CIS 6930/4930 Computer and Network Security

Topic 4. Cryptographic Hash Functions

The SHA-1 Hash Function

Secure Hash Algorithm (SHA)

- Developed by NIST, specified in the Secure Hash Standard, 1993
- SHA is specified as the hash algorithm in the Digital Signature Standard (DSS)
- SHA-1: revised (1995) version of SHA

SHA-1 Parameters

- Input message must be $<2^{64}$ bits
- Input message is processed in 512-bit blocks, with the same padding as MD5
- Message digest output is 160 bits long
- Referred to as five 32-bit words A, B, C, D, E
$-\mathrm{IV}: \mathbf{A}=0 \times 67452301, \mathbf{B}=0 x E F C D A B 89, \mathbf{C}=0 \times 98 B A D C F E, \mathbf{D}=$ $0 \times 10325476, \mathrm{E}=0 \times \mathrm{C} 3 \mathrm{D} 2 \mathrm{E} 1 \mathrm{~F} 0$
- Footnote: bytes of words are stored in big-endian order

Preprocessing of a Block

- Let 512-bit block be denoted as sixteen 32-bit words $\mathbf{W}_{\mathbf{0}} . . \mathbf{W}_{15}$
- Preprocess $\mathbf{W}_{\mathbf{0}} . \mathbf{W}_{\mathbf{1 5}}$ to derive an additional sixty-four 32 -bit words $\mathbf{W}_{\mathbf{1 6}} . . \mathbf{W}_{\mathbf{7 9}}$, as follows:
for $16 \leq t \leq 79$

$$
\mathbf{W}_{t}=\left(\mathbf{W}_{t-16} \oplus \mathbf{W}_{t-14} \oplus \mathbf{W}_{t-8} \oplus \mathbf{W}_{t-3}\right) \ll 1
$$

Block Processing

- Consists of 80 steps! (vs. 64 for MD5)
- Inputs for each step $0 \leq t \leq 79$:
$-W_{t}$
$-K_{t}$ - a constant
- A,B,C,D,E: current values to this point
- Outputs for each step:
- A,B,C,D,E : new values
- Output of last step is added to input of first step to produce 160-bit Message Digest

Constants K_{t}

- Only 4 values (represented in 32 bits), derived from $2^{30 *} i^{1 / 2}$, for $i=2,3,5,10$
- for $0 \leq t \leq 19: \mathrm{K}_{t}=0 \times 5 \mathrm{~A} 827999$
- for $20 \leq t \leq 39: K_{t}=0 x 6 E D 9 E B A 1$
- for $40 \leq t \leq 59: \mathrm{K}_{t}=0 \times 8 \mathrm{~F} 1 \mathrm{BBCDC}$
- for $60 \leq t \leq 79: \mathrm{K}_{t}=0 x C A 62 C 1 D 6$

Function $f(t, B, C, D)$

- 3 different functions are used in SHA-1 processing

Round	Function $\mathbf{f}(\mathbf{t}, \mathrm{B}, \mathrm{C}, \mathrm{D})$
$0 \leq t \leq 19$	$(\mathrm{~B} \wedge \mathrm{C}) \vee(\sim \mathrm{B} \wedge \mathrm{D})$
$20 \leq t \leq 39$	$\mathrm{~B} \oplus \mathrm{C} \oplus \mathrm{D}$
$40 \leq t \leq 59$	$(\mathrm{~B} \wedge \mathrm{C}) \vee(\mathrm{B} \wedge \mathrm{D}) \vee(\mathrm{C} \wedge \mathrm{D})$
$60 \leq t \leq 79$	$\mathrm{~B} \oplus \mathrm{C} \oplus \mathrm{D}$

Compare with MD-5
$\mathcal{F}=(x \wedge y) \vee(\sim x \wedge z)$ $\mathcal{H}=x \oplus y \oplus z$

$$
\mathcal{H}=x \oplus y \oplus z
$$

- No use of MD5's $\mathcal{G}((x \wedge z) \vee(y \wedge \sim z))$ or $I(y \oplus(x \vee \sim z))$

