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Abstract—Data centers are well known to consume a large amount of energy. As databases are one of the major applications
in a data center, building energy-aware database systems has become an active research topic recently. The quantification of
the energy cost of database systems is an important task in design. In this paper, we report our recent efforts on this issue,
with a focus on the energy cost estimation of query plans during query optimization. We start from building a series of physical
models for energy estimation of individual relational operators based on their resource consumption patterns. As the execution of
a query plan is a combination of multiple relational operators, we use the physical models as a basis for a comprehensive energy
model for the entire query. To address the challenge of maintaining accuracy under system and workload dynamics, we develop
an online scheme that dynamically adjusts model parameters based on statistical signal modeling. Our models are implemented
in a real database management system and evaluated on a physical test bed. The results show that our solution achieves a high
accuracy (worst-case error 13.7%) despite noises. Our models also help identify query plans with significantly higher energy
efficiency.

Index Terms—Energy-aware Database System Design, Energy Estimation, Online Estimation, Query Optimization
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1 INTRODUCTION a focus on the quantification of the energy consumption of
query plans
Data centers (DCs) are known to be the “SUVs of the tech Energy cost in database operations carries high technical
world” for their enormous energy consumption. Triggeregignificance in energy-aware database design. In database
by this phenomenon, recently there are a lot of effortystems, the query optimizer evaluates different computa-
on energy management in data centers [1], [2], [3], [4fional paths (nameglans as shown in Figure 1) by explic-
[5], [6], [7], [8]. However, by focusing on the operatingitly labeling their resource consumption. The knowledge
system (OS) level, such work cannot be directly appliesf the energy consumption of query plans is indispensable
to application-level energy management, due to the lagik identifying those with a low energy profile [14]. For
of sufficient knowledge of the application behavior. In thigxample, recent studies [11], [12] have shown that in a
paper, we study energy management mechanisms in a vgfyical database, there exist many query plans that consume
important type of DC application — database managementich less energy with little performance degradation. Thus
systems (DBMSs). The energy reduction in DBMSs afgnergy conservation can be achieved by selecting those
of high economical significance for DCs. In a typical DCquery plans. Note that information needed for making the
database servers consume the majority of the computisgcision is hidden inside the database system, thus cannot
resources, making DBMS the largest application consumgs captured at the OS or the hardware level. To harness the
of energy. For example, [9] reported a power consumpti@mergy saving opportunities provided by energy-efficient
ratio of 11 : 9.9 for the back-end DBMS services to thglans, a practical approach is to provide accurate energy
front-end web services. cost estimation during the query optimization process.
Energy management has become an active research topiEnergy cost estimation in the DBMS serves two pur-
in the database research community. The main themepiases. First, like the traditional cost estimation mecéani
such endeavors is to design DBMSs with energy com the DBMS that helps select faster query plans, energy
sumption as a first-class performance goal, as advocatedt estimation enables selection of query plans with lower
by the Claremont report [10]. Current work in energyenergy cost [12]. Second, knowing the accurate energy cost
aware DBMS has focused on energy-aware query optif each selected query plan helps quantify the energy cost
mization that considers both processing time and energf/the entire workload. Therefore, we believe our work is
consumption ([11], [12]), and power management policiésmportant for query optimization design in an energy-aware
in distributed databases ([4], [13]). Unlike other studlest DBMS, and it also provides valuable insights for other
focus on the implementation of energy-aware DBMS, thisnergy management policies, such as energy consolidation
paper addresses on a key issue that has so far received latie projection in DCs [3].
attention — modeling the energy cost of database systemsSpecifically, we design and evaluate a two-level frame-
In particular, we report the results of our studyenergy work to fulfill the above design goals. In a DBMS, each
cost estimation in DBMS during query optimization, witluery plan is a unique path to execute a series of re-
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Estimated Energy Cost For Basic Operations individual relational operators in a static environment.
- We design an online scheme to automatically adjust
Fig. 1. The query plan of Q5 from the TPC-H bench- parameters of the static model in response to the
mark [15] system dynamics and the workload variations;

- We implement our model in the kernel of a real
lational operators (Figure 1) and maintenance operations DBMS, and evaluate it on a physical testbed with a
(e.g., update/delete), each of which encompasses a set of comprehensive set of workloads generated from TPC
basic operations (e.g., processing a tuple in CPU). We first benchmarks and scientific database traces.
introduce our study on the energy consumption of eachrq remainder of this paper is organized as follows: we

bas_ic operation from the energy profi_le of hard\_/vare in fitst compare our work with other projects in Section 2. We
typical database server. Based on which, we build a stafit., brovide our system identification studies in Section
model that describes the energy consumption of relationgl\ye gescribe the technical details of our static energy

operators and maintenance operations according to thellimation models in Section 4, evaluate those models,
estimated resource demand (i.e., the CPU cycles). Thosedgy giscuss their limitations in Section 5. We present the

source data are provided by the traditional DBMS optimizej,jine scheme to improve the applicability of the model
and their energy cost coefficients are derived from a trginin 4 evaluate it with many experiments in Section 6. We

process. Such models show a high accuracy in predictigg,qy the impact of the energy efficient query optimization

energy consumption in a static environment. However, the section 7. Finally, we conclude the paper in Section 8.
energy cost coefficients (e.g., number of joules needed to

process an indexed tuple) in the model depend on the

system dynamic (e.g., CPU utilization) and the workload RELATED WORK
statistic (e.g., table cardinality). To further improveeth
static model by making it adaptable, we propose an onli
scheme that uses a Recursive Least Square (RLS) estim
to periodically update the parameters in the static mode

The problem we tackle s to build a comprehensiy roposed by Heatkt al. [20]. Following the similar idea,

model that can predict the energy cost of query plans any other articles reported various models towards energy

a DBMS. To be more specific, given one query, our gogdly i, ation. such as [21], [22], [23], [24], [25]. Compagi
is to accurately quantify the active energy consumption | ith our work, all such solutions focus on the operating

that plan ,:a e>;e|(|:ute_dl'hfe dtesweq energy cost madel ShOUIgystem level. As a result, none of the models can be directly
pOSSESS the Tollowing features. applied to DBMSs, due to the lack of knowledge of the

- Accuracy the model provides accurate prediction 0pg\s resource demand and the data processing patterns.
energy consumption;

- Robustnesghe model maintains high accuracy regard=nergy management in database systewwk in energy-
less of variations from system states and worklodgfficient database systems can be traced back to the early
characteristics: 1990’s. In [26], query optimization with energy as one of

- Fast Responsahe computational overhead is accepthe performance criterion was proposed within the context
able: of mobile databases. In this paper, we are interested in the

