CIS 6930/4930 Computer and Network Security

Topic 4. Cryptographic Hash Functions

Hash Function

Message of Hash A fixed-length short message

- Also known as
 - Message digest
 - One-way transformation
 - One-way function
 - Hash
- Length of *H*(*m*) much shorter then length of *m*
- Usually fixed lengths: 128 or 160 bits

Desirable Properties of Hash Functions

- Consider a hash function H
 - <u>Performance</u>: Easy to compute H(m)
 - <u>One-way property</u>: Given H(m) but not m, it's computationally infeasible to find m
 - <u>Weak collision resistance (free</u>): Given H(m), it's computationally infeasible to find m' such that H(m') = H(m).
 - <u>Strong collision resistance (free</u>): Computationally infeasible to find m_1 , m_2 such that $H(m_1) = H(m_2)$

Length of Hash Image

- Question
 - Why do we have 128 bits or 160 bits in the output of a hash function?
 - If it is too long
 - Unnecessary overhead
 - If it is too short
 - Loss of strong collision free property
 - Birthday paradox

Birthday Paradox

- Question:
 - What is the smallest group size k such that
 - The probability that at least two people in the group have the same birthday is greater than 0.5?
 - Assume 365 days a year, and all birthdays are equally likely
 - P(k people having k different birthdays):
 - $Q(365,k) = (1-1/365) \times (1-2/365) \times (1-3/365) \times ... \times \{1-(k-1)/365\}$
 - $= (364/365) \times (363/365) \times (362/365) \times ... \times \{(365-(k-1))/365\}$
 - $= 365!/(365-k)!365^{k}$
 - P(at least two people have the same birthday): $P(365,k) = 1-Q(365,k) \ge 0.5$
 - -k is about 23

Birthday Paradox (Cont'd)

- Generalization of birthday paradox
 - Given
 - a random integer with uniform distribution between 1 and *n*, and
 - a selection of k instances of the random variables,
 - What is the least value of k such that
 - There will be at least one duplicate
 - with probability P(*n*,*k*) > 0.5, ?

Birthday Paradox (Cont'd)

• Generalization of birthday paradox

 $- P(n,k) = 1 - \{n!/(n-k)!n^k\} \approx 1 - e^{-k^*(k-1)/2n}$

For large n and k, to have P(n,k) > 0.5 with the smallest k, we have

$$k = \sqrt{2(\ln 2)n} = 1.18\sqrt{n} \approx \sqrt{n}$$

– Example

• $1.18^*(365)^{1/2} = 22.54$

Birthday Paradox (Cont'd)

- Implication for hash function H of length m
 - The hash value of an arbitrary input message is randomly distributed between 1 and 2^m
 - What is the least value of k such that
 - If we hash k messages, the probability that at least two of them have the same hash is larger than 0.5?

$$k \approx \sqrt{n} = \sqrt{2^m} = 2^{m/2}$$

- Birthday attack
 - Choose $m \ge 128$

Hash Function Applications

Application: File Authentication

- Want to detect if a file has been changed by someone after it was stored
- Method
 - Compute a hash H(F) of file F
 - Store H(F) separately from F
 - Can tell at any later time if F has been changed by computing H(F') and comparing to stored H(F)
- Why not just store a duplicate copy of F???

Application: User Authentication

- Alice wants to authenticate herself to Bob
 - assuming they already share a secret key K
- Protocol:

User Authentication... (cont'd)

- Why not just send...
 - ...K, in plaintext?
 - …H(K)? , i.e., what's the purpose of R?

Application: Commitment Protocols

- Ex.: A and B wish to play the game of "odd or even" over the network
 - 1. A picks a number X
 - 2. B picks another number Y
 - 3. A and B "simultaneously" exchange X and Y
 - 4. A wins if X+Y is odd, otherwise B wins
- If A gets Y before deciding X, A can easily cheat (and vice versa for B)
 - How to prevent this?

