CIS 6930/4930 Computer and Network Security

Topic 5.1 Basic Number Theory --Foundation of Public Key Cryptography

Review of Modular Arithmetic

Remainders and Congruency

- For any integer a and any positive integer n, there are two unique integers q and r, such that 0 ≤ r < n and a = qn + r
 - r is the remainder of a divided by n, written r = a mod n

Example: $12 = 2*5 + 2 \rightarrow 2 = 12 \mod 5$

a and *b* are *congruent* modulo *n*, written
 a ≡ *b* mod *n*, if *a* mod *n* = *b* mod *n*

Example: 7 mod 5 = 12 mod 5 \rightarrow 7 = 12 mod 5

Remainders (Cont'd)

 For any positive integer n, the integers can be divided into n equivalence classes according to their remainders modulo n

– denote the set as Z_n

 i.e., the (mod n) operator maps all integers into the set of integers Z_n={0, 1, 2, ..., (n-1)}

Modular Arithmetic

Modular addition

 $- [(a \mod n) + (b \mod n)] \mod n = (a+b) \mod n$

Example: $[16 \mod 12 + 8 \mod 12] \mod 12 = (16 + 8) \mod 12 = 0$

Modular subtraction

 $- [(a \mod n) - (b \mod n)] \mod n = (a - b) \mod n$

Example: $[22 \mod 12 - 8 \mod 12] \mod 12 = (22 - 8) \mod 12 = 2$

• Modular multiplication

 $-[(a \mod n) \times (b \mod n)] \mod n = (a \times b) \mod n$

Example: $[22 \mod 12 \times 8 \mod 12] \mod 12 = (22 \times 8) \mod 12 = 8$

Properties of Modular Arithmetic

Commutative laws

$$-(w + x) \mod n = (x + w) \mod n$$

- $-(w \times x) \mod n = (x \times w) \mod n$
- Associative laws
 - $-[(w + x) + y] \mod n = [w + (x + y)] \mod n$
 - $[(w \times x) \times y] \mod n = [w \times (x \times y)] \mod n$
- Distributive law

 $-[w \times (x + y)] \mod n = [(w \times x) + (w \times y)] \mod n$

Properties (Cont'd)

- Idempotent elements
 - $-(0+m) \mod n = m \mod n$
 - $-(1 \times m) \mod n = m \mod n$
- Additive inverse (-w)
 - for each $m \in \mathbb{Z}_n$, there exists z such that $(m + z) \mod n = 0$

Example: 3 are 4 are additive inverses mod 7, since $(3 + 4) \mod 7 = 0$

- Multiplicative inverse
 - for each positive $m \in \mathbb{Z}_n$, is there a z s.t. (m * z) mod n = 1

Multiplicative Inverses

• Don't always exist!

- Ex.: there is no z such that $6 \times z = 1 \mod 8$ (m = 6 and n=8)

Z	0	1	2	3	4	5	6	7	
б×z	0	6	12	18	24	30	36	42	•
6×z mod 8	0	6	4	2	0	6	4	2	

- An positive integer $m \in \mathbb{Z}_n$ has a multiplicative inverse $m^{-1} \mod n$ iff gcd(m, n) = 1, i.e., m and n are relatively prime
 - \Rightarrow If *n* is a prime number, then all positive elements in \mathbb{Z}_n have multiplicative inverses

Inverses (Cont'd)

Ζ	0	1	2	3	4	5	6	7
5×z	0	5	10	15	20	25	30	35
5×z mod 8	0	5	2	7	4	1	6	3

Finding the Multiplicative Inverse

- Given m and n, how do you find $m^{-1} \mod n$?
- Extended Euclid's Algorithm
 exteuclid(m,n):
 - $m^{-1} \mod n = \mathbf{v}_{n-1}$
 - if $gcd(m,n) \neq 1$ there is no multiplicative inverse $m^{-1} \mod n$

Example

x	q_x	r _x	<i>u</i> _x	v_x
0	-	35	1	0
1	-	12	0	1
2	2	11	1	-2
3	1	1	-1	_3
4	11	0	12	-35
gcd(3 1 <i>2</i> -1	5,12) = 1 mod 35 =	1 = / -	1*35 + 12*3 mo	$\sqrt{3*12}$

Modular Division

If the inverse of b mod n exists, then
 (a mod n) / (b mod n) = (a * (b⁻¹ mod n))mod n

Example: $(13 \mod 11) / (4 \mod 11) = (13*(4^{-1} \mod 11)) \mod 11 = (13*3) \mod 11 = 6$

