CIS 6930/4930 Computer and Network Security

Topic 4. Cryptographic Hash Functions

Hash Function

- Also known as
- Message digest
- One-way transformation
- One-way function
- Hash
- Length of $H(m)$ much shorter then length of m
- Usually fixed lengths: 128 or 160 bits

Desirable Properties of Hash Functions

- Consider a hash function H
- Performance: Easy to compute $\mathrm{H}(m)$
- One-way property: Given $\mathrm{H}(m)$ but not m, it's computationally infeasible to find m
- Weak collision resistance (free): Given $\mathrm{H}(m)$, it's computationally infeasible to find m^{\prime} such that $\mathrm{H}\left(m^{\prime}\right)=\mathrm{H}(m)$.
- Strong collision resistance (free): Computationally infeasible to find m_{1}, m_{2} such that $\mathrm{H}\left(m_{1}\right)=\mathrm{H}\left(m_{2}\right)$

Length of Hash Image

- Question
- Why do we have 128 bits or 160 bits in the output of a hash function?
- If it is too long
- Unnecessary overhead
- If it is too short
- Loss of strong collision free property
- Birthday paradox

Birthday Paradox

- Question:
- What is the smallest group size k such that
- The probability that at least two people in the group have the same birthday is greater than 0.5 ?
- Assume 365 days a year, and all birthdays are equally likely
$-\mathrm{P}(k$ people having k different birthdays):

$$
\begin{aligned}
Q(365, k) & =(1-1 / 365) \times(1-2 / 365) \times(1-3 / 365) \times \ldots \times\{1-(k-1) / 365\} \\
& =(364 / 365) \times(363 / 365) \times(362 / 365) \times \ldots \times\{(365-(k-1)) / 365\} \\
& =365!/(365-k)!365^{k}
\end{aligned}
$$

- P(at least two people have the same birthday): $\mathrm{P}(365, k)=1-\mathrm{Q}(365, k) \geq 0.5$
$-k$ is about 23

Birthday Paradox (Cont'd)

- Generalization of birthday paradox
- Given
- a random integer with uniform distribution between 1 and n, and
- a selection of k instances of the random variables,
- What is the least value of k such that
- There will be at least one duplicate
- with probability $\mathrm{P}(n, k)>0.5$, ?

Birthday Paradox (Cont'd)

- Generalization of birthday paradox
$-\mathrm{P}(n, k)=1-\left\{n!/(n-k)!\mathrm{n}^{k}\right\} \approx 1-\mathrm{e}^{-\mathrm{k}^{*}(k-1) / 2 n}$
- For large n and k, to have $\mathrm{P}(n, k)>0.5$ with the smallest k, we have

$$
k=\sqrt{2(\ln 2) n}=1.18 \sqrt{n} \approx \sqrt{n}
$$

- Example
- 1.18* $(365)^{1 / 2}=22.54$

Birthday Paradox (Cont’d)

- Implication for hash function H of length m
- The hash value of an arbitrary input message is randomly distributed between 1 and 2^{m}
- What is the least value of k such that
- If we hash k messages, the probability that at least two of them have the same hash is larger than 0.5 ?

$$
k \approx \sqrt{n}=\sqrt{2^{m}}=2^{m / 2}
$$

- Birthday attack
- Choose $m \geq 128$

Hash Function Applications

Application: File Authentication

- Want to detect if a file has been changed by someone after it was stored
- Method
- Compute a hash H(F) of file F
- Store H(F) separately from F
- Can tell at any later time if F has been changed by computing $\mathrm{H}\left(\mathrm{F}^{\prime}\right)$ and comparing to stored $\mathrm{H}(\mathrm{F})$
- Why not just store a duplicate copy of F???

Application: User Authentication

- Alice wants to authenticate herself to Bob
- assuming they already share a secret key K
- Protocol:

User Authentication... (cont'd)

- Why not just send...
- ...K, in plaintext?
- ... $H(K)$? , i.e., what's the purpose of R?

Application: Commitment Protocols

- Ex.: A and B wish to play the game of "odd or even" over the network

1. A picks a number X
2. B picks another number Y
3. A and B "simultaneously" exchange X and Y
4. A wins if $X+Y$ is odd, otherwise B wins

- If A gets Y before deciding X, A can easily cheat (and vice versa for B)
- How to prevent this?

Commitment... (Cont'd)

- Proposal: A must commit to X before B will send Y
- Protocol:

- Can either A or B successfully cheat now?

Commitment... (Cont'd)

- Why is sending $H(X)$ better than sending X ?
- Why is sending $H(X)$ good enough to prevent A from cheating?
- Why is it not necessary for B to send $H(Y)$ (instead of Y)?
- What problems are there if:

The set of possible values for X is small?

