CIS 6930/4930 Computer and Network Security

Topic 5.1 Basic Number Theory -Foundation of Public Key Cryptography

Review of Modular Arithmetic

Remainders and Congruency

- For any integer a and any positive integer n, there are two unique integers q and r, such that $0 \leq r<n$ and $a=q n+r$
$-r$ is the remainder of a divided by n, written $r=a \bmod n$

Example: $12=2 * 5+2 \rightarrow 2=12 \bmod 5$

- a and b are congruent modulo n, written $a \equiv b \bmod n$, if $a \bmod n=b \bmod n$

Example: $7 \bmod 5=12 \bmod 5 \rightarrow 7 \equiv 12 \bmod 5$

Remainders (Cont'd)

- For any positive integer n, the integers can be divided into n equivalence classes according to their remainders modulo n
- denote the set as Z_{n}
- i.e., the $(\bmod n)$ operator maps all integers into the set of integers $Z_{n}=\{0,1,2, \ldots,(n-1)\}$

Modular Arithmetic

- Modular addition
$-[(a \bmod n)+(b \bmod n)] \bmod n=(a+b) \bmod n$
Example: $[16 \bmod 12+8 \bmod 12] \bmod 12=(16+8) \bmod 12=0$
- Modular subtraction
$-[(a \bmod n)-(b \bmod n)] \bmod n=(a-b) \bmod n$
Example: [22 $\bmod 12-8 \bmod 12] \bmod 12=(22-8) \bmod 12=2$
- Modular multiplication
$-[(a \bmod n) \times(b \bmod n)] \bmod n=(a \times b) \bmod n$
Example: [22 $\bmod 12 \times 8 \bmod 12] \bmod 12=(22 \times 8) \bmod 12=8$

Properties of Modular Arithmetic

- Commutative laws
$-(w+x) \bmod n=(x+w) \bmod n$
$-(w \times x) \bmod n=(x \times w) \bmod n$
- Associative laws
$-[(w+x)+y] \bmod n=[w+(x+y)] \bmod n$
$-[(w \times x) \times y] \bmod \mathrm{n}=[w \times(x \times y)] \bmod n$
- Distributive law
$-[w \times(x+y)] \bmod n=[(w \times x)+(w \times y)] \bmod n$

Properties (Cont'd)

- Idempotent elements
$-(0+m) \bmod n=m \bmod n$
$-(1 \times m) \bmod n=m \bmod n$
- Additive inverse ($-w$)
- for each $m \in Z_{n}$, there exists z such that $(m+z) \bmod n=0$

Example: 3 are 4 are additive inverses $\bmod 7$, since $(3+4) \bmod 7=0$

- Multiplicative inverse
- for each positive $m \in Z_{n}$, is there a z s.t.
$\left(m^{*} z\right) \bmod n=1$

Multiplicative Inverses

- Don't always exist!
- Ex.: there is no z such that $6 \times z=1 \bmod 8(m=6$ and $n=8)$

z	0	1	2	3	4	5	6	7	
$6 \times z$	0	6	12	18	24	30	36	42	\ldots
$6 \times z \bmod 8$	0	6	4	2	0	6	4	2	

- An positive integer $m \in Z_{n}$ has a multiplicative inverse $m^{-1} \bmod n$ iff $\operatorname{gcd}(m, n)=1$, i.e., m and n are relatively prime
\Rightarrow If n is a prime number, then all positive elements in Z_{n} have multiplicative inverses

Inverses (Cont’d)

z	0	1	2	3	4	5	6	7
$5 \times \mathrm{z}$	0	5	10	15	20	25	30	35
$5 \times \mathrm{z} \bmod 8$	0	5	2	7	4	1	6	3

Finding the Multiplicative Inverse

- Given m and n, how do you find $m^{-1} \bmod n$?
- Extended Euclid's Algorithm exteuclid (m,n): $m^{-1} \bmod n=\mathrm{v}_{\mathrm{n}-1}$
- if $\operatorname{gcd}(m, n) \neq 1$ there is no multiplicative inverse $m^{-1} \bmod n$

Example

\boldsymbol{x}	$\boldsymbol{q}_{\boldsymbol{x}}$	$\boldsymbol{r}_{\boldsymbol{x}}$	$\boldsymbol{u}_{\boldsymbol{x}}$	$\boldsymbol{v}_{\boldsymbol{x}}$
0	-	35	1	0
1	-	12	0	1
2	2	11	1	-2
3	1	1	-1	3
4	11	0	12	-35
$\operatorname{gcd}(35,12)=1=\int-1 * 35+3 * 12$				