Commitment... (Cont'd)

- Proposal: A must commit to X before B will send Y
- Protocol:

Can either A or B successfully cheat now?

Commitment... (Cont'd)

- Why is sending H(X) better than sending X?
- Why is sending H(X) good enough to prevent A from cheating?
- Why is it not necessary for B to send H(Y) (instead of Y)?
- What problems are there if:

The set of possible values for X is small?

Application: Message Encryption

- Assume A and B share a secret key K
 - but don't want to just use encryption of the message with K
- A sends B the (encrypted) random number R1,

B sends A the (encrypted) random number R2

• And then...

 R1 | R2 is used like the IV of OFB mode, but C+H replaces encryption; Why do we use the key at all, if R1 | R2 is secure?

Application: Message Authentication

 A wishes to authenticate (but not encrypt) a message M (and A, B share secret key K)

• Why is R needed? Why is K needed?

Application: Digital Signatures

Generating a signature

Verifying a signature

Only one party (Bob) knows the private key

Is Encryption a Good Hash Function?

- Building hash using block chaining techniques
 - Encryption block size may be too short (DES=64)
 - Birthday attack
 - Expensive in terms of computation time

Modern Hash Functions

- MD5
 - Previous versions (i.e., MD2, MD4) have weaknesses.
 - Broken; collisions published in August 2004
 - Previous versions are too weak to be used for serious applications
- SHA (Secure Hash Algorithm)
 - Weaknesses were found
- SHA-1
 - Broken, but not yet cracked
 - Collisions in 2⁶⁹ hash operations, much less than the birthday attack of 2⁸⁰ operations
 - Results were circulated in February 2005, and published in CRYPTO '05 in August 2005
- SHA-256, SHA-384, ...

The MD5 Hash Function

MD5: Message Digest Version 5

• MD5 at a glance

Processing of A Single Block

Called a compression function

MD5: A High-Level View

Padding

- There is always padding for MD5, and padded messages must be multiples of 512 bits
- To original message M, add padding bits "10...0"
 - enough 0's so that resulting total length is 64 bits less than a multiple of 512 bits
- Append L (original length of M), represented in 64 bits, to the padded message
- Footnote: the bytes of each 32-bit word are stored in little-endian order (LSB to MSB)

Padding... (cont'd)

- How many 0's if length of M =
- n * 512?
- n * 512 64?
- n * 512 65?

Preliminaries

- The four 32-bit words of the output (the *digest*) are referred to as **d0**, **d1**, **d2**, **d3**
- Initial values (in little-endian order)
 - -d0 = 0x67452301
 - d1 = 0xEFCDAB89
 - **d2** = 0x98BADCFE
 - **d3** = 0x10325476
- The sixteen 32-bit words of each message block are referred to as m0, ..., m15

-(16*32 = 512 bits in each block)

Notation

- ~x = bit-wise complement of x
- x∧y, x∨y, x⊕y = bit-wise AND, OR, XOR of x and y
- x<<y = left circular shift of x by y bits
- x+y = arithmetic sum of x and y (discarding carry-out from the msb)
- |x| = largest integer less than or equal to x

Processing a Block -- Overview

- Every message block Yi contains 16 32-bit words:
 - $-m_0 m_1 m_2 \dots m_{15}$
- A block is processed in 4 consecutive passes, each modifying the MD5 buffer d₀, ..., d₃.
 Called *F*, *G*, *H*, *I*
- Each pass uses one-fourth of a 64-element table of constants, T[1...64]
 - $T[i] = \lfloor 2^{32*}abs(sin(i)) \rfloor$, represented in 32 bits

– Page 137

• Output digest = input digest + output of 4th pass

Overview (Cont'd)

