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Topic 5.1 Basic Number Theory --
Foundation of Public Key Cryptography
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Review of Modular Arithmetic
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Remainders and Congruency

• For any integer a and any positive integer n, 
there are two unique integers q and r, such 
that 0  r < n and a = qn + r

– r is the remainder of a divided by n, 
written r = a mod n

• a and b are congruent modulo n, written 
a ≡ b mod n, if a mod n = b mod n
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Example:  12 = 2*5 + 2    2 = 12 mod 5

Example:  7 mod 5 = 12 mod 5   7  12 mod 5



Remainders (Cont’d)

• For any positive integer n, the integers can be 
divided into n equivalence classes according 
to their remainders modulo n

– denote the set as Zn

• i.e., the (mod n) operator maps all integers 
into the set of integers Zn={0, 1, 2, …, (n-1)}
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Modular Arithmetic
• Modular addition

– [(a mod n) + (b mod n)] mod n = (a+b) mod n

• Modular subtraction

– [(a mod n) – (b mod n)] mod n = (a – b) mod n

• Modular multiplication

– [(a mod n)  (b mod n)] mod n = (a  b) mod n
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Example: [16 mod 12 + 8 mod 12] mod 12 = (16 + 8) mod 12 = 0

Example: [22 mod 12 - 8 mod 12] mod 12 = (22 - 8) mod 12 = 2

Example: [22 mod 12  8 mod 12] mod 12 = (22  8) mod 12 = 8



Properties of Modular Arithmetic
• Commutative laws

– (w + x) mod n = (x + w) mod n

– (w  x) mod n = (x  w) mod n

• Associative laws
– [(w + x) + y] mod n = [w + (x + y)] mod n

– [(w  x)  y] mod n = [w  (x  y)] mod n

• Distributive law
– [w  (x + y)] mod n = [(w  x)+(w  y)] mod n
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Properties (Cont’d)
• Idempotent elements

– (0 + m) mod n = m mod n

– (1 m) mod n = m mod n

• Additive inverse (–w)

– for each m  Zn, there exists z such that 
(m + z) mod n = 0

• Multiplicative inverse

– for each positive m  Zn, is there a z s.t. 
(m * z) mod n = 1
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Example: 3 are 4 are additive inverses mod 7, since (3 + 4) mod 7 = 0



Multiplicative Inverses
• Don’t always exist!

– Ex.: there is no z such that 6  z = 1 mod 8 (m =6 and n=8)

• An positive integer m Zn has a multiplicative 
inverse m-1 mod n iff gcd(m, n) = 1, i.e., m and n are 
relatively prime

 If n is a prime number, then all positive elements in Zn

have multiplicative inverses
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z 0 1 2 3 4 5 6 7

6z 0 6 12 18 24 30 36 42

6z mod 8 0 6 4 2 0 6 4 2

…



Inverses (Cont’d)
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z 0 1 2 3 4 5 6 7

5z 0 5 10 15 20 25 30 35

5z mod 8 0 5 2 7 4 1 6 3



Finding the Multiplicative Inverse

• Given m and n, how do you find m-1 mod n?

– Extended Euclid’s Algorithm 
exteuclid(m,n):
m-1 mod n = vn-1
– if gcd(m,n)  1 there is no multiplicative inverse 

m-1 mod n
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Example
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x qx rx ux vx

0 - 35 1 0

1 - 12 0 1

2 2 11 1 -2

3 1 1 -1 3

4 11 0 12 -35

gcd(35,12) =   1 =         -1*35 +    3*12

12-1 mod 35 = 3 (i.e., 12*3 mod 35 = 1)



Modular Division

• If the inverse of b mod n exists, then 
(a mod n) / (b mod n) = (a * (b-1 mod n))mod n
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Example: (13 mod 11) / (4 mod 11) = (13*(4-1 mod 11)) mod 

11 = (13 * 3) mod 11 = 6

Example: (8 mod 10) / (4 mod 10) not defined since 

4 does not have a multiplicative inverse mod 10



Modular Exponentiation (Power)
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Modular Powers
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Example: show the powers of 3 mod 7

Example: powers of 2 mod 7

0 1 2 3 4 5 6 7 8

1 3 9 27 81 243 729 2187 6561

1 3 2 6 4 5 1 3 2

0 1 2 3 4 5 6 7 8 9

1 2 4 8 16 32 64 128 256 512

1 2 4 1 2 4 1 2 4 1

i

3i

3i mod 7

i

2i

2i mod 7

And the powers of 2 mod 7



Fermat’s “Little” Theorem
• If p is prime 

…and a is a positive integer not divisible by p, 
…then ap-1  1 (mod p)
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Example: 11 is prime, 3 not divisible by 11,

so 311-1 = 59049  1 (mod 11)

Example: 37 is prime, 51 not divisible by 37,

so 5137-1  1 (mod 37)



Proof of Fermat’s Theorem

• Observation: {a mod p, 2a mod p, …, (p-1)a 
mod p} = {1, 2, …, (p-1)}.