$\mathbf{1 2 - 1} \bmod 35=\mathbf{3}$ (i.e., $\mathbf{1 2 * 3} \bmod 35=1)$

Modular Division

- If the inverse of $b \bmod n$ exists, then $(a \bmod n) /(b \bmod n)=\left(a^{*}\left(b^{-1} \bmod n\right)\right) \bmod n$

> Example: $(13 \bmod 11) /(4 \bmod 11)=\left(13^{*}\left(4^{-1} \bmod 11\right)\right) \bmod$ $11=(13 * 3) \bmod 11=6$

Example: $(8 \bmod 10) /(4 \bmod 10)$ not defined since
4 does not have a multiplicative inverse mod 10

Modular Exponentiation (Power)

Modular Powers

Example: show the powers of $3 \bmod 7$

i	0	1	2	3	4	5	6	7	8
3^{i}	1	3	9	27	81	243	729	2187	6561
$3^{i} \bmod 7$	1	3	2	6	4	5	1	3	2

And the powers of $2 \bmod 7$

i	0	1	2	3	4	5	6	7	8	9
2^{i}	1	2	4	8	16	32	64	128	256	512
$2^{i} \bmod 7$	1	2	4	1	2	4	1	2	4	1

Fermat's "Little" Theorem

- If p is prime
...and a is a positive integer not divisible by p,
\ldots..then $a^{p-1} \equiv 1(\bmod p)$
Example: 11 is prime, 3 not divisible by 11,

$$
\text { so } 3^{11-1}=59049 \equiv 1(\bmod 11)
$$

Example: 37 is prime, 51 not divisible by 37 ,

$$
\text { so } 51^{37-1} \equiv 1(\bmod 37)
$$

Proof of Fermat's Theorem

- Observation: $\{\operatorname{amod} p, 2 a \bmod p, . . .,(p-1) a$ $\bmod p\}=\{1,2, \ldots,(p-1)\}$.
$[(\operatorname{amod} p) \times(2 a \bmod p) \times \ldots \times((p-1) a \bmod p)]$
$=a \times 2 a \times . . \times(p-1) a \bmod p$ $(p-1)!=(p-1)!\times a^{p-1} \bmod p$
- Thus, $a^{\mathrm{p}-1} \equiv 1 \bmod \mathrm{p}$.

The Totient Function

$\phi(n)=\left|Z_{n}^{*}\right|=$ the number of integers less than n and relatively prime to n
a) if n is prime, then $\phi(n)=n-1$

Example: $\phi(7)=6$
b) if $n=p^{\alpha}$, where p is prime and $\alpha>0$, then

$$
\phi(n)=(p-1)^{*} p^{\alpha-1}
$$

Example: $\phi(25)=\phi\left(5^{2}\right)=4 * 5^{1}=20$
c) if $n=p * q$, and p, q are relatively prime, then

$$
\phi(n)=\phi(p)^{*} \phi(q)
$$

Example: $\phi(15)=\phi(5 * 3)=\phi(5) * \phi(3)=4 * 2=8$

Euler's Theorem

- For every a and n that are relatively prime, $a^{\varnothing(n)} \equiv 1 \bmod n$

Example: For $\mathrm{a}=3, \mathrm{n}=10$, which relatively prime:

$$
\begin{aligned}
& \phi(10)=\phi(2 * 5)=\phi(2) * \phi(5)=1 * 4=4 \\
& 3 \phi(10)=3^{4}=81 \equiv 1 \bmod 10
\end{aligned}
$$

Example: For $\mathrm{a}=2, \mathrm{n}=11$, which are relatively prime:

$$
\begin{aligned}
& \phi(11)=11-1=10 \\
& 2^{\phi(11)}=2^{10}=1024 \equiv 1 \bmod 11
\end{aligned}
$$

More Euler...