Example: (8 mod 10) / (4 mod 10) not defined since 4 does not have a multiplicative inverse mod 10

Modular Exponentiation (Power)

Modular Powers

Example: show the powers of 3 mod 7

i	0	1	2	3	4	5	6	7	8
3 ⁱ	1	3	9	27	81	243	729	2187	6561
$3^i \mod 7$	1	3	2	6	4	5	1	3	2

And the powers of $2 \mod 7$

i	0	1	2	3	4	5	6	7	8	9
2^i	1	2	4	8	16	32	64	128	256	512
$2^i \mod 7$	1	2	4	1	2	4	1	2	4	1

Fermat's "Little" Theorem

If p is prime
 ...and a is a positive integer not divisible by p,
 ...then a^{p-1} ≡ 1 (mod p)

Example: 11 is prime, 3 not divisible by 11, so $3^{11-1} = 59049 \equiv 1 \pmod{11}$

Example: 37 is prime, 51 not divisible by 37, so $51^{37-1} \equiv 1 \pmod{37}$

Proof of Fermat's Theorem

- Observation: {a mod p, 2a mod p, ..., (p-1)a mod p} = {1, 2, ..., (p-1)}. [(a mod p) ×(2a mod p) ×... ×((p-1)a mod p)] = a ×2a ×.. ×(p-1)a mod p (p-1)! = (p-1)! × a^{p-1} mod p
- Thus, $a^{p-1} \equiv 1 \mod p$.

The Totient Function

• $\phi(n) = |Z_n^*| = \text{the number of integers less than } n$ and relatively prime to n

a) if *n* is prime, then $\phi(n) = n-1$

Example: $\phi(7) = 6$

b) if $n = p^{\alpha}$, where p is prime and $\alpha > 0$, then $\phi(n) = (p-1)^* p^{\alpha-1}$

Example: $\phi(25) = \phi(5^2) = 4*5^1 = 20$

c) if n=p*q, and p, q are relatively prime, then $\phi(n) = \phi(p)*\phi(q)$

Example: $\phi(15) = \phi(5^*3) = \phi(5)^* \phi(3) = 4^* 2 = 8$

Euler's Theorem

• For every *a* and *n* that are relatively prime, $a^{\phi(n)} \equiv 1 \mod n$

Example: For a = 3, n = 10, which relatively prime: $\phi(10) = \phi(2*5) = \phi(2) * \phi(5) = 1*4 = 4$ $3^{\phi(10)} = 3^4 = 81 \equiv 1 \mod 10$

Example: For a = 2, n = 11, which are relatively prime: $\phi(11) = 11 - 1 = 10$ $2^{\phi(11)} = 2^{10} = 1024 \equiv 1 \mod 11$

More Euler...

• Variant:

for all n, $a^{k\phi(n)+1} \equiv a \mod n$ for all a in \mathbb{Z}_n^* , and all non-negative k

Example: for n = 20, a = 7, $\phi(n) = 8$, and k = 3:

 $7^{3*8+1} \equiv 7 \mod 20$

• Generalized Euler's Theorem: for n = pq (p and q distinct primes), $a^{k\phi(n)+1} \equiv a \mod n$ for all a in \mathbb{Z}_n , and all non-negative k

Example: for n = 15, a = 6, $\phi(n) = 8$, and k = 3: $6^{3*8+1} \equiv 6 \mod 15$

Modular Exponentiation

• $x^{y} \mod n = x^{y \mod \phi(n)} \mod n$

Example:
$$x = 5$$
, $y = 7$, $n = 6$, $\phi(6) = 2$
 $5^7 \mod 6 = 5^7 \mod 2 \mod 6 = 5 \mod 6$

• by this, if $y \equiv 1 \mod \phi(n)$, then $x^y \mod n = x \mod n$

Example: $x = 2, y = 101, n = 33, \phi(33) = 20, 101 \mod 20 = 1$ $2^{101} \mod 33 = 2 \mod 33$

The Powers of An Integer, Modulo n

- Consider the expression $a^m \equiv 1 \mod n$
- If a and n are relatively prime, then there is at least one integer m that satisfies the above equation
- Ex: for *a* = 3 and *n* = 7, what is *m*?

i	1	2	3	4	5	6	7	8	9
3 ⁱ mod 7	3	2	6	4	5	1	3	2	6

The Power (Cont'd)

- The smallest positive exponent *m* for which the above equation holds is referred to as...
 - the order of a (mod n), or
 - the length of the period generated by a

Understanding Order of a (mod n)