Processing Per Step

- Everything to right of " $=$ " is input value to this step

$$
\text { for } \begin{aligned}
\mathrm{t} & =0 \text { upto } 79 \\
\mathrm{~A} & =\mathrm{E}+(\mathrm{A} \ll 5)+\mathrm{W}_{t}+\mathrm{K}_{t}+\mathrm{f}(t, \mathrm{~B}, \mathrm{C}, \mathrm{D}) \\
\mathrm{B} & =\mathrm{A} \\
\mathrm{C} & =\mathrm{B} \ll 30 \\
\mathrm{D} & =\mathrm{C} \\
\mathrm{E} & =\mathrm{D}
\end{aligned}
$$

endfor

Comparison: SHA-1 vs. MD5

- SHA-1 is a stronger algorithm
- brute-force attacks require on the order of 2^{80} operations vs. 2^{64} for MD5
- SHA-1 is about twice as expensive to compute
- Both MD-5 and SHA-1 are much faster to compute than DES

Security of SHA-1

- SHA-1
- "Broken", but not yet cracked
- Collisions in 2^{69} hash operations, much less than the brute-force attack of 2^{80} operations
- Results were circulated in February 2005, and published in CRYPTO '05 in August 2005

The Hashed Message Authentication Code (HMAC)

- HMAC generates the message digest of both a message and a key
- Essence: digest-inside-a-digest, with the secret used at both levels
- The particular hash function used determines the length of HMAC output

HMAC Processing

Summary

- Hashing is fast to compute
- Has many applications (some making use of a secret key)
- Hash images must be at least 128 bits long - but longer is better
- Hash function details are tedious $)$
- HMAC generates the message digest of both a message and a key

CIS 6930/4930 Computer and Network Security

Topic 5.1 Basic Number Theory -Foundation of Public Key Cryptography

GCD and Euclid's Algorithm

Some Review: Divisors

- Set of all integers is $Z=\{\ldots,-2,-1,0,1,2, \ldots\}$
- b divides a (or b is a divisor of a) if $a=m b$ for some m
- denoted $b \mid a$
- any $b \neq 0$ divides 0
- For any $a, 1$ and a are trivial divisors of a
- all other divisors of a are called factors of a

Primes and Factors

- a is prime if it has no non-trivial factors
- examples: $2,3,5,7,11,13,17,19,31, \ldots$
- Theorem: there are infinitely many primes
- Any integer $a>1$ can be factored in a unique way as $p_{1}{ }^{a_{1}} \bullet p_{2}{ }^{a_{2}} \bullet \ldots \mathrm{p}_{\mathrm{t}}{ }^{{ }^{t}}$
- where all $p_{1}>p_{2}>\ldots>p_{t}$ are prime numbers and where each $a_{i}>0$
Examples:

$$
\begin{aligned}
& 91=13^{1} \times 7^{1} \\
& 11,011=13^{1} \times 11^{2} \times 7^{1}
\end{aligned}
$$

Common Divisors

- A number d that is a divisor of both a and b is a common divisor of a and b

Example: common divisors of 30 and 24 are 1, 2, 3, 6

- If $d \mid a$ and $d \mid b$, then $d \mid(a+b)$ and $d \mid(a-b)$

Example: Since $3 \mid 30$ and $3|24,3|(30+24)$ and $3 \mid(30-24)$

- If $d \mid a$ and $d \mid b$, then $d \mid(a x+b y)$ for any integers x and y
Example: $3 \mid 30$ and $3|24 \rightarrow 3|(2 * 30+6 * 24)$

Greatest Common Divisor (GCD)

- $\operatorname{gcd}(a, b)=\max \{k|k| a$ and $k \mid b\}$

Example: $\operatorname{gcd}(60,24)=12, \quad \operatorname{gcd}(a, 0)=a$

- Observations
$-\operatorname{gcd}(a, b)=\operatorname{gcd}(|a|,|b|)$
$-\operatorname{gcd}(a, b) \leq \min (|a|,|b|)$
- if $0 \leq n$, then $\operatorname{gcd}(a n, b n)=n^{*} \operatorname{gcd}(a, b)$
- For all positive integers d, a, and b...
...if $d \mid a b$
...and $\operatorname{gcd}(a, d)=1$
...then $d \mid b$