- Variant:
for all $n, a^{k \phi(n)+1} \equiv a \bmod n$ for all a in $Z_{n}{ }^{*}$, and all nonnegative k

Example: for $\mathrm{n}=20, \mathrm{a}=7, \phi(\mathrm{n})=8$, and $\mathrm{k}=3$:

$$
7^{3 * 8+1} \equiv 7 \bmod 20
$$

- Generalized Euler's Theorem:
for $n=p q$ (p and q distinct primes),
$a^{k \phi(n)+1} \equiv a \bmod n$ for all a in Z_{n}, and all
non-negative k
Example: for $\mathrm{n}=15, \mathrm{a}=6, \phi(\mathrm{n})=8$, and $\mathrm{k}=3$:

$$
6^{3 * 8+1} \equiv 6 \bmod 15
$$

Modular Exponentiation

- $x^{y} \bmod n=x^{y \bmod \phi(n)} \bmod n$

Example: $\mathrm{x}=5, \mathrm{y}=7, \mathrm{n}=6, \phi(6)=2$

$$
5^{7} \bmod 6=5^{7} \bmod 2 \bmod 6=5 \bmod 6
$$

- by this, if $y \equiv 1 \bmod \phi(n)$, then $x^{y} \bmod \mathrm{n}=x \bmod n$

Example:
$\mathrm{x}=2, \mathrm{y}=101, \mathrm{n}=33, \phi(33)=20,101 \bmod 20=1$ $2^{101} \bmod 33=2 \bmod 33$

The Powers of An Integer, Modulo n

- Consider the expression $a^{m} \equiv 1 \bmod n$
- If a and n are relatively prime, then there is at least one integer m that satisfies the above equation
- Ex: for $a=3$ and $n=7$, what is m ?

\boldsymbol{i}	1	2	3	4	5	6	7	8	9
$3^{i} \bmod 7$	3	2	6	4	5	1	3	2	6

The Power (Cont'd)

- The smallest positive exponent m for which the above equation holds is referred to as...
- the order of a $(\bmod n)$, or
- the length of the period generated by a

Understanding Order of $a(\bmod n)$

- Powers of some integers a modulo 19

a	a^{2}	a^{3}	a^{4}	a^{5}	a^{6}	a^{7}	a^{8}	a^{9}	a^{10}	a^{11}	a^{12}	a^{13}	a^{14}	a^{15}	a^{16}	a^{17}	a^{18}	\mathbf{y}
$\mathbf{1}$	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	$\mathbf{1}$
$\mathbf{2}$	$\mathbf{4}$	$\mathbf{8}$	$\mathbf{1 6}$	$\mathbf{1 3}$	$\mathbf{7}$	$\mathbf{1 4}$	$\mathbf{9}$	$\mathbf{1 8}$	$\mathbf{1 7}$	$\mathbf{1 5}$	$\mathbf{1 1}$	$\mathbf{3}$	$\mathbf{6}$	$\mathbf{1 2}$	$\mathbf{5}$	$\mathbf{1 0}$	$\mathbf{1}$	$\mathbf{1 8}$
$\mathbf{4}$	$\mathbf{1 6}$	$\mathbf{7}$	$\mathbf{9}$	$\mathbf{1 7}$	$\mathbf{1 1}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{1}$	4	16	7	9	17	11	6	5	1	$\mathbf{9}$
$\mathbf{7}$	$\mathbf{1 1}$	$\mathbf{1}$	7	11	1	7	11	1	7	11	1	7	11	1	7	11	1	$\mathbf{3}$
$\mathbf{8}$	$\mathbf{7}$	$\mathbf{1 8}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1}$	8	7	18	11	12	1	8	7	18	11	12	1	$\mathbf{6}$
$\mathbf{9}$	$\mathbf{5}$	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{1 6}$	$\mathbf{1 1}$	$\mathbf{4}$	$\mathbf{1 7}$	$\mathbf{1}$	$\mathbf{9}$	5	7	6	16	11	4	17	1	$\mathbf{9}$
$\mathbf{1 8}$	$\mathbf{1}$	18	1	18	1	18	1	18	1	18	1	18	1	18	1	18	1	$\mathbf{2}$

Observations on The Previous Table

- The length of each period divides $18=\phi(19)$
- i.e., the lengths are $1,2,3,6,9,18$
- Some of the sequences are of length 18
- e.g., the base 2 generates (via powers) all members of $Z_{n}{ }^{*}$
- The base is called the primitive root
- The base is also called the generator when n is prime

Reminder of Results

Totient function:

if n is prime, then $\phi(n)=n-1$
if $n=p^{\alpha}$, where p is prime and $\alpha>0$, then $\phi(n)=(p-1)^{*} p^{\alpha-1}$ if $n=p * q$, and p, q are relatively prime, then $\phi(n)=\phi(p) * \phi(q)$

$$
\begin{aligned}
& \text { Example: } \phi(7)=6 \\
& \hline \hline \text { Example: } \phi(25)=\phi\left(5^{2}\right)=4 * 5^{1}=20 \\
& \hline \text { Example: } \phi(15)=\phi\left(5^{*} 3\right)=\phi(5) * \phi(3)=4 * 2=8
\end{aligned}
$$