[(a mod p) ×(2a mod p) ×…   ×((p-1)a mod p)] 

= a ×2a ×.. ×(p-1)a mod p

(p-1)! =  (p-1)! × ap-1 mod p

• Thus, ap-1  1 mod p.
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The Totient Function

• (n) = |Zn
*| = the number of integers less than n

and relatively prime to n
a) if n is prime, then (n) = n-1

b) if n = p, where p is prime and  > 0, then 
(n) = (p-1)*p-1

c) if n=pq, and p, q are relatively prime, then 
(n) = (p)*(q)
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Example: (7) = 6

Example: (15) = (5*3) = (5) * (3) = 4 * 2 = 8

Example: (25) = (52) = 4*51 = 20



Euler’s Theorem
• For every a and n that are relatively prime, 

aø(n)  1 mod n
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Example: For a = 3, n = 10, which relatively prime:

(10) = (2*5) = (2) * (5) = 1*4 =  4

3 (10) = 34 = 81  1 mod 10

Example: For a = 2, n = 11, which are relatively prime:

(11) = 11-1 = 10

2 (11) = 210 = 1024  1 mod 11



More Euler…
• Variant:

for all n, a k(n)+1  a mod n for all a in Zn*, and all non-
negative k

• Generalized Euler’s Theorem:
for n = pq (p and q distinct primes),
a k(n)+1  a mod n for all a in Zn, and all 
non-negative k
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Example: for n = 20, a = 7, (n) = 8, and k = 3:

7 3*8+1  7 mod 20 

Example: for n = 15, a = 6, (n) = 8, and  k = 3:

6 3*8+1  6 mod 15 



Modular Exponentiation
• xy mod n = xy mod (n) mod n

• by this, if y  1 mod (n), then xy mod n = x mod n
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Example: x = 5, y = 7, n = 6, (6) = 2

57 mod 6 = 57 mod 2 mod 6 = 5 mod 6

Example: 

x = 2, y = 101, n = 33, (33) = 20, 101 mod 20 = 1

2101 mod 33 = 2 mod 33



The Powers of An Integer, Modulo n

• Consider the expression am  1 mod n

• If a and n are relatively prime, then there is at 
least one integer m that satisfies the above 
equation

• Ex: for a = 3 and n = 7, what is m?
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1 2 3 4 5 6 7 8 9

3 2 6 4 5 1 3 2 6

i

3i mod 7



The Power  (Cont’d)

• The smallest positive exponent m for which 
the above equation holds is referred to as…

– the order of a (mod n), or

– the length of the period generated by a
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Understanding Order of a (mod n)
• Powers of some integers a modulo 19
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a a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 a18

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 4 8 16 13 7 14 9 18 17 15 11 3 6 12 5 10 1

4 16 7 9 17 11 6 5 1 4 16 7 9 17 11 6 5 1

7 11 1 7 11 1 7 11 1 7 11 1 7 11 1 7 11 1

8 7 18 11 12 1 8 7 18 11 12 1 8 7 18 11 12 1

9 5 7 6 16 11 4 17 1 9 5 7 6 16 11 4 17 1

18 1 18 1 18 1 18 1 18 1 18 1 18 1 18 1 18 1

1

18

9

3

6

9

2


o
rd

er



Observations on The Previous Table

• The length of each period divides 18= (19) 

– i.e., the lengths are 1, 2, 3, 6, 9, 18

• Some of the sequences are of length 18 

– e.g., the base 2 generates (via powers) all 
members of Zn

*

– The base is called the primitive root

– The base is also called the generator when n is 
prime
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Reminder of Results
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Totient function:
if n is prime, then (n) = n-1

if n = p, where p is prime and  > 0, then (n) = (p-1)*p-1

if n=pq, and p, q are relatively prime, then (n) = (p)*(q)

Example: (7) = 6

Example: (15) = (5*3) = (5) * (3) = 4 * 2 = 8

Example: (25) = (52) = 4*51 = 20



Reminder (Cont’d)
• Fermat: If p is prime and a is positive integer not divisible by p, then

ap-1  1 (mod p)
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Example: 11 is prime, 3 not divisible by 11, so 311-1 = 59049  1 (mod 11)

Euler: For every a and n that are relatively prime, then aø(n)  1 mod n

Example: For a = 3, n = 10, which relatively prime: (10) =  4, 3 (10) = 34 = 81  1 mod 10 

Generalized Euler’s Theorem: for n = pq (p and q are distinct primes), all a in Zn ,

and all non-negative k, a k(n)+1  a mod n

Example: for n = 20, a = 7, (n) = 8, and k = 3: 7 3*8+1  7 mod 20 

Example: for n = 15, a = 6, (n) = 8, and  k = 3: 6 3*8+1  6 mod 15 

Variant: for all a in Zn*, and all non-negative k, a k(n)+1  a mod n

Example: x = 5, y = 7, n = 6, (6) = 2, 57 mod 6 = 57 mod 2 mod 6 = 5 mod 6

xy mod n = xy mod (n) mod n
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Computing Modular Powers 
Efficiently