Application: Message Encryption

- Assume A and B share a secret key K
- but don't want to just use encryption of the message with K
- A sends B the (encrypted) random number R1,
B sends A the (encrypted) random number R2
- And then...

- R1 | R2 is used like the IV of OFB mode, but C+H replaces encryption; Why do we use the key at all, if R1 | R2 is secure?

Application: Message Authentication

- A wishes to authenticate (but not encrypt) a message M (and A, B share secret key K)

- Why is R needed? Why is K needed?

Application: Digital Signatures

Generating a signature

Bob's Private key
Verifying a signature
Message m

Bob's Public key

- Only one party (Bob) knows the private key

Is Encryption a Good Hash Function?

- Building hash using block chaining techniques
- Encryption block size may be too short (DES=64)
- Birthday attack
- Expensive in terms of computation time

Modern Hash Functions

- MD5
- Previous versions (i.e., MD2, MD4) have weaknesses.
- Broken; collisions published in August 2004
- Previous versions are too weak to be used for serious applications
- SHA (Secure Hash Algorithm)
- Weaknesses were found
- SHA-1
- Broken, but not yet cracked
- Collisions in $2{ }^{69}$ hash operations, much less than the birthday attack of 2^{80} operations
- Results were circulated in February 2005, and published in CRYPTO '05 in August 2005
- SHA-256, SHA-384, ...

The MD5 Hash Function

MD5: Message Digest Version 5

- MD5 at a glance

Processing of A Single Block

512-bit message block
(sixteen 32-bit words)

Called a compression function

MD5: A High-Level View

Padding

- There is always padding for MD5, and padded messages must be multiples of 512 bits
- To original message M , add padding bits " $10 . . .0$ "
- enough 0's so that resulting total length is 64 bits less than a multiple of 512 bits
- Append L (original length of M), represented in 64 bits, to the padded message
- Footnote: the bytes of each 32-bit word are stored in little-endian order (LSB to MSB)

Padding... (cont'd)

- How many 0's if length of $M=$

$$
\begin{aligned}
& n * 512 ? \\
& n * 512-64 ? \\
& n * 512-65 ?
\end{aligned}
$$

Preliminaries

- The four 32-bit words of the output (the digest) are referred to as d0, d1, d2, d3
- Initial values (in little-endian order)
- d0 = 0x67452301
- d1 = 0xEFCDAB89
- d2 = 0x98BADCFE
- d3 = 0x10325476
- The sixteen 32-bit words of each message block are referred to as m0, ..., m15
$-\left(16^{*} 32\right.$ = 512 bits in each block)

Notation

- $\sim_{X}=$ bit-wise complement of x
- $x \wedge y, x \vee y, x \oplus y=$ bit-wise AND, OR, XOR of x and y
- $x \ll y=$ left circular shift of x by y bits
- $x+y=$ arithmetic sum of x and y (discarding carry-out from the msb)
- $\lfloor x\rfloor=$ largest integer less than or equal to x

Processing a Block -- Overview

- Every message block Yi contains 16 32-bit words:
$-m_{0} m_{1} m_{2} \ldots m_{15}$
- A block is processed in 4 consecutive passes, each modifying the MD5 buffer $\mathrm{d}_{0}, \ldots, \mathrm{~d}_{3}$.
- Called $\mathcal{F}, \mathcal{G}, \mathcal{H}, I$
- Each pass uses one-fourth of a 64-element table of constants, T[1...64]
$-T[i]=\left\lfloor 2^{32 *} \operatorname{abs}(\sin (i))\right\rfloor$, represented in 32 bits
- Page 137
- Output digest $=$ input digest + output of 4th pass

Overview (Cont’d)

Input Digest CV_{i}

$1^{\text {st }}$ Pass of MD5

- $\mathcal{F}(x, y, z) \stackrel{\operatorname{def}}{=}(x \wedge y) \vee(\sim x \wedge z)$
- 16 processing steps, producing $\mathbf{d}_{\mathbf{0}} . . \mathbf{d}_{\mathbf{3}}$ output: $\mathbf{d}_{\mathbf{i}}=\mathbf{d}_{\mathbf{j}}+\left(\mathbf{d}_{\boldsymbol{k}}+\mathcal{F}\left(\mathbf{d}_{\boldsymbol{I}}, \mathbf{d}_{\boldsymbol{m}}, \mathbf{d}_{\boldsymbol{n}}\right)+\mathbf{m}_{\mathbf{o}}+\mathrm{T}_{p}\right) \ll s$
- values of subscripts, in this order

\boldsymbol{i}	\boldsymbol{j}	\boldsymbol{k}	\boldsymbol{l}	\boldsymbol{m}	\boldsymbol{n}	\boldsymbol{o}	\boldsymbol{p}	\boldsymbol{s}
0	1	0	1	2	3	0	1	7
3	0	3	0	1	2	1	2	12
2	3	2	3	0	1	2	3	17
1	2	1	2	3	0	3	4	22
0	1	0	1	2	3	4	5	7