Reninder (cont'd)

- Fermat: If p is prime and a is positive integer not divisible by p, then $a^{p-1} \equiv 1(\bmod p)$

Example: 11 is prime, 3 not divisible by 11 , so $3^{11-1}=59049 \equiv 1(\bmod 11)$
Euler: For every a and n that are relatively prime, then $a^{\phi(n)} \equiv 1 \bmod n$
Example: For $\mathrm{a}=3, \mathrm{n}=10$, which relatively prime: $\phi(10)=4,3^{\phi(10)}=3^{4}=81 \equiv 1 \bmod 10$
Variant: for all a in $Z_{\mathrm{n}}{ }^{*}$, and all non-negative $k, a^{k \phi(n)+1} \equiv a \bmod n$

$$
\text { Example: for } \mathrm{n}=20, \mathrm{a}=7, \phi(\mathrm{n})=8 \text {, and } \mathrm{k}=3: 7^{3^{* 8}+1} \equiv 7 \bmod 20
$$

Generalized Euler's Theorem: for $n=p q$ (p and q are distinct primes), all a in Z_{n}, and all non-negative $k, a^{k \phi(n)+1} \equiv a \bmod n$

$$
\text { Example: for } \mathrm{n}=15, \mathrm{a}=6, \phi(\mathrm{n})=8 \text {, and } \mathrm{k}=3: 6^{3^{* *} 8+1} \equiv 6 \bmod 15
$$

$x^{y} \bmod n=x^{y \bmod \phi(n)} \bmod n$

$$
\text { Example: } x=5, y=7, n=6, \phi(6)=2,5^{7} \bmod 6=5^{7 \bmod 2} \bmod 6=5 \bmod 6
$$

Computing Modular Powers Efficiently

- The repeated squaring algorithm for computing $a^{b}(\bmod n)$
- Let b_{i} represent the $i^{\text {th }}$ bit of b (total of k bits)

Computing (Cont'd)

Algorithm modexp ($\mathrm{a}, \mathrm{b}, \mathrm{n}$)
$\mathrm{d}=1$;
for $i=k$ downto 1 do
$\mathbf{d}=(\mathbf{d} * \mathbf{d}) \% \mathbf{n} ; \longleftrightarrow \quad / *$ square */
if ($b_{i}==1$)

$$
\mathbf{d}=(\mathbf{d} * a) \div \mathbf{n} ; \quad / * \operatorname{step} 2 * /
$$

endif
enddo
return d;
at each iteration, not just at end
Requires time $\propto k=$ logarithmic in b

Example

- Compute $a^{b}(\bmod n)=7^{560} \bmod 561=1 \bmod$ 561

\mathbf{i}		$\mathbf{1 0}$	$\mathbf{9}$	$\mathbf{8}$	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$
\mathbf{b}	$\mathbf{1}$									
$\mathbf{b _ { \mathbf { i } }}$		1	0	0	0	1	1	0	0	0
\mathbf{d}	1	49	157	526	160	241	298	166	67	1

Q: Can some other result be used to compute this particular example more easily? (Note: $561=3 * 11 * 17$.)

Exercise

- $\phi(7)=7-1=6$
- $\phi(21)=\phi\left(3^{*} 7\right)=\phi(3) * \phi(7)=2 * 6=12$
- $\phi(33)=\phi\left(3^{*} 11\right)=\phi(3) * \phi(11)=2 * 10=20$
- $\phi(12)=\phi\left(3^{*} 4\right)=\phi(3) * \phi\left(2^{2}\right)=2 *\left((2-1) * 2^{2-1}\right)=4$
- $2^{100} \bmod 33=2^{100} \bmod \phi(33) \bmod 33$
$=2^{100} \bmod 20 \bmod 33=2^{0} \bmod 33=1$

Discrete Logarithms

Square Roots

- x is a non-trivial square root of $1 \bmod n$ if it satisfies the equation $x^{2} \equiv 1 \bmod n$, but x is neither 1 nor $-1 \bmod n$
Ex: 6 is a square root of $1 \bmod 35$ since $6^{2} \equiv 1 \bmod 35$
- Theorem: if there exists a non-trivial square root of $1 \bmod n$, then n is not a prime
- i.e., prime numbers will not have non-trivial square roots

Roots (Cont'd)

