CIS 6930/4930 Computer and Network Security

Topic 4. Cryptographic Hash Functions

The SHA-1 Hash Function

Secure Hash Algorithm (SHA)

- Developed by NIST, specified in the Secure Hash Standard, 1993
- SHA is specified as the hash algorithm in the Digital Signature Standard (DSS)
- SHA-1: revised (1995) version of SHA

SHA-1 Parameters

- Input message must be < 2⁶⁴ bits
- Input message is processed in 512-bit blocks, with the same padding as MD5
- Message digest output is 160 bits long
 - Referred to as five 32-bit words A, B, C, D, E
 - IV: A = 0x67452301, B = 0xEFCDAB89, C = 0x98BADCFE, D = 0x10325476, E = 0xC3D2E1F0
- Footnote: bytes of words are stored in big-endian order

Preprocessing of a Block

- Let 512-bit block be denoted as sixteen 32-bit words W₀..W₁₅
- Preprocess W₀...W₁₅ to derive an additional sixty-four 32-bit words W₁₆...W₇₉, as follows:

for $16 \le t \le 79$ $\mathbf{W}_t = (\mathbf{W}_{t-16} \oplus \mathbf{W}_{t-14} \oplus \mathbf{W}_{t-8} \oplus \mathbf{W}_{t-3}) << 1$

Block Processing

- Consists of 80 steps! (vs. 64 for MD5)
- Inputs for each step $0 \le t \le 79$:
 - $-\mathbf{W}_t$
 - $-K_t a \text{ constant}$
 - A,B,C,D,E: current values to this point
- Outputs for each step:
 A,B,C,D,E : new values
- Output of last step is added to input of first step to produce 160-bit Message Digest

Constants K_t

- Only 4 values (represented in 32 bits), derived from 2³⁰ * i^{1/2}, for i = 2, 3, 5, 10
 - for $0 \le t \le 19$: K_t = 0x5A827999
 - for $20 \le t \le 39$: K_t = 0x6ED9EBA1
 - for $40 \le t \le 59$: K_t = 0x8F1BBCDC
 - for $60 \le t \le 79$: K_t = 0xCA62C1D6

Function f(*t*,B,C,D)

• 3 different functions are used in SHA-1 processing

Function f(t,B,C,D)	Compare with MD-5
$(B \land C) \lor (\sim B \land D)$	$\mathcal{F} = (x \land y) \lor (\sim x \land z)$
$B \oplus C \oplus D$	$\mathcal{H} = x \oplus y \oplus z$
$(B \land C) \lor (B \land D) \lor (C \land D)$	
$B \oplus C \oplus D$	$\mathcal{H} = x \oplus y \oplus z$
	Function $f(t,B,C,D)$ $(B \land C) \lor (\sim B \land D)$ $B \oplus C \oplus D$ $(B \land C) \lor (B \land D) \lor (C \land D)$ $B \oplus C \oplus D$

• No use of MD5's $G((x \land z) \lor (y \land \neg z))$ or $I(y \oplus (x \lor \neg z))$

Processing Per Step

Everything to right of "=" is input value to this step

for	t		0	up	to	79							
	A	=	E	+	(A	<<	5)	+	W_t	+	\mathtt{K}_t	+	f(t,B,C,D)
	В	=	A										
	С	=	B	<<	3()							
	D	=	С										
	E	=	D										
end	foi	-											

Comparison: SHA-1 vs. MD5

• SHA-1 is a stronger algorithm

brute-force attacks require on the order of 2⁸⁰
 operations vs. 2⁶⁴ for MD5

- SHA-1 is about twice as expensive to compute
- Both MD-5 and SHA-1 are much faster to compute than DES

Security of SHA-1

- SHA-1
 - "Broken", but not yet cracked
 - Collisions in 2⁶⁹ hash operations, much less than the brute-force attack of 2⁸⁰ operations
 - Results were circulated in February 2005, and published in CRYPTO '05 in August 2005

The Hashed Message Authentication Code (HMAC)

- HMAC generates the message digest of both a message and a key
- Essence: digest-inside-a-digest, with the secret used at both levels
- The particular hash function used determines the length of HMAC output

HMAC Processing

Summary

- Hashing is fast to compute
- Has many applications (some making use of a secret key)
- Hash images must be at least 128 bits long
 but longer is better
- Hash function details are tedious ⁽³⁾
- HMAC generates the message digest of both a message and a key

CIS 6930/4930 Computer and Network Security

Topic 5.1 Basic Number Theory --Foundation of Public Key Cryptography

GCD and Euclid's Algorithm

Some Review: Divisors

- Set of all integers is Z = {...,−2, −1,0,1,2,...}
- *b divides a* (or *b* is a *divisor* of *a*) if *a* = *mb* for some *m*
 - denoted *b* a
 - any $b \neq 0$ divides 0
- For any *a*, 1 and *a* are *trivial divisors* of *a* all other divisors of *a* are called *factors* of *a*