• Powers of some integers a modulo 19

а	a^2	<i>a</i> ³	<i>a</i> ⁴	a^5	<i>a</i> ⁶	a ⁷	a^8	a ⁹	<i>a</i> ¹⁰	<i>a</i> ¹¹	<i>a</i> ¹²	<i>a</i> ¹³	<i>a</i> ¹⁴	<i>a</i> ¹⁵	<i>a</i> ¹⁶	<i>a</i> ¹⁷	<i>a</i> ¹⁸	$\mathbf{\Psi}$
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	4	8	16	13	7	14	9	18	17	15	11	3	6	12	5	10	1	18
4	16	7	9	17	11	6	5	1	4	16	7	9	17	11	6	5	1	9
7	11	1	7	11	1	7	11	1	7	11	1	7	11	1	7	11	1	3
8	7	18	11	12	1	8	7	18	11	12	1	8	7	18	11	12	1	6
9	5	7	6	16	11	4	17	1	9	5	7	6	16	11	4	17	1	9
18	1	18	1	18	1	18	1	18	1	18	1	18	1	18	1	18	1	2

order

Observations on The Previous Table

- The length of each period divides 18= φ(19)
 i.e., the lengths are 1, 2, 3, 6, 9, 18
- Some of the sequences are of length 18
 - e.g., the base 2 generates (via powers) all members of \mathcal{Z}_n^*
 - The base is called the primitive root
 - The base is also called the generator when n is prime

Reminder of Results

Totient function:

if *n* is prime, then $\phi(n) = n-1$ if $n = p^{\alpha}$, where *p* is prime and $\alpha > 0$, then $\phi(n) = (p-1)^* p^{\alpha-1}$ if n=p*q, and *p*, *q* are relatively prime, then $\phi(n) = \phi(p)^* \phi(q)$

Example: $\phi(7) = 6$

Example: $\phi(25) = \phi(5^2) = 4*5^1 = 20$

Example: $\phi(15) = \phi(5*3) = \phi(5) * \phi(3) = 4 * 2 = 8$

Reminder (Cont'd)

• Fermat: If p is prime and a is positive integer not divisible by p, then $a^{p-1} \equiv 1 \pmod{p}$

Example: 11 is prime, 3 not divisible by 11, so $3^{11-1} = 59049 \equiv 1 \pmod{11}$

Euler: For every *a* and *n* that are relatively prime, then $a^{\alpha(n)} \equiv 1 \mod n$

Example: For a = 3, n = 10, which relatively prime: $\phi(10) = 4, 3 \phi(10) = 3^4 = 81 \equiv 1 \mod 10$

Variant: for all a in \mathbb{Z}_n^* , and all non-negative k, $a^{k\phi(n)+1} \equiv a \mod n$

Example: for n = 20, a = 7, $\phi(n) = 8$, and k = 3: $7^{3*8+1} \equiv 7 \mod 20$

Generalized Euler's Theorem: for n = pq (*p* and *q* are distinct primes), all *a* in \mathbb{Z}_n , and all non-negative *k*, $a^{k\phi(n)+1} \equiv a \mod n$

Example: for n = 15, a = 6, $\phi(n) = 8$, and k = 3: $6^{3*8+1} \equiv 6 \mod 15$

 $x^y \mod n = x^{y \mod \phi(n)} \mod n$

Example: x = 5, y = 7, n = 6, $\phi(6) = 2$, $5^7 \mod 6 = 5^7 \mod 2 \mod 6 = 5 \mod 6$

Computing Modular Powers Efficiently

- The repeated squaring algorithm for computing a^b (mod n)
- Let *b_i* represent the *i*th bit of *b* (total of *k* bits)

Computing (Cont'd)

Algorithm modexp(a,b,n)

Example

Compute *a^b* (mod *n*) = 7⁵⁶⁰ mod 561 = 1 mod
 561

Q: Can some other result be used to compute this particular example more easily? (Note: 561 = 3*11*17.)

Exercise

- $\phi(7) = 7 1 = 6$
- $\phi(21) = \phi(3*7) = \phi(3)*\phi(7) = 2*6=12$
- $\phi(33) = \phi(3*11) = \phi(3)*\phi(11) = 2*10 = 20$
- $\phi(12) = \phi(3^*4) = \phi(3)^*\phi(2^2) = 2^*((2^{-1})^*2^{2^{-1}}) = 4$
- $2^{100} \mod 33 = 2^{100} \mod \phi(33) \mod 33$

 $= 2^{100 \mod 20} \mod 33 = 2^0 \mod 33 = 1$

Discrete Logarithms

Square Roots

• x is a non-trivial square root of 1 mod n if it satisfies the equation $x^2 \equiv 1 \mod n$, but x is neither 1 nor -1 mod n