- Non-disruptive the modeling process does not inter€N€rgy consumption of servers. Motivated by the increasing
fere with the normal operations of the DBMS. energy-related cost of database servers, the database com-

Among the four, accuracy and robustnessare the key munity has only recently identified building energy-effitie

requirements, and thus the main metrics for evaluating o?i?éabgsﬁ systems 2a73 azns wc:jrthy (3|r§ct|on of ::-.xplor?tlon
models in this paper. ]. Early papers [27], [28] advocated query optimization

with energy as the target, which implicitly argue for a
o o mechanism for estimating the energy cost of a query plan.
1.1 Contributions and Paper Organization Supported by initial experimental results, [14] presented
Previous studies on database energy management hiaw@ specific techniques to save energy in databases: de-
focused on either high-level ideas [11] or energy profilingreasing CPU frequency and throttling user queries. Our

Energy modeling in operating systemtfiere are many
?olposals that treat energy as a first class resource in
@ operating system, such as [17], [18], [19]. The first
rmal analytic energy model in the operating system is



previous work [12] revealed the existence of many energg- OVERVIEW OF MODELING PROCESS
efficient query plans that carry little/acceptable perfance
penalty. By showing some plans of high energy efficiendj @ traditional DBMS [35], query execution cost is treated
coincides with performance, a subsequent report [29pstirras a linear combination of three components: CPU cost,
up discussions on whether energy-aware query optimizatid® cost, and communication cost. Such costs are normally
is a worthwhile approach towards green databases. aneasured as the product of the number of basic operations
opinion is that, when the search space is sufficiently lardgdthe query plan and the resource consumption of each ba-
and energy/performance estimations are accurate enoujf operation. The operations involved are: number of iple
we would find energy-efficient plans that could most likelfVtupies) to be processed in the CPU, number of pages to
be ignored by existing query optimizers. This standpoife retrieved from disksjqg4e5), and the number of bytes
is supported by more recent evidence provided by [11Q be transmitted via networking systerV.(,). With the
and [16], and verified by our experimental results showierived energy coefficients from experiments, an intuitive
in Section 6.2. Other related research in green databag@del can be built to describe the energy consumption of
diverges to several directions. The Transaction Perfocmarthe query plan. This heuristic model follows the intuition
Council (TPC) announced TPC-Energy [13] in 2007. Poe&% treating energy as a resource consumed by the internal
and Nambiar [9], [30], [31] reported extensive results oBrocessing in the DBMS, and can be treated as the starting
power consumption patterns in typical database serverspoint of our work in energy cost estimation. Specifically,
the energy costl of a query plan can be expressed as
Modeling power/energy in databases:is worth notic-
ing that power/energy modeling has been addressed in £ = W, Niupies + Wi/0Npages + WinsgNimsg (1)
some of the work mentioned above. As a position paper,
[11] proposed a general formula for quantifying powewhere W,,., W;,o and Wi, are the energy coefficients
cost of a query plan. Another work [16] delivered moref one tuple processed in CPU, one page obtained from
comprehensive results in modeling the peak power dfsks and one byte processed in network, respectively. Our
database operations. As the peak power and the enewgyk focuses on modeling energy consumption of process-
are very different concepts, the modeling processes (aing relational operators on a single-node database server,
apparently the models) are also different. A shorter versitherefore we do not consider the network transmission cost
of this paper [32] focuses on building physical models oim this paper. However, our model could be easily merged
energy consumption and significantly improves the statigith other state-of-art network power models, such as those
models from [12]. Aiming at a robust solution with highdescribed in [36] and [37], to provide an overall energy
accuracy in realistic relational database environment, ygeofile in a distributed database system. As a result, the
use a dynamic modeling approach to continuously updaibove model becomes:
key parameters of our model so that it adapts quickly
to system dynamics an_d workload variations. _Compared jo- Wepu Neupies + Wi/0 Npages (2)
to [32], this paper provides a broader discussion on the

energy profile of important relational operations and manyg 5 general linear model, parameters of Equation (2) are
database maintenance operations. We also present our siisiéined by a series ofystem identification studiesn
on the energy efficiency of popular join algorithms basegergy consumption of hardware components and typical
on our understanding of their energy consumption patterngiahase workloads. In the experiments, we build a set of
Furthermore, we highlight our online solution with a StUdlﬁueries, each of which performs a single table scan or
on how accurate energy estimation helps save more eneLgyyo-table join, to examine the energy profile of each
by altering query plan selection, and share insights oMyqu&g|ational operator. At the same time, the query optimizer
optimization towards low energy cost. is modified to only pick the algorithms we specify for
processing a relational operator. We pick the scaling facto
Other related workthere are numerous reports on dynamigs TpC-H tool from 1 to 1000, which leads to 1GB to 1TB
power management (DPM) at the operating system levghta stored in our local drive. The system identification
and many DPM techniques are summarized in the survgy,qy picks the number of tuples as the metric for the data
[3]. Cost modeling of relational operators is a well-stubliesjze Each tuple represents a row in the data table. Queries
problem in the database field. Work relat(_eq to this topige pased on the TPC-H query generator using the standard
can be traced back to the late 1970's. Initially, Astrahagh query templates. We collect the runtime statistics (e.g.
gnd co-workers present.ed some (;ritical ideas implemen@ource consumption) and energy consumption data of
in System R [33]. Christodoulakis [34] summarized thg,ost relational operators at a frequency of 1000Hz using
early work and well-accepted assumptions for query cogle multi-meter and the Linux system monitor. Based on
estimation. In [35], the authors extend the work to gose data, we calculate the coefficients of the physical
distributed environment. Standing on their shoulders, Wggdels using the solvers from GAMSMore details of

build up our physical models based on similar assumptioggy experimental setup can be found in Section 5.1.
and techniques. However, as we attempt to model a different

cost, variants and constraints are no longer the same. 1. http:/Avww.gams.com
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3.1 Observations on Hardware ]

First, we start to explore the energy profile of the hardware, 0
as part of the system identification study. To that purpose,
we measure active power consumptions of major hardwaEe

. |
components (shown in Table 1) of a database server
our testbed. The results exhibit the fact that CPU a d q
memory contribute the most to the active power (aboﬂ?n om reads
99%), as shown in Figure 2. The active power consumption 14

1‘0 éO 1;0 40 50 éO 7‘0 éO S;O 100
Workload Density (%)

. 2. (a) CPU, memory and hard disk power profiles.