Primes and Factors

- *a* is *prime* if it has no non-trivial factors
 examples: 2, 3, 5, 7, 11, 13, 17, 19, 31,...
- Theorem: there are infinitely many primes
- Any integer a > 1 can be factored in a unique way as p₁^a₁ • p₂^a₂ • ... p_t^a_t
 - where all $p_1 > p_2 > ... > p_t$ are prime numbers and where each $a_i > 0$

Examples: $91 = 13^{1} \times 7^{1}$ $11,011 = 13^{1} \times 11^{2} \times 7^{1}$

Common Divisors

 A number d that is a divisor of both a and b is a common divisor of a and b

Example: common divisors of 30 and 24 are 1, 2, 3, 6

• If *d* | *a* and *d* | *b*, then *d* | (*a*+*b*) and *d* | (*a*-*b*)

Example: Since 3 | 30 and 3 | 24, 3 | (30+24) and 3 | (30-24)

If d|a and d|b, then d|(ax+by) for any integers
 x and y

Example: $3 \mid 30 \text{ and } 3 \mid 24 \rightarrow 3 \mid (2*30 + 6*24)$

Greatest Common Divisor (GCD)

• $gcd(a,b) = max\{k \mid k \mid a \text{ and } k \mid b\}$

Example: gcd(60,24) = 12, gcd(a,0) = a

- Observations
 - $-\operatorname{gcd}(a,b) = \operatorname{gcd}(|a|, |b|)$
 - $-\gcd(a,b) \leq \min(|a|, |b|)$
 - if $0 \le n$, then gcd(an, bn) = n^* gcd(a,b)
- For all positive integers d, a, and b...
 ...if d | ab
 ...and gcd(a,d) = 1
 ...then d|b

GCD (Cont'd)

 Computing GCD by hand: if $a = p_1^{a1} p_2^{a2} \dots p_r^{ar}$ and $b = p_1^{b1} p_2^{b2} \dots p_r^{br}$, ...where p1 < p2 < ... < pr are prime, ...and *ai* and *bi* are nonnegative, ...then gcd(a, b) = $p_1^{\min(a1, b1)} p_2^{\min(a2, b2)} \dots p_r^{\min(ar, br)}$

 \Rightarrow Slow way to find the GCD

 requires factoring a and b first (which, as we will see, can be slow)

Euclid's Algorithm for GCD

- Insight:
 gcd(x, y) = gcd(y, x mod y)
- Procedure euclid(x, y):

```
r[0] = x, r[1] = y, n = 1;
while (r[n] != 0) {
    n = n+1;
    r[n] = r[n-2] % r[n-1];
}
return r[n-1];
```

Example

п	r _n				
0	595				
1	408				
2	$595 \mod 408 = 187$				
3	$408 \mod 187 = 34$				
4	$187 \mod 34 = 17$				
5	$34 \mod 17 = 0$				
gcd(595,408) = 17 ←					

Running Time

• Running time is logarithmic in size of x and y

```
Enter x and y: 102334155 63245986
Step 1: r[i] = 39088169
Step 2: r[i] = 24157817
Step 3: r[i] = 14930352
Step 4: r[i] = 9227465
. . .
Step 35: r[i] =3Step 36: r[i] =2Step 37: r[i] =1
Step 38: r[i] = 0
gcd of 102334155 and 63245986 is
```

Extended Euclid's Algorithm

- Let *LC*(*x*,*y*) = {*ux*+*vy* : *x*,*y* ∈ *Z*} be the set of linear combinations of *x* and *y*
- Theorem: if x and y are any integers > 0, then gcd(x,y) is the smallest positive element of *LC*(x,y)
- Euclid's algorithm can be extended to compute *u* and *v*, as well as gcd(*x*,*y*)
- Procedure extendid(x, y): (next page...)

Exter	nded Euclid's Algorithm					
	r[0] = x, r[1] = y, n = 1;					
	u[0] = 1, u[1] = 0;					
	v[0] = 0, v[1] = 1;					
	while (r[n] != 0) {					
floor	n = n+1;					
function	r[n] = r[n-2] % r[n-1];					
	q[n] = (int) (r[n-2] / r[n-1]);					
u[n] = u[n-2] - q[n]*u[n-1];						
	v[n] = v[n-2] - q[n]*v[n-1];					
	}					
return r[n-1], u[n-1], v[n-1];						

Extended Euclid's Example

n	q_n	r _n	u _n	v _n
0	_	595	1	0
1	_	408	0	1
2	1	187	1	-1
3	2	34	-2	3
4	5	17	11	-16
5	2	0	-24	35

gcd(595,408) = 17 = 11*595 + -16*408

Relatively Prime

 Integers a and b are relatively prime iff gcd(a,b) = 1

- example: 8 and 15 are relatively prime

Integers n₁,n₂,...n_k are pairwise relatively prime if gcd(n_i,n_j) = 1 for all i ≠ j