effectiveness of the model and
make recommendations on the choice value ofλ. For that
purpose, we create six workloads – two from SDSS queries

3. http://www.infor.uva.es/˜diego/tpcc-uva.html
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and four with various combinations of TPC-H queries – to
provide a diversified testing environment. As seen in Figure
19, a smaller forgetting factor has more negative effects on
the accuracy of the RLS model. For the SDSS workloads
(the first two histogram clusters in Figure 19), the results
are stable without showing much difference under different
λ. Our explanation is: most queries in SDSS are I/O-bound
due to the sheer size of the database table - this creates a
very static situation in terms of the energy consumption.
However, in a dynamic environment, if the system states
follow a historical trend (e.g., those of coarse-grained paral-
lel workload or a deterministic access workload), increasing
the value ofλ gains significant benefits in terms of model
accuracy. Thus, we suggest the maximum value (i.e., 1.0)
of λ be used in order to obtain more historical data and
higher accuracy of the model.

7 IMPACT OF ENERGY-AWARE QUERY OP-
TIMIZATION

Our previous work [12] proposed a composite query cost
model that considers both latency and energy of the query
plans. Furthermore, the model can be configured to reflect
the energy/performance tradeoff the DB Administer wishes
to adopt. Obviously, the effectiveness of such a cost model
depends on how accurately we estimate the energy/latency
of the visited plans. In this section, we explore the impact
of our energy models on query optimization towards energy
consumption. First, we provide an energy efficiency study
based on the energy consumption data of executing queries
optimized by three different query optimizers. Workloads
are processed by a PostgreSQL system with three differ-
ent flavors of query cost model in its query optimizer
– Traditional (the original PostgreSQL cost model that
only considers query latency),Power-aware(the optimizer
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with a query cost model towards maximal power efficiency
but with a simple energy estimation scheme), andRLS
model(same optimizer as in ‘Power-aware’ but the dynamic
energy estimation model proposed in this paper). To further
explore what exactly changed in the plan selection, we
first reveal the detailed processing paths from those three
optimizers for one query (Q10 from the standard TPC-
H benchmark). We then present results of other affected
queries, and finally discuss the rationale behind the results.

7.1 Enhanced Energy Savings

We first present the energy consumption results from the
three aforementioned query optimizers. In this experiment,
we run the same workload in databases with different
sizes, namely 500MB, 1GB, 10GB, and 100GB. Due to the
execution plans selected by the optimizers towards different
optimization goals, the energy consumption performance
varies, as shown in Figure 21. The energy-aware optimizer
picked query plans with the least energy consumption. The
energy savings are in the range of 14.7% to 33.3%, depend-
ing on the database size. This, on the other hand, comes
with the cost of a performance loss ranging from 8.3% to
13.5%. Without an accurate energy estimation scheme, the
Power-awareoptimizer stands in betweenTraditional and
RLSmodel for both energy consumption and performance.
Note that, in some cases, the highest performance (i.e.,
latency) query plan can also be the most power efficient
and energy efficient plan. In that case, all three optimizers
would achieve the same energy saving. However, at the
entire workload level, the accurate energy cost estimation
helps reveal the tradeoffs in the plan selection to find more
energy-efficient plans. Thus, we advocate integrating energy
cost estimation model into the current optimizer to analyze
the energy cost profile of different configurations in DBMS.

7.2 Plan Selection

To further explore the impacts of our model on query
optimization, we also study the patterns of plan selection.
For example, the chosen plans of Query 10 of the standard
TPC-H benchmark are different in different optimizers (Fig-
ure 20). In particular, when the optimization goal changes
from performance (Figure 20(a)) to power (Figure 20(b)),
we see indexed scans replaced by sequential scans, and
hash joins by sort merge and nested loop joins. With more
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Fig. 20. Three selected paths from three optimizers (i.e., (a) Traditional, (b) Power-aware [12] and (c) RLS model)
using TPC-H Q10 under the 100GB database size

TABLE 5
Change of plan selection from Traditional to the RLS model under different database sizes.

Scan Join
Size Sequential Index Bitmap Unchanged Nestedloop Sort-merge Hash Unchanged

0-4KB 48.7% 3.6% 0.2% 47.5% 34% 0% 0.1% 65.9%
4KB-100MB 39.2% 26.6% 6.7% 27.5% 16.4% 15.5% 2.1% 76%
100MB-1GB 9.4% 49.1% 12.2% 29.3% 16% 17.3% 10% 56.7%

1GB-1TB 4.7% 42.6% 17.3% 46% 8.3% 34.6% 9.2% 47.9%
1TB-10TB 0% 21.7% 3.7% 74.6% 0.3% 56.7% 14.4% 28.6%

accurate energy estimation (Figure 20(c)), the two sort
merge joins are further replaced by nested loop joins. This
confirms our findings in Section 4.2 that hash join consumes
more energy and sequential scan sometimes has better
energy efficiency than indexed scan. Similar observations
are made in many other queries.

We present all the plan change statistics in Table 5
using all 5000 queries from Section 6.3. Each number in
Table 5 represents the percentage of selected operator after
changing the optimization goal from performance (Tra-
ditional) to energy efficiency (RLS model). For example,
under database size of 1GB-1TB, when we change the
optimizer fromTraditional to RLSmodel, the same algo-
rithm was picked for 47.9% of the join queries. Meanwhile,
we also see 34.6% of the queries changed to sort merge
join (from other join algorithms). We have the following
observations from Table 5. Although sometimes the energy-
aware optimizer chooses the same algorithm asTraditional,
on average around 54% of the cases we saw a change of
selected plan. This clearly shows the great opportunities of
reaching different energy/performance tradeoffs by extend-
ing the search space into the energy dimension. When the
size of the target table is small, more sequential scans are
chosen, and as table size increases, index scan is preferred.
This exactly matches the pattern shown in Figure 3. When
the data table is sufficiently large, the marginal energy cost
of visiting hash table is relatively small. Thus, it is more
likely to be chosen in large table joins than small table joins.
Sort-merge shows similar trends: in over 56.28% of the join
operators, sort-merge joins are chosen instead to reduce the
energy consumption due the much less CPU computation
and comparable similar I/O references, compared with the
hash join. The nested-loop join is only selected when the
reference data table is small enough to sit in the database
buffer. In this case, the nested-loop has the minimum CPU

operations and acceptable I/O references.

8 CONCLUSION

This paper argues for the importance of building accurate
and robust models for energy cost estimation in database
systems. For that purpose, we conducted system identi-
fication experiments on a database server to explore the
essential components of possible energy models. Based
on those findings, we proposed and evaluated a two-level
energy estimation model: we started from a series of heuris-
tic models that describe the unit-energy cost of individual
relational operators and important database operations fol-
lowing our empirical results, and used a RLS estimator
to tune cost coefficients of static models according to the
feedback signal. Such a two-level modeling solution can
tolerate high system dynamics and workload variations.
In summary, our models are found to be effective as
the average estimation error is below 10%. We strongly
believe our work serves as the basis for energy-aware query
optimization – a key component in building energy-efficient
database management systems.
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