r@ Hard disk power consumption under sequential and

contributed by other components (e.g., hard disk) are negli 120 | 87 o
gible. From Figure 2, we found that (1) the CPU power cost 5 1004 ¥ - o

is proportional with the workload density, which indicates 5 80| ; L& e o X e
the system utilization, (2) memory rarely stays idle, thus & 60| 0 200400 Xxxxw”‘wx

its energy consumption is only related to the processing” *° | oroon Foatlar A

time. Meanwhile, as shown in Figure 2b, the disk power 22 I ‘ ‘ ‘ ﬁ%ﬁé‘x’Aﬁﬁiii
is not affected by data access patterns — both sequential 0 2000 4000 6000 8000 10000
and random access consume the same power. This is due Accessed Tuples (x1000)

to an important physical feature of commonly-used stora%e . 3. Active energy consumption under different scan
hardware for database servers — their leakage power Cglgorithms
always dominates (solid-state drives could be differemt bu 9

they are rarely used for storing large databases). run the same query repeatedly in databases with different
To estimate the energy cost of a query plan, we afymes and sizes to avoid the impact of resource sharing.
essentially |r_1terested in |_t$|arg|nal energy consum_pt|on Figure 3 shows the CPU energy consumption of two types
(namely active energy) if we assume the baseline powgs queries: one with the sequential scan and the other with
is always the same as the leakage po?tvd%tote that, the indexed scan. For both queries, we can observe that, the
without specification, the energy consumption discussgsyy energy consumption first exhibits a non-linear growth
throughout this paper is the active energy consumption. ity the total number of tuples accessed until reaching its
the experiment, we have confirmed our intuition that th‘hockey point”. After this point, the relationship between
marginal energy consumption of a query plan is propognergy cost and query size becomes linear. By looking
tional to its resource demand (i.e., number of operatioggeper into the low-level operations, we believe reasons fo
Neupies), Which captures the processing time of such queRpe apove observations are: when the number of processing
Thus, to estimate the energy consumption of a databaggjes is small (i.e., before the hockey point), the energy
operation, we need to know the total resource demand (eébnsumption is dominated by the CPU usage, which has
Niuples @NA Npages), and the energy coefficient parametersy quadratic growth with the size of the input (shown in
which represent the processing tim_e and the power COStIﬂbure 2). When the system is fully utilized, the CPU
executing such query plan, respectively. energy coefficient (i.e., power) is almost a constant, shown
as the tail of the curve in Figure 3. Meanwhile, we can also
observe that the shape and hockey point of the curve are
Scan We are interested in verifying whether above modelgifferent in different scan method3herefore, we need to
hold in different query processing patterns. Therefore, w&nsider models for each individual relational operation.

extend the identification experiments on each relational 0po represent the piecewise curve in Figure 3, we revised
erator. The results of our extensive experiments using typhe energy model as:

cal database workloads in Figure 3, however, show that the

3.2 Observations on Relational Operators

. . . 1 i/
CPU energy consumption doest always linearly increase > _ WepuNipes T Wi1/0Npages  T0r - Nywpres < N
with the number of processing tuples (e.g., Equation (2). In WepulNiuptes + W1/0Npages  for  Niupres > N
other words, power does not always increase - it levels out 3)

beyond a certain value @¥;,,;... In such experiments, we whereN is the hockey point of the energy cost curve. Based
on the regression curve obtained from system identification

2. This assumption will be relaxed in Section 6. experimentsm ~ 0.5 in our platform.
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Fig. 5. Energy consumption of the update operationon Fig. 7. Energy consumption of deletion operation
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cardinality
Join. We also run similar experiments for join-based

queries, which contains only one join operation for exanon multiple table. In a relational database, many data $able
ining different join algorithms. After eliminating the ey  are created with foreign keys for cross references. In this
cost of the scan operations (because a join always happease, if one record is updated in a table, the content of
after a scan of the two input tables), we find that thenultiple tables are updated as well for consistency. We
energy cost of the join operation has a linear relationshipnduct experiments on updating records that may affect
with the input of the join operation (number of tuples)single table and multiple tables. We conduct experiments on
as illustrated in Figure 4. This input, provided by theipdating records that affects single and multiple database
optimizer engine in the DBMS kernel, is the estimated sizables, as shown in Figure 6. The results show that the
of the temporary table after low-level scans. Furthermorenergy consumption data of updating one record on one
different join algorithms carry different energy cost. Fotable file with 1 million rows and on multiple table files
example, hash joins always consume more energy thaith a total size of 1 million rows are close. Thus, it is
the other two joins under the same input. Therefore, #afe to only use the number of affected records (rows), or
model the linear relationship between one join operatighe input size, as the variable in the linear regression inode
and its energy cost, we are looking for the unique energeletion We consider the deletion operation in two sce-
coefficient for each join algorithms. narios: (1) removing different number of rows in one
Update and InsertUpdate and insert are representing thdata table. The purpose of this scenario is to check the
major operations for write queries in the DBMS. We staiimpact of the size of the deletion operation on the energy
examining the energy consumption of the update operatics@nsumption. (2) removing the same number of rows in
by changing values of records in various data tables wittvo tables with different sizes. We run this experiment
different sizes. All experiments are running in a batctith different deletion sizes to confirm our findings in
mode to avoid interference from other database operatiossenario (1). The results are shown in Figure 7. The deletion
As highlighted in Figure 5, the energy consumption ofperation contains a scan operation that finds the victim
updating records increases monotonically with the sizew(s), and a follow-up operation that marks the data
of the affected table. Most of the energy consumption Iscation as invalid and rebuilds indices of the affected
contributed by the scan to find the victim record(s) to bebles. According to Figure 7, the energy consumption
updated. At the same time, due to repeatedly scannisigows a linear increase with the number of deleted tuples.
the same file for finding the victim records and relate@hen the query tries to remove tuples from different files,
operations for writing back data, the non-linear behavitihe size of the affected table files also have an impact on
from scanning is less observable for update operations.tde energy consumption, as illustrated in Figure 3. Thus,
linear model fits the curve withR? > 93%. Therefore, there are two parameters in the modeling, (1) the number
we model the energy cost of update operations as a linedraffected rows and (2) the size of affected table.
model. Create and Delete Table®etecting the energy consump-
We further investigate the behavior of update operatiotisn of create and delete operations are hard because com-



TABLE 2

18 ‘ ‘ 10 ; ‘

17 ] ~ gl | Key quantities in energy estimation models

2 6l I3

= 1i I I Symbol | Definition

3 131 3 4l i n Number of tuples retrieved for CPU usage

2 4ol 2 D Number of pages retrieved from storage

w 11 L w2y R Sorting algorithm coefficient

10 : : 0 : : T Indicator of chosen relational operator
0 4000 8000 0 400 800 Wy CPU unit-energy cost of relational operator x
# of Columns Database Size (GB) w Per-page 1/0 energy cost of relational operatof x
b Ny Hockey point of relational operator x