$2^{\text {nd }}$ Pass of MD5

- $\mathcal{G}(x, y, z) \stackrel{\text { def }}{=}(x \wedge z) \vee(y \wedge \sim z)$
- Form of processing (16 steps):

$$
d_{i}=d_{j}+\left(d_{k}+G\left(d_{p}, d_{m}, d_{n}\right)+m_{o}+T_{p}\right) \ll s
$$

\boldsymbol{i}	\boldsymbol{j}	\boldsymbol{k}	\boldsymbol{l}	\boldsymbol{m}	\boldsymbol{n}	\boldsymbol{o}	\boldsymbol{p}	\boldsymbol{s}
0	1	0	1	2	3	1	17	5
3	0	3	0	1	2	6	18	9
2	3	2	3	0	1	11	19	14
1	2	1	2	3	0	0	20	20
0	1	0	1	2	3	5	21	5

$3^{\text {rd }}$ Pass of MD5

- $\mathcal{H}(x, y, z) \stackrel{\text { def }}{=}(x \oplus y \oplus z)$
- Form of processing (16 steps):

$$
\mathbf{d}_{i}=\mathbf{d}_{j}+\left(\mathbf{d}_{k}+\mathcal{H}\left(\mathbf{d}_{\nu} \mathbf{d}_{m} \mathbf{d}_{n}\right)+\mathbf{m}_{o}+\mathrm{T}_{p}\right) \ll s
$$

\boldsymbol{i}	\boldsymbol{j}	\boldsymbol{k}	\boldsymbol{l}	\boldsymbol{m}	\boldsymbol{n}	\boldsymbol{o}	\boldsymbol{p}	\boldsymbol{s}
0	1	0	1	2	3	5	33	4
3	0	3	0	1	2	8	34	11
2	3	2	3	0	1	11	35	16
1	2	1	2	3	0	14	36	23
0	1	0	1	2	3	1	37	4

$4^{\text {th }}$ Pass of MD5

- $I(x, y, z) \stackrel{\text { def }}{=} y \oplus\left(x \vee^{\sim} z\right)$
- Form of processing (16 steps):

$$
\mathbf{d}_{i}=\mathbf{d}_{j}+\left(\mathbf{d}_{k}+I\left(\mathbf{d}_{p} \mathbf{d}_{m}, \mathbf{d}_{n}\right)+\mathbf{m}_{o}+T_{p}\right) \ll s
$$

\boldsymbol{i}	\boldsymbol{j}	\boldsymbol{k}	\boldsymbol{l}	\boldsymbol{m}	\boldsymbol{n}	\boldsymbol{o}	\boldsymbol{p}	\boldsymbol{s}
0	1	0	1	2	3	0	49	6
3	0	3	0	1	2	7	50	10
2	3	2	3	0	1	14	51	15
1	2	1	2	3	0	5	52	21
0	1	0	1	2	3	12	53	6

- Output of this pass added to input CV

Logic of Each Step

- Within each pass, each of the 16 words of the message block is used exactly once
- Pass 1, m_{i} are used in the order of i
- Pass 2, in the order of $\rho 2(i)$, where $\rho 2(i)=(1+5 i) \wedge 15$
- Pass 3, in the order or $\rho 3(i)$, where $\rho 3(i)=(5+3 i) \wedge 15$
- Pass 4, in the order or $\rho 4(i)$, where $\rho 4(i)=7 i \wedge 15$
- Each word of $\mathrm{T}[\mathrm{i}]$ is used exactly once throughout all passes
- Number of bits s to rotate to get d_{i}
- Pass $1, s\left(d_{0}\right)=7, s\left(d_{1}\right)=22, s\left(d_{2}\right)=17, s\left(d_{3}\right)=12$
- Pass $2, s\left(d_{0}\right)=5, s\left(d_{1}\right)=20, s\left(d_{2}\right)=14, s\left(d_{3}\right)=9$
- Pass $3, s\left(d_{0}\right)=4, s\left(d_{1}\right)=23, s\left(d_{2}\right)=16, s\left(d_{3}\right)=11$
- Pass 4, $s\left(d_{0}\right)=6, s\left(d_{1}\right)=21, s\left(d_{2}\right)=15, s\left(d_{3}\right)=10$

(In)security of MD5

- A few recently discovered methods can find collisions in a few hours
- A few collisions were published in 2004
- Can find many collisions for 1024-bit messages
- In 2005, two X. 509 certificates with different public keys and the same MD5 hash were constructed
- This method is based on differential analysis
- 8 hours on a 1.6 GHz computer
- Much faster than birthday attack