Ex: 6 is a square root of 1 mod 35 since $6^2 \equiv 1 \mod 35$

- Theorem: if there exists a non-trivial square root of 1 mod *n*, then *n* is not a prime
 - i.e., prime numbers will not have non-trivial square roots

Roots (Cont'd)

• If $n = 2^{\alpha_0} p_1^{\alpha_1} p_2^{\alpha_2} \dots p_k^{\alpha_k}$, where $p_1 \dots p_k$ are distinct primes > 2, then the number of square roots (including trivial square roots) are:

 -2^k if $\alpha_0 \leq 1$

Example: for $n = 70 = 2^1 * 5^1 * 7^1$, $\alpha_0 = 1$, k = 2, and the number of square roots $= 2^2 = 4$ (1,29,41,69)

 -2^{k+1} if $\alpha_0 = 2$

Example: for $n = 60 = 2^2 * 3^1 * 5^1$, k = 2, the number of square roots $= 2^3 = 8$ (1,11,19,29,31,41,49,59)

 -2^{k+2} if $\alpha_0 > 2$

Example: for $n = 24 = 2^3 * 3^1$, k = 1, the number of square roots $= 2^3 = 8$ (1,5,7,11,13,17,19,23)

Primitive Roots

- Reminder: the highest possible order of *a* (mod *n*) is φ(*n*)
- If the order of a (mod n) is φ(n), then a is referred to as a primitive root of n
 - for a prime number p, if a is a primitive root of p, then a, a^2 , ..., $a^{p-1} \mod p$ are all distinct numbers
- No simple general formula to compute primitive roots modulo n

trying out all candidates

Discrete Logarithms

- For a primitive root *a* of a number *p*, where $a^i \equiv b \mod p$, for some $0 \le i \le p-1$
 - the exponent *i* is referred to as *the index of b* for the base *a* (mod *p*), denoted as ind_{*a,p*}(*b*)
 - *i* is also referred to as the *discrete logarithm of b to the base a, mod p*

Logarithms (Cont'd)

Example: 2 is a primitive root of 19.
 The powers of 2 mod 19 =

b	1	2	3	4	5	6	7	8	9
$ind_{2,19}(b) = log(b) base 2 mod 19$	0	1	13	2	16	14	6	3	8
	10	11	12	13	14	15	16	17	18
	17	12	15	5	7	11	4	10	9

Given *a*, *i*, and *p*, computing $b = a^i \mod p$ is straightforward

Computing Discrete Logarithms

- However, given a, b, and p, computing i = ind_{a,p}(b) is difficult
 - Used as the basis of some public key cryptosystems

Computing (Cont'd)

Some properties of discrete logarithms

$$- \operatorname{ind}_{a,p}(1) = 0 \text{ because } a^0 \mod p = 1 \qquad \phi(p), \text{ not } p!$$

$$- \operatorname{ind}_{a,p}(a) = 1 \text{ because } a^1 \mod p = a$$

$$- \operatorname{ind}_{a,p}(yz) = (\operatorname{ind}_{a,p}(y) + \operatorname{ind}_{a,p}(z)) \mod \phi(p)$$
Examples ind (5*2) = (ind (5) + ind (2)) \mod 18 = 10

Example: $\operatorname{ind}_{2,19}(5*3) = (\operatorname{ind}_{2,19}(5) + \operatorname{ind}_{2,19}(3)) \mod \mathbf{18} = \mathbf{11}$

$$- \operatorname{ind}_{a,p}(y^r) = (\operatorname{rind}_{a,p}(y)) \operatorname{mod} \phi(p)$$

Example: $ind_{2,19}(3^3) = (3*ind_{2,19}(3)) \mod \mathbf{18} =$

More on Discrete Logarithms

- $x \equiv a^{ind_{a,p}(x)} \mod p$, Ex: $3 = 2^{13} \mod 19$
 - 1) $a^{\operatorname{ind}_{a,p}(xy)} \mod p \equiv (a^{\operatorname{ind}_{a,p}(x)} \mod p)(a^{\operatorname{ind}_{a,p}(y)} \mod p)$
 - 2) $a^{\operatorname{ind}_{a,p}(xy)} \mod p \equiv (a^{\operatorname{ind}_{a,p}(x)+\operatorname{ind}_{a,p}(y)}) \mod p$
 - 3) by Euler's theorem: $a^z \equiv a^q \mod p$ iff $z \equiv q \mod \phi(p)$

Ex: $2^{11} \mod 19 = 2^{29} \mod 19 \iff 11 \equiv 29 \mod 18$