; (a) . ) : @ Constant cost of relational operator x
Fig. 8. (a) Average energy consumption of creating z
databases with different sizes. (b) Average energy TABLE 3
consumption of deleting databases with different sizes Energy cost coefficients for relational operators
paring with other operations, creating/deleting a databas Xar 0%%‘;8 0'35(93 osl%rstas gg"lag% '\éefé%d
or a table is very fast. Therefore, we conduct a script to N, | 1153 | 2109 N/A 2654 N/A
create a large number of databases and tables. The energy Merge | Hash | Update | Remove
cost is calculated as the average among all runs. wy | 0.165 | 0.189 | 0.0027 | 0.0039

: —— . N, | N/A N/A N/A N/A
As illustrated in Figure 8(a), the energy consumption TABLE 4

of creating a table is almost a constant. It is because the

; . Energy cost functions for relational operators
creating operation only affects the hardware once. The 9y P

number of columns of a table does not affect the energy Methods Cost function
consumption of creating/deleting a data table. Sequential Scan | wsn3 +wp,n < N; ;
The cost of the table deletion operation is not correlated wsn +wWp,n > Ns
. . . - . 3
with the size of tables (Figure 8(b)). This is because Index Scan win? +wp,n < Nj ;
deleting a table only involves marking a certain block of : win + wp,n > Ni
. . . . Sorting winR
data in the physical storage as invalid. The buffer manager , 3 —
. Bitmap Scan wpn2 + winR +wp,n < Ny ;
of DBMS would use it for other purposes and the OS win + wenR + wp,n > N,
overwrites this physical address space afterwards. In all, Nested Loop Join| w;n & wp
the energy cost of table deletion operation is constant. Sort Merge Join_| wmn + winR +wp
Based on the findings of the above system identification Hash Join Whn WP
experiments and refined model Equation (3), it is necessary ~|opdate win + Wup + Wp
Deletion w;n + wen + wp

to quantify the number of operation$,,,.., the model
parameters (i.e.W pu, W,/O) and the hockey pointV
for the table scan operatiofl’ ; o is a hardware-specific

constant. The quantiti¥, ;. is readily available from the
existing query optimizer. Sequential ScarSequential scan searches each row of the

heap file (data table) and omits relevant tuples according
to the predicate. The anticipated energy cost, according to
4  STATIC MODELING Equation 3, isu,n? +wp, before reaching the hockey point.

For each operator, the model (Equation (3)) should Hfter thatpoint, the estimated energy cosiis:+wp. Note
modified based on its processing behavior. In the remaindiée, We use: as the estimated number of basic operations
of this section, we introduce energy models for a set gre., resource demand) in the model throughout this paper.
popular relational operators. Readers interested in marelex Scanindex scan is similar as sequential scan except
detailed work on the model calibration can refer to [38]t uses a (tree-based or hash) index to reduce the number of
A summary of the operator energy models can be foundiiiples accessed. The estimated energy cost for index scan
Table 4 with all the symbols introduced in Table 2. Notgs «,;n? +wp for searching the: anticipated tuples from

here, all the variables in Table 2 except and N, can be pages before the hockey point. When the system is saturated

relational operators, thus its energy cost in DBMS is also
considered (although it is not a relational opergier s§.

obtained from the existing DBMS optimizer. at the hockey point, estimated energy costis+wp. Note
here, the unit energy cost of accessing an indexed tuple
4.1 Scan is different from that of a tuple in sequential scan).

For single table relational operators (i.sglectionand Sorting: Sorting is a CPU-intensive operation. Although it
projection), we only consider two file organizations — heajis not a relational operatqrer se the sorting operation is
files and indexed files, and their corresponding scanninffen used before/after multiple joins for the optimizatio
algorithms —sequential scaandindex-based scamespec- purpose. For example, sorting is usually used in the sort
tively. In addition, we consider a special type of indexnerge join, and in the implementation of PostgreSQL, the
scan —bitmap scarthat is implemented in the PostgreSQlsorting operation is usually executed after each join no
system.Sortingis a very important step in processing manynatter which join method is used. The sorting size and the



specific sorting algorithm are the key factors in estimating  300%
energy cost. The energy cost for sortinguisn?, where

n is the number of tuples fetched to be sorted,is the
related energy coefficient, anfl is an algorithm-specific
coefficient. For the merge sort algorithm implemented in
PostgreSQL, we sak = 29.89 based on the configuration
of maximum rows in a table and linear regression data.

NéstedLoop 5]

MergeSort &2
Hash =

200% 1

—

00% r

Normalized
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The R for other sort algorithms implemented in different 0% éYC }CM éCY
database systems may be different and can be derived from
identification studies. Fig. 9. Normalized performance counters [39] from

Bitmap Scan:Bitmap scan searches the data file using tree joins.

bitmap index, which is based on bit arrays (i.e., bitmaps)

of columns. Then, the scanned result is sorted by the bitma@rform over 1000 queries using the TPC-H scheme that
index. Thus, its energy cost igbn% +wynR + wp before have join operations in PostgreSQL (Hardware setup details

the hockey point andv,n + w;nR + wp for the rest. are in Section 5.1). We record the following performance
counters: number of CPU cycles (CYC), (i.e., all used
4.2 Join CPU cycles related to the thread), last-level cache misses

STCM), CPU cycles stalled for memory access (SCY). We

the energy consumption depends on the join algorith?ﬁ‘oose those counters based on the results from [39], which
used. According to Figure 4, the energy consumption gro\};gprg?ent the energy performance of CPU and memory for
linearly with the joined data size after eliminating lowwé Specific processes.

scan costs. Thus, we apply the similar linear model to the S shown in Figure 9, on average, the n.est.ed Ioop_ jpin
nested loop join, the sort-merge join and the hash join. only uses 15%-17% more CPU cycles. This is surprising
since the nested loop join, being a quadratic algorithm,

Nested loop join:Besides the cost of aggregating the processes much more tuple-to-tuple comparisons than the
tuples as the output from the low level scans, The energiher two algorithms. Most cycles are stalled for memory
consumption of the nested loop join is the aggregated c@gerations. Compared with the nested loop join, the hash
of the CPU computation from iterating the worst-case join has two times more cache misses because it frequently
outer loops and related memory accesses. According dgcesses the in-memory hash table. As a result, the hash
the identification study, the energy consumption is linearjoin has a much higher energy footprint than the nested
correlated with the number of affected tuples (in blocksjeop join due to the high power consumption from cache
Thus, the cost function ig;n + wp. management. On the other hand, the sort merge join seems

Sort Merge join: The sort merge join includes the sorf© beaf[radeoff between these two joins. the sort merge join
operation of the sub-lists as the intermediate results ef tS€S slightly more CPU cycles but has much less lower
two lower level nodes. After the sorting, the sort merge joif@che misses than the hash join. Based on results from
consumesw,,,n joule of energy for merging. Meanwhile, Figure 9, we find that the sort merge join is a safe choice to

we also consider the cost of related memory accesses. Bgéect for saving energy (more discussions on the selection
total cost isw,,n + winR + p. choices are presented in Section 7).