GCD (Cont'd)

- Computing GCD by hand:
if $a=p_{1}{ }^{a 1} p_{2}{ }^{a 2} \ldots p_{r}^{a r}$ and
$b=p_{1}^{b 1} p_{2}^{b 2} \ldots p_{r}^{b r}$,
... where $p 1<p 2<\ldots<p r$ are prime,
...and $a i$ and bi are nonnegative,
...then $\operatorname{gcd}(a, b)=$

$$
p_{1}^{\min (a 1, b 1)} p_{2}^{\min (a 2, b 2)} \ldots p_{r}^{\min (a r, b r)}
$$

\Rightarrow Slow way to find the GCD

- requires factoring a and b first (which, as we will see, can be slow)

Euclid's Algorithm for GCD

- Insight:
$\operatorname{gcd}(x, y)=\operatorname{gcd}(y, x \bmod y)$
Procedure euclid (x, y) :

$$
\begin{aligned}
& r[0]=x, r[1]=y, n=1 ; \\
& \text { while }(x[n]!=0)\{ \\
& \quad n=n+1 ; \\
& \quad r[n]=r[n-2] \% r[n-1] ;
\end{aligned}
$$

return r [n-1];

Example

n	r_{n}
0	595
1	408
2	$595 \bmod 408=187$
3	$408 \bmod 187=34$
4	$187 \bmod 34=17$
5	$34 \bmod 17=0$

Running Time

- Running time is logarithmic in size of x and y

Enter x and y: 10233415563245986	
Step 1: $\mathrm{r}[\mathrm{i}]=39088169$	
Step 2: $\mathrm{r}[\mathrm{i}]=24157817$	
Step 3: $\mathrm{r}[\mathrm{i}]=14930352$	
Step 4: $\mathrm{r}[\mathrm{i}]=9227465$	
\ldots	
Step 35: $\mathrm{r}[\mathrm{i}]=$	3
Step 36: $[\mathrm{i}]=$	2
Step 37: $\mathrm{r}[\mathrm{i}]=$	1
Step 38: $\mathrm{r}[\mathrm{i}]=\quad 0$	
gcd of 102334155 and 63245986 is	

Extended Euclid's Algorithm

- Let $\mathcal{L} C(x, y)=\{u x+v y: x, y \in \mathcal{Z}\}$ be the set of linear combinations of x and y
- Theorem: if x and y are any integers >0, then $\operatorname{gcd}(x, y)$ is the smallest positive element of $\mathcal{L} C(x, y)$
- Euclid's algorithm can be extended to compute u and v, as well as $\operatorname{gcd}(x, y)$
- Procedure exteuclid(x, y): (next page...)

Extended Euclid's Algorithm

$$
\begin{aligned}
& r[0]=x, r[1]=y, n=1 \text {; } \\
& u[0]=1, u[1]=0 \text {; } \\
& \mathbf{v}[0]=0, \quad \mathrm{v}[1]=1 \text {; } \\
& \text { while (xn] ! }=0 \text {) \{ } \\
& \mathrm{n}=\mathrm{n}+1 \text {; } \\
& r[n]=r[n-2] \% r[n-1] ; \\
& q[n]=(\text { int })(x[n-2] / r[n-1]) ; \\
& u[n]=u[n-2]-q[n] * u[n-1] ; \\
& v[n]=v[n-2]-q[n] * v[n-1] ;
\end{aligned}
$$

\}
return $r[n-1], u[n-1], \quad v[n-1] ;$

Extended Euclid's Example

n	q_{n}	r_{n}	u_{n}	v_{n}
0	-	595	1	0
1	-	408	0	1
2	1	187	1	-1
3	2	34	-2	3
4	5	17	11	-16
5	2	0	-24	35
$\operatorname{gcd}(595,408)=17=11 * 595+-16 * 408$				

Relatively Prime

- Integers a and b are relatively prime iff $\operatorname{gcd}(a, b)=1$
- example: 8 and 15 are relatively prime
- Integers $n_{1}, n_{2}, \ldots n_{k}$ are pairwise relatively prime if $\operatorname{gcd}\left(n_{i}, n_{j}\right)=1$ for all $i \neq j$