• The repeated squaring algorithm for
computing ab (mod n)

• Let bi represent the ith bit of b (total of k bits)



Computing (Cont’d)

d = 1;

for i = k downto 1 do

d = (d * d) % n;  /* square */

if (bi == 1) 

d = (d * a) % n;    /* step 2 */

endif

enddo

return d;

Requires time  k = logarithmic in b

Algorithm modexp(a,b,n)

at each iteration, not just at end
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Example
• Compute ab (mod n) = 7560 mod 561 = 1 mod 

561

– 56010 = 10001100002
i 10 9 8 7 6 5 4 3 2 1

bi 1 0 0 0 1 1 0 0 0 0

d 1 7 49 157 526 160 241 298 166 67 1

step 2

Q: Can some other result be used to compute this particular 

example more easily? (Note: 561 = 3*11*17.)



Exercise

• φ(7) = 7-1 = 6 

• φ(21) = φ(3*7) = φ(3)*φ (7) = 2 * 6 =12

• φ(33) = φ(3*11) = φ(3)*φ (11) = 2 * 10 = 20

• φ(12) = φ(3*4) = φ(3)*φ (22) = 2 *( (2-1)*22-1 ) = 4 

• 2100 mod 33  = 2100 mod (33) mod 33

= 2100 mod 20 mod 33 = 20 mod 33 = 1
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Discrete Logarithms
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Square Roots

• x is a non-trivial square root of 1 mod n if it 
satisfies the equation x2  1 mod n, but x is 
neither 1 nor -1 mod n

• Theorem: if there exists a non-trivial square 
root of 1 mod n, then n is not a prime

– i.e., prime numbers will not have non-trivial 
square roots

Ex: 6 is a square root of 1 mod 35 since 62  1 mod 35                 
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Roots (Cont’d)
• If n = 20 p1

1 p2
2 … pk

k , where p1…pk are distinct 
primes > 2, then the number of square roots
(including trivial square roots) are:

– 2k if 0  1

– 2k+1 if 0 = 2

– 2k+2 if 0 > 2

Example: for n = 70 = 21 * 51 * 71 , 0 = 1, k = 2, and

the number of square roots = 22 = 4  (1,29,41,69)

Example: for n = 60 = 22 * 31 * 51, k = 2,                 

the number of square roots = 23 = 8 (1,11,19,29,31,41,49,59)

Example: for n = 24 = 23 * 31, k = 1,

the number of square roots = 23 = 8 (1,5,7,11,13,17,19,23)
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Primitive Roots
• Reminder: the highest possible order of 

a (mod n) is (n)

• If the order of a (mod n) is (n), then a is 
referred to as a primitive root of n
– for a prime number p, if a is a primitive root of p, 

then a, a2, …, ap-1 mod p are all distinct numbers

• No simple general formula to compute 
primitive roots modulo n 
– trying out all candidates
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Discrete Logarithms

• For a primitive root a of a number p, where 
ai ≡ b mod p, for some 0  i  p-1

– the exponent i is referred to as the index of b for 
the base a (mod p), denoted as inda,p(b)

– i is also referred to as the discrete logarithm of b 
to the base a, mod p
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Logarithms (Cont’d)

• Example: 2 is a primitive root of 19. 
The powers of 2 mod 19 =

b 1 2 3 4 5 6 7 8 9

ind2,19 (b) = 

log(b) base 2 mod 19
0 1 13 2 16 14 6 3 8

10 11 12 13 14 15 16 17 18

17 12 15 5 7 11 4 10 9

Given a, i, and p, computing b = ai mod p is straightforward
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Computing Discrete Logarithms

• However, given a, b, and p, computing i = 
inda,p(b) is difficult

– Used as the basis of some public key 
cryptosystems
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Computing (Cont’d)

• Some properties of discrete logarithms

– inda,p(1) = 0 because a0 mod p = 1

– inda,p(a) = 1 because a1 mod p = a

– inda,p(yz) = (inda,p(y) + inda,p(z)) mod (p)

– inda,p(yr) = (r inda,p(y)) mod (p)

Example: ind2,19(5*3) = (ind2,19(5) + ind2,19(3)) mod 18 = 11 

Example: ind2,19(3
3) = (3*ind2,19(3)) mod 18 =  

(p), not p!
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More on Discrete Logarithms

• x  ainda,p(x) mod p,

1) ainda,p(xy) mod p  (ainda,p(x) mod p)(ainda,p(y) mod p)

2) ainda,p(xy) mod p  (ainda,p(x)+inda,p(y) ) mod p

3) by Euler’s theorem: azaq mod p iff z q mod (p)

Ex: 3 = 213 mod 19

Ex: 211 mod 19 = 229 mod 19   11  29 mod 18