For any two table joins (using original or temporary tables

Hash join: The cost model of the hash join is similar as, 3 Other Operators
the one from the block nested loop join. The cost contairc?

S ; . : . Update: update operations write the new data into the
building and probing phase during the computing. Unllk?gw(s) of data table after finding the target row(s). We as-

time estimation, for energy consumption, we consider th - .
cost of building the hash table during the probe phase. TREME the procedure of finding such target always uses index

hash join identifies the outer and inner table in a subsequgﬁﬁn' Therefore, the energy consumption is the combination

probing phase, and takes hashing to both relations on &f he scan cost and upc_iat(_a cost. We useE linear model to
add those cost up, and it givasn + w,p + wp.

join attribute. We generate the cost functlon du_e o tr]%Ietion: the deletion operation is similar to the update
energy cost of both phases are proportional to the input siz

n and related /O cost from accessingages, ass,n+ operation. The only difference lies on the operation after
9ages, avn b finding the target row(s). The deletion operation marks

Analysis of Energy Profiles of Join Algorithmhe high certain data in memory as invalid and releases the memory
cost of joins motivated us to further study the energspace. This is an atomic operation, thus the energy con-
profiles of different join algorithms. In particular, we aimsumption of a deletion operation is;n + w,.p + wp.

at an in-depth understanding of the energy consumption

patterns of such algorithms by investigating their hardwas MODEL VALIDATION

use patterns. Hardware counters are the number of low-level )

hardware activities during the execution of a computinggl Experimental Setup

thread. Here we use this tool to learn the runtime hardwabeir testbed consists of a 2U Dell R710 (3.0 GHz 12-
behavior of different join algorithms. In our study, wecore CPU Xeon E5645, 32GB of DDR3 memory, and 2TB



7200RPM HDD as local storage, as shown in Table 1) — ——
i Estimated Energy 7673
server and various workloads generated from three SDSS =~ 5, | Real Energy
workloads [40] and 22 standard TPC-H queries [15]. We 2
use another computer to produce database workloads and; 8

collect experimental data including query statistics and & .

energy consumption. The energy consumption is measured” 4 o

by power meters (i.e., a 34410A Digital multimeter [41] and 0 7 & S

a Wattsup power meter [42]). To measure the CPU power, Workload, Workload,, Workload,,

we attach current clamp from the digital multimeter to the
CPU power circuit. The energy consumption of the wholeig. 10. Energy data of running three SDSS workloads
server is measured by the Wattsup power meter at a 1Hz
frequency. The data server is installed with PostgreSQL 20%
8.3.14 under Redhat 5 (kernel 2.6.9). The DBMS’s kernels 15%
is modified to provide runtime information such as the‘,

estimated energy cost, the data histogram/cardinality an@ 10%
the plan selection. Z 5%

In the experiments, we set the multi-processing level o L i e R
(MPL) to one (i.e., only one query is in processing at a time 1234567 8910111213141516171819202122
in the DBMS). We measure the energy consumption of the TPC-H Query Index

e_nt|re server and compare it with the estimated energy C?—‘?é 11. Estimation errors from the 22 TPC-H queries
given by the corresponding models. The following metric

namedEstimation Error Rat€EER) is used to quantify the that cannot be modeled in Equation 3. Next, we discuss the
model accuracy: limitation of the static model.

EER — |E—E| (4) 5.2.1 Limitations of the Models
E The above experiments exhibit that the models work ef-

whereE stands for the estimated energy given by our modfsictively in a static setup. However, our modeling task is
and E is the measured energy consumption. far from accomplished. When we change some features,

, such as the MPL of the workload, the model could easily
5.2 Experimental Results fail. In Figure 12, we change CPU resource availability
We use SDSS and TPC-H benchmarks to simulate querigs introducing CPU-intensive non-database jobs into the
that retrieve different amounts of data. For example, thgstem. It causes a serious energy underestimation (blue
SDSS benchmark simulates a large scientific database dash line in Figure 12) and an average EER of 65%.
vironment with long queries that touch large amount ofo accurately model energy cost, our model needs to be
data while TPC-H simulates a business data warehousgaptive to capture the changes of system status.
with a smaller data size. In this way, we could test the One might argue that the problem is caused only by the
energy estimation accuracy using real queries that requir@del’s failure in capturing the increased baseline poviier o
processing of various relational operators discussed in abie system, and can be easily solved by reading a runtime
static model. baseline power as a system-level parameter. However, we
SDSS Validation:we materialize a database from theelieve such a solution would still not be robust. First, eom
published SDSS data. Then we create three workloaggtition between concurrent queries has profound effatts o
workload | is an equality search based on a sequential takieergy consumption. Second, when such effects are mixed
scan; workload Il performs a merge join of two tables aftesith other situations caused by system state change (such
range search; and workload Il is a range search basedamthat in Figure 12), it is almost impossible to tell them
index scan. We repeat each single-query workload for 1,08Qart in the model. To verify our claim in the context of
times with different search predicates generated randontlyis experiment, we implement and test suchaah hoc
We present the average energy consumption in Figure $8lution that measures and adds the baseline energy cost
The difference between the estimated energy and measuxethe results of the static models as the estimated energy.
energy is very small in almost all cases. The average EERSe results (pink dash line in Figure 12) clearly show that
of the three experiments ae32%, 2.66%, and 1.78%, the ad hocmodel systematically overestimates the energy
respectively. with a large error (i.e., average EER reaches 32.67%). The
TPC-H Validation:To further validate the static model, weoverestimation error comes from resource sharing among
conduct a similar experiment for all 22 queries of the TPQ@oncurrent queries.
H benchmark. Each workload is a single query extracted
from TPC-H tools. The results (Figure 11) show very high-2.2 Source of Errors
accuracy, with an average EER of 7.97%. Query 19 has thany factors can contribute to errors in energy estimation
highest EER (12.42%) because it has three embedded soiba database system. According to our empirical studies,
gueries in the selection process which leads to systemserrsuch factors can be separated into three categories.
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In each period with lengthl’;, we have the opera-