- If $n=2^{\alpha_{0}} p_{1}{ }^{\alpha_{1}} p_{2}{ }^{\alpha_{2}} \ldots p_{\mathrm{k}}{ }^{\alpha_{k}}$, where $p_{1} \ldots p_{\mathrm{k}}$ are distinct primes >2, then the number of square roots (including trivial square roots) are:
-2^{k} if $\alpha_{0} \leq 1$
Example: for $\mathrm{n}=70=2^{1 *} 5^{1 *} 7^{1}, \alpha_{0}=1, \mathrm{k}=2$, and
the number of square roots $=2^{2}=4(1,29,41,69)$
-2^{k+1} if $\alpha_{0}=2$
Example: for $\mathrm{n}=60=2^{2} * 3^{1 *} 5^{1}, \mathrm{k}=2$,
the number of square roots $=2^{3}=8(1,11,19,29,31,41,49,59)$
-2^{k+2} if $\alpha_{0}>2$
Example: for $\mathrm{n}=24=2^{3 *} 3^{1}, \mathrm{k}=1$,
the number of square roots $=2^{3}=8(1,5,7,11,13,17,19,23)$

Primitive Roots

- Reminder: the highest possible order of $a(\bmod n)$ is $\phi(n)$
- If the order of $a(\bmod n)$ is $\phi(n)$, then a is referred to as a primitive root of n
- for a prime number p, if a is a primitive root of p, then $a, a^{2}, \ldots, a^{p-1} \bmod p$ are all distinct numbers
- No simple general formula to compute primitive roots modulo n
- trying out all candidates

Discrete Logarithms

- For a primitive root a of a number p, where $a^{i} \equiv b \bmod p$, for some $0 \leq i \leq p-1$
- the exponent i is referred to as the index of b for the base $a(\bmod p)$, denoted as $\operatorname{ind}_{a, p}(b)$
- i is also referred to as the discrete logarithm of b to the base $a, \bmod p$

Logarithms (Cont'd)

- Example: 2 is a primitive root of 19 .

The powers of $2 \bmod 19=$

b	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$
ind $_{2,19}(b)=$ $\log (\mathrm{b})$ base 2 mod 19	0	1	13	2	16	14	6	3	8
	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 6}$	$\mathbf{1 7}$	$\mathbf{1 8}$
17	12	15	5	7	11	4	10	9	

Given a, i, and p, computing $\mathrm{b}=\mathrm{a}^{i} \bmod p$ is straightforward

Computing Discrete Logarithms

- However, given a, b, and p, computing $\mathrm{i}=$ ind $_{a, p}(b)$ is difficult
- Used as the basis of some public key cryptosystems

Computing (Cont'd)

- Some properties of discrete logarithms
$-\operatorname{ind}_{a, p}(1)=0$ because $a^{0} \bmod p=1$
$\phi(p)$, not $p!$
$-\operatorname{ind}_{a, p}(a)=1$ because $a^{1} \bmod p=a$
$-\operatorname{ind}_{a, p}(y z)=\left(\operatorname{ind}_{a, p}(y)+\operatorname{ind}_{a, p}(z)\right) \bmod \phi(p)$

$$
\begin{aligned}
& \left.{\text { Example: } \operatorname{ind}_{2,19}(5 * 3)=\left(\operatorname{ind}_{2,19}(5)+\operatorname{ind}_{2,19}(3)\right) \bmod 18=11}^{-\quad \operatorname{ind}_{a, p}\left(y^{r}\right)=(r \operatorname{ind}}{ }_{a, p}(y)\right) \bmod \phi(p)
\end{aligned}
$$

Example: $\operatorname{ind}_{2,19}\left(3^{3}\right)=\left(3 *\right.$ ind $\left._{2,19}(3)\right) \bmod 18=$

More on Discrete Logarithms

- $x \equiv a^{\text {ind }_{a, p}(x)} \bmod p$, Ex: $3=2^{13} \bmod 19$

1) $a^{\text {ind }_{a, p}(x y)} \bmod p \equiv\left(a^{\text {ind }_{a, p}(x)} \bmod p\right)\left(a^{\text {ind }_{a, p}(y)} \bmod p\right)$
2) $a^{\text {ind }_{a, p}(x y)} \bmod p \equiv\left(a^{\text {ind }_{a, p}(x)+\text { ind }_{a, p}(y)}\right) \bmod p$
3) by Euler's theorem: $a^{z} \equiv a^{q} \bmod p$ iff $z \equiv q \bmod \phi(p)$

Ex: $2^{11} \bmod 19=2^{29} \bmod 19 \Leftrightarrow 11 \equiv 29 \bmod 18$