Measured - .
% Mog%lggg --------------- tion vectord = {ni,n2, -+, N, P1,02, - ,Pm} to hold
3 2000 values of 2m basic operations (i.e., the number of tu-
> ples n to-be-computed, the number of pagesaccessed
L%’ 1000 ¢ by each relational operation) fon operators from each
guery. Note that, meanings of all notations can be found
00 4 8 12 16 in Table 2 and the vectod is provided by the query
Time (Second) optimizer. In general, the RLS scheme builds the coeffi-
cient vectorwd = {wy,ws,- - ,w,} to record all to-be-
Fig. 12. The performance of the static model under updated parameters and a coefficient -7, w;. In our
the impact from non-database workloads. It underesti- case, we haves = {w,, w;, - ,wp, Wy, Wy, Ny, N, - }.
mates the energy cost over 65% Following the routine of constructing the coefficient vec-
. tor in RLS scheme, let us denote, = > w, and
System statuguntime state change pf the databas_e syste@; — 3" N,. The whole coefficient vector for RLS scheme
and even the OS can cause significant errors in energy " {wm,ﬁm,k1,/€2 &' is denoted asW(j) for

e_stlmat|0n. The ma_lr_gmgl increase of CPU power is n%teriod j. Similarly, we have the whole operation vector
linear to the CPU utilization. In other words, the parametet, _ (n1,n,- - Ty €1, €9, s emy 1,1} (the last two

(.., ws) should have d|ffer.ent values under d'ﬁ?renﬁumbers are used to match the operation vector with the
syst_er.n. s_tatu.s. At the same time, the resource sharing %@fﬁcient vector) and denote thi at period; as O(j).

the initialization of preemptive non-DBMS jobs can Causg, each period, the energy consumption of the senr (

the same problem. is measured. The model generates the baseline energy as

_Resogrce _demand estimation erragrrors are inevitable ¢(j) from the measurement of the last- 1 periods and
in estimating the number of tuples (e.g.,in Table 4) he measured energy as follows:
for a relational operator in the plan. In our models, sucth '

values are provided by the existing query optimizer and are e(j) = (1 —De(ij -1+ E) (5)
inherently inaccurate. In fact, this is a classic problem in j
query optimization as the processing time estimation al

depends on such quantities [43]. step is to use this estimator to find the values of energy

Workload dynamicsa workload generally contains queriesCost parameters. The coefficient vectfa’r(j) is updated as
with different resource consumption patterns and the i?dllows-

teractions among concurrent queries are hard to predict.
Workload features may change over time and significantly W( ) = W( 1)+
impact energy cost by changing variables such as the J J
concurrency level and the I/O demand. ~ ~
To derive an accurate model that minimizes the abovéierec(j) = e(j) — O"(j)W(j) is the estimation error.
errors, we could integrate all relevant factors into a@’(j) is the transpose of the vect@r(j), M(j — 1) is
augmented physical model. However, this is an infeasidlee covariance matrix of vectaD(j), and A € [0,1] is
solution because the model would be too large to meidie forgetting factor — a smallex enables the estimator to
the fast response requirement and there is no guararfi@@et the history faster. The RLS estimator adapts itself
that the model can locate all the possible factors that has@ thate(j) is minimized. When the two variable§), and
impacts on energy consumption. Instead, we propose to u$g¢), are jointly stationary, this algorithm converges to a set
an online feedback mechanism that adjusts parametersfrtap-weights which, on average, are equal to the Wiener-

We set the initial energy consumption&®) = 0. The next

()07 (j)M(j — 1)
A+ O(j)M(j — 1)07 ()

(6)

our static models to minimize those errors. Hopf solution [46]. The following routines are repeated at
the beginning of every periogt
6 DYNAMIC MODELING i. Collecting data, including the operation vector;)

The main idea of the online estimation approach is: we keep and previous baseline energyj — 1);
the previous static models, treat the database system as &. Computingl’ () based on the data and Equation (6).

black-box and take the cost coefficients as variables thgie RLS estimator needs around 12 microsecond on aver-
reflect the combined effects of all possible system/worklogge for computing the parameter, as measured in our ex-
noise sources. We then use a feedback control mechanjs@fiiments. Compared to the average query processing time
to periodically update those parameters using real-tifiground 20 seconds), the computational overhead is very
energy measurements. As a result, errors are compensaégghll. It is also robust despite system dynamics and work-
) _ load variations. Based on the results obtained from th&stat
6.1 Online Scheme Design models, the initial values for the energy paramet&d {n
In this section, we introduce our solution based on thmur testbed aréV (0) = {0.00768, - - - , 1153, 2109, 2654},
refined Recursive Least Square (RLS) estimator with & shown in Table 3.
directional forgetting factor, to handle estimation estor The length of T implicitly affects the accuracy of the
following ideas from [8], [44], [45]. RLS model. It is relevant to the query arrival rate. If the
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query arrival rate is high7s needs to be set smaller to 200 %
sample sufficient variance. Otherwise, we could make it . 160% -
longer to avoid excessive computational overhead. In ourli
experiment, we set it to be/9 seconds, the same sampling

frequency as the energy cost measurement. In all, we build
a two-layer estimation model called RLS model.

120 %
80 % r

verage

A

40 %

0% L—= :
6.2 Experimental Setup 10 50 100 200 300 400 500 10002000

Query Set Size

We use the same test environment in Section 5.1. However,

as the enhanced online model is meant to provide a hig{yy. 13. Estimation accuracy of three models in nine

estimation accuracy despite the workload/system noises, Workloads with different data sharing patterns using
design synthetic tests that simulate such noises. In ali suge SN/SE workload for case study Type |

experiments, we set the MPE [2,31853] (31853 is the
default max threads allowed in Linux) to create a more 200 %

- ) : ) _ . DARLS <
realistic database runtime environment, in which multiple . 1e0% | DEAAdF;LS E
queries are processed concurrently. We simulate the impacli ;,50, | RA Adhos |
of different error sources described in Section 5.2.2 using & DA Static

S goo, |- RA Static ¢

the following three test cases.
Type I:to test the accuracy of RLS model under workload 40 % J
and system noises, we define this type of workload with 0% —=
different data sharing patterns among concurrent queries.
Specifically, we have thehare-everythindSE) andshare-

nothing (SN) workloads. The SE workload consists OFjg. 14. Estimation accuracy of three models in nine

queries with small computation and a considerable amoygérkloads with different data access patterns using the
of data shared with other queries. The SN workload consigia/RA workload for case study Type II

of queries with long processing time and little data shared

with other queries. The results are in Figure 13. , )
Type II: poor estimation of data distribution (e.g., datZER that we used to evaluate the system's performance is

histograms) in database tables is the main reason of figdefined as the average of the EERs of all involved queries.
estimation error in resource demand [43]. We design this

test to examine the performance of our model under go6c¢B Experimental Results

and poor resource estimation from query optimizer. Th
test contains: (ideterministic acces§DA) workload that
always searches similar data from the table; andgimdom
accesgRA) workload that randomly touches all spectra o
the data domain. Upon running the DA workload, the que
optimizer can learn the data distribution quickly due to th

Aver,

10 50 100 200 300 400 500 10002000
Query Set Size

Besults of Type lln such experiments, we create nine
workloads with different sizes to test three models — RLS
odel,ad hocmodel and static model. As shown in Figure

, the EERs generated by the RLS model are significantly
maller than that of the static model for both SE and SN
same data location in the table, thus has more accur rkloads, with an all-round average EER of 8.89% and

0 . .
resource estimation for the rest queries. For the RA queries 3dl/0, tr:spectlv:eli/.. Clearly, RLS r_nodeTIa;aE effeclznvely
query optimizer needs to collect much more informatiof" eh' E cor:ga 'Op ﬁ\mongt quet;:es_. t t.oc Soiu-
using a significantly longer time, which leads to inaccuraf®™ which could partially capture the interactions among
resource estimation. The results are in Figure 14. queries, shows a better performance than the static model.

Type IlI: in a real-world database server, other applicatio%(_)tweggglt 'f“:' no: (_:olmpattr;ble tothe fulg-élgdged I;;SST(;)deI d
running concurrently with database processes (e.g., htipd™ often triples (the average S are 35,547 an

and php processes) may affect the resource availability. .78% for the two workload types). Another observation

design this test to simulate those noises in two scenari Sres'é’ thek?N (\j/vc_)rk:;flg usuglllly l;:atulses more er_rorst tI:_an
The first one is to test the estimation performance whild® workioad In KL> model but 1ess errors in static
competing for the CPU resource. We run multi-threa'aPOdel' Our e_xplar?atlon Is that the SN wo_rkload provides
Fibonacci programsHbo) concurrently with the Postgresmore fluctuations n the energy c_onsumptlon than the SE
application. The second one is to change I/O bandwid orkload does during the execution. Thus, depending on
at runtime using R/W program&R(W). RIW is an 1/O- the value of forgetting facton, the parameter estimator
intensive program that frequently reads/writes large ,ﬁlegenerates more errors than that in SE workloads. Static

thus competing with the DBMS for 1/O bandwidth Themodel favors SN workload since it has no knowledge of
results are in Figure 15 and 16 ' resource sharing among queries and the estimation in the

We compare the performance of the RLS model withV worklloa.d.only needs to add up the energy consumption
two baselines: the static model in Section 4 andatdéoc of each individual query.

model mentioned in Section 5.2.1. Note that, since we haResults of Type IIAs shown in Figure 14, the RLS model
multiple queries running in the system now, the averadmeats other two models in accuracy when handling DA
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Fig. 15. Model performance in case study Type Ill Fig. 16. Model performance in case study Type llI
using the workload Fibo using the workload R/W

300 % T
workload — the average EER is 7.13% with the highest 25009 | Sysl?é_ns\
being 11.9%. For the DA workload, queries always visit the & 2000 | Sysfdap
same part of the table therefore it leads to very high cacheg 57,
hit rate. That is likely to be the reason why the estimation
errors of static model show (roughly) a linear increase < ., |
in Figure 13. For the RA workload, although the query 0%
optimizer could produce large error in resource estimation SN SE DA RA Fibo RW
our dynamic model can capture the trend of such errors and Workload Type
compensate them. The EERs are lower than 10% for m%

vera

100 %

. 17. Comparison of static and RLS models with

— i 0, I I
cases — the average EER is 7.26% with the highest E er energy estimation models

being 11.07%. For both workloads, the performance of RL
model is good as it is designed to capture the variations
from resource estimation. [20], and SysAdapis an enhancedd hocOS-level energy
Results of Type Illin Figure 15a, the system starts witrestimation model [23]. We use those models to estimate

20 Fibo processes. This number rises to 54 at the sevefifffr9y consumption of workloads used in above cases.

second, drops at the 24th second to 10, and increases f¢ results are shown in Figure 17. It is not a surprise
40 at the 33rd second. The change of CPU utilizatidat Systemhas the worst estimation performance since it

leads to a high resource estimation error. By comparil’?@ns'ders the energy cost of all hardware operations which

the number of running Fibo processes (black line) and ey not be caused by DBMS operations. Comparing with

energy estimation error (grey line), the RLS model canystemSysAdapshows a relatively better performance in

capture the trend of such change and react within a shB}pS€ cases because it periodically corrects itself aguprd
period of time (i.e., less than three seconds). It keeps % the detected DBMS energy cost. However, the perfor-

average performance by keeping a 90% accuracy of Hiance ofSysAdaps only compatible with the performance

energy cost estimation. of the Staticmodel. The RLS model gives highly accurate
When it comes to the I/O resource competition th%stimation in all cases. Thus, for energy cost estimation,

measured energy consumption unpredictably increases wiffs need to build the estimation model inside the DBMS.

the number of I/O-intensive applications (RW) in Figur@lack box validationWe also validate our model within
16. The reason is that the performance bottleneck of dataclosed benchmark environment generated from TPCC-
processing is still the 1/O bandwidth. When this criticaUVa®, as mentioned before. Since we cannot change data
resource is “stolen”, most queries are in halt to wait for I/@istribution or the query composition of the workload, this
resource, which results in huge wasted energy consumptieerves as a perfect tool for black box testing. As seen
As a result, the estimation performance is greatly affectéd Figure 18, the average EER of our dynamic model is
by those applications that compete with DBMS for the I/@round 10% in a 100 GB DBMS configuration compared
resource, such the data change at the 7th and 15th sectnthe static model's EER of 51.4% and the ad hoc model's
in Figure 16. When the system status change tends to 2862%. This clearly shows that our RLS model is robust
steady, such as in time period of 15 — 19 and 34 — 48yen under a random workload.

RLS model tries to get its performance back within a fe\ﬁ
periods (a little bit longer than that in Fibo). In all, RLS
model could handle the noise from I/O bandwidth chan
to some degree.

ffects of forgetting facton. Another interesting experi-
ment is the what-if analysis on the important forget factor
95 our dynamic model. The results of this experiment could
help us fully explore the effectiveness of the model and
Comparison with other estimation method® highlight make recommendations on the choice value\.oFor that

the benefit of DBMS-level energy models, we companeurpose, we create six workloads — two from SDSS queries
them with other energy estimation models deployed at the

OS-level.Systenis a system level energy estimation model 3. http://www.infor.uva.es/"diego/tpcc-uva.html
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Fig. 18. The average EER of running multiple TPC-C

workloads in TPCC-Uva Fig. 21. The energy consumption of different query

plans with different optimization goals

20%
with a query cost model towards maximal power efficiency
but with a simple energy estimation scheme), &RldS

model(same optimizer as in ‘Power-aware’ but the dynamic
energy estimation model proposed in this paper). To further
explore what exactly changed in the plan selection, we

T
Toow

15% r

10 %

Average EER

5%

5 ElE B |
SDSS100 SDSS200 TPCH 00 TPCH200 TPGH300 TPCHA00 first reveal the detailed processing paths from those three
Query Set optimizers for one query (Q10 from the standard TPC-
H benchmark). We then present results of other affected
gueries, and finally discuss the rationale behind the result

0%

Fig. 19. Accuracy of the RLS model under six different
workload sets and four different \ values

and four with various combinations of TPC-H queries —t9 1 Ennhanced Energy Savings

provide a diversified testing environment. As seen in Figure

19, a smaller forgetting factor has more negative effects 8}46 first present_ the energy consgmp'uon re_sults fro_m the
the accuracy of the RLS model. For the SDSS workloa&ree aforementioned query optimizers. In this experiment

(the first two histogram clusters in Figure 19), the resultd® un the same workload in databases with different
iffereRZes: namely 500MB, 1GB, 10GB, and 100GB. Due to the

A. Our explanation is: most queries in SDSS are I/O—bour‘?d(ecu'[ion plans selected by the optimizers towards diftere

due to the sheer size of the database table - this create%oam'zat'on goals, the energy consumption performance

very static situation in terms of the energy consumptio?{?”es’ as shown in F_lgure 21. The energy-aware qpt|m|zer
However, in a dynamic environment, if the system stat@éCked query plans with the least energy consumption. The

follow a historical trend (e.qg., those of coarse-grainedpa energy savings are in the range of 14.7% to 33.3%, depend-

lel workload or a deterministic access workload), incregsi Ing on the database size. This, on the chef hand, comes
thh the cost of a performance loss ranging from 8.3% to

the value of\ gains significant benefits in terms of mode 0 ) (2
accuracy. Thus, we suggest the maximum value (i.e., 1’_@'5/0' Without an accurate energy es'umatu_)_n scheme, the
of \ be used in order to obtain more historical data arfg’We'-awareoptimizer stands in beMee‘ﬁadltlonal and
higher accuracy of the model. RLSmodel for both energy consumptlon and performange.
Note that, in some cases, the highest performance (i.e.,
latency) query plan can also be the most power efficient
7 IMPACT OF ENERGY-AWARE QUERY OP- and energy efficient plan. In that case, all three optimizers
TIMIZATION would achieve the same energy saving. However, at the
Our previous work [12] proposed a composite query coentire workload level, the accurate energy cost estimation
model that considers both latency and energy of the quérglps reveal the tradeoffs in the plan selection to find more
plans. Furthermore, the model can be configured to reflestergy-efficient plans. Thus, we advocate integratinggner
the energy/performance tradeoff the DB Administer wisheost estimation model into the current optimizer to analyze
to adopt. Obviously, the effectiveness of such a cost modbk energy cost profile of different configurations in DBMS.
depends on how accurately we estimate the energy/latenc )
of the visited plans. In this section, we explore the impaét2 Plan Selection
of our energy models on query optimization towards enerdyp further explore the impacts of our model on query
consumption. First, we provide an energy efficiency studyptimization, we also study the patterns of plan selection.
based on the energy consumption data of executing quett@s example, the chosen plans of Query 10 of the standard
optimized by three different query optimizers. Workload$PC-H benchmark are differentin different optimizers (Fig
are processed by a PostgreSQL system with three differe 20). In particular, when the optimization goal changes
ent flavors of query cost model in its query optimizefrom performance (Figure 20(a)) to power (Figure 20(b)),
— Traditional (the original PostgreSQL cost model thatve see indexed scans replaced by sequential scans, and
only considers query latencypower-aware(the optimizer hash joins by sort merge and nested loop joins. With more
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Fig. 20. Three selected paths from three optimizers (i.e., (a) Traditional, (b) Power-aware [12] and (c) RLS model)
using TPC-H Q10 under the 100GB database size

TABLE 5
Change of plan selection from Traditional to the RLS model under different database sizes.
Scan Join
Size Sequential| Index | Bitmap | Unchanged| Nestedloop| Sort-merge| Hash | Unchanged

0-4KB 48.7% 3.6% 0.2% 47.5% 34% 0% 0.1% 65.9%
4KB-100MB 39.2% 26.6% 6.7% 27.5% 16.4% 15.5% 2.1% 76%
100MB-1GB 9.4% 49.1% | 12.2% 29.3% 16% 17.3% 10% 56.7%
1GB-1TB 4.7% 42.6% | 17.3% 46% 8.3% 34.6% 9.2% 47.9%
1TB-10TB 0% 21.7% 3.7% 74.6% 0.3% 56.7% 14.4% 28.6%

accurate energy estimation (Figure 20(c)), the two sarperations and acceptable 1/O references.
merge joins are further replaced by nested loop joins. This
confirms our findings in Section 4.2 that hash join consum& CONCLUSION

more energy and sequential scan sometimes has beftgfs paper argues for the importance of building accurate
energy efficiency than indexed scan. Similar observatiogfd robust models for energy cost estimation in database
are made in many other queries. systems. For that purpose, we conducted system identi-

We present all the plan change statistics in Table fication experiments on a database server to explore the
using all 5000 queries from Section 6.3. Each number fifsential components of possible energy models. Based
Table 5 represents the percentage of selected operator e those findings, we proposed and evaluated a two-level
changing the optimization goal from performanceat €nergy estimation model: we started from a series of heuris-
ditional) to energy efficiency RLS model). For example, tic models that describe the unit-energy cost of individual
under database size of 1GB-1TB, when we change tfRlational operators and important database operatidns fo
optimizer fromTraditional to RLS model, the same algo- Iowing our empirical results, and used a RLS estimator
rithm was picked for 47.9% of the join queries. Meanwhild© tune cost coefficients of static models according to the
we also see 34.6% of the queries changed to sort mef§gdback signal. Such a two-level modeling solution can
join (from other join algorithms). We have the fonowingtolerate high system dynamics and workload variations.
observations from Table 5. Although sometimes the energj: sSummary, our models are found to be effective as
aware optimizer chooses the same algorithrifirasitional, the average estimation error is below 10%. We strongly
on average around 54% of the cases we saw a changd@lieve our work serves as the basis for energy-aware query
selected plan. This clearly shows the great opportuniies @°timization — a key component in building energy-efficient
reaching different energy/performance tradeoffs by extendatabase management systems.
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