1st Pass of MD5

- $\mathcal{F}(x,y,z) \stackrel{\text{def}}{=} (x \wedge y) \vee (\sim x \wedge z)$
- 16 processing steps, producing $\mathbf{d_0..d_3}$ output: $\mathbf{d_i} = \mathbf{d_j} + (\mathbf{d_k} + \mathcal{F}(\mathbf{d_l}, \mathbf{d_m}, \mathbf{d_n}) + \mathbf{m_o} + \mathbf{T_p}) << s$

- values of subscripts, in this order

i	j	k	l	m	n	0	p	S
0	1	0	1	2	3	0	1	7
3	0	3	0	1	2	1	2	12
2	3	2	3	0	1	2	3	17
1	2	1	2	3	0	3	4	22
0	1	0	1	2	3	4	5	7

2nd Pass of MD5

- $G(x,y,z) \stackrel{\text{def}}{=} (x \wedge z) \vee (y \wedge \tilde{z})$
- Form of processing (16 steps): $\mathbf{d}_{i} = \mathbf{d}_{j} + (\mathbf{d}_{k} + \mathbf{G}(\mathbf{d}_{\nu}\mathbf{d}_{m\nu}\mathbf{d}_{n}) + \mathbf{m}_{o} + \mathbf{T}_{p}) << s$

i	j	k	l	т	n	0	p	S
0	1	0	1	2	3	1	17	5
3	0	3	0	1	2	6	18	9
2	3	2	3	0	1	11	19	14
1	2	1	2	3	0	0	20	20
0	1	0	1	2	3	5	21	5

3rd Pass of MD5

- $\mathcal{H}(x,y,z) \stackrel{\text{def}}{=} (x \oplus y \oplus z)$
- Form of processing (16 steps): $\mathbf{d}_{i} = \mathbf{d}_{j} + (\mathbf{d}_{k} + \mathcal{H}(\mathbf{d}_{\mu}\mathbf{d}_{m},\mathbf{d}_{n}) + \mathbf{m}_{o} + \mathbf{T}_{p}) << s$

i	j	k	l	m	n	0	p	S
0	1	0	1	2	3	5	33	4
3	0	3	0	1	2	8	34	11
2	3	2	3	0	1	11	35	16
1	2	1	2	3	0	14	36	23
0	1	0	1	2	3	1	37	4

4th Pass of MD5

- $I(x,y,z) \stackrel{\text{def}}{=} y \oplus (x \vee z)$
- Form of processing (16 steps):

 $\mathbf{d}_{i} = \mathbf{d}_{j} + (\mathbf{d}_{k} + \mathbf{I}(\mathbf{d}_{\nu}\mathbf{d}_{m},\mathbf{d}_{n}) + \mathbf{m}_{o} + \mathbf{T}_{p}) << s$

i	j	k	l	т	n	0	p	S
0	1	0	1	2	3	0	49	6
3	0	3	0	1	2	7	50	10
2	3	2	3	0	1	14	51	15
1	2	1	2	3	0	5	52	21
0	1	0	1	2	3	12	53	6

• Output of this pass added to input CV

Logic of Each Step

- Within each pass, each of the 16 words of the message block is used exactly once
 - Pass 1, m_i are used in the order of i
 - Pass 2, in the order of $\rho\text{2(i)},$ where $\rho\text{2(i)=(1+5i)} \land \text{15}$
 - Pass 3, in the order or ρ 3(i), where ρ 3(i)=(5+3i) \wedge 15
 - Pass 4, in the order or $\rho 4(i)$, where $\rho 4(i)$ =7i \wedge 15
- Each word of T[i] is used exactly once throughout all passes
- Number of bits s to rotate to get d_i
 - Pass 1, s(d₀)=7, s(d₁)=22, s(d₂)=17, s(d₃)=12
 - Pass 2, $s(d_0)=5$, $s(d_1)=20$, $s(d_2)=14$, $s(d_3)=9$
 - Pass 3, $s(d_0)=4$, $s(d_1)=23$, $s(d_2)=16$, $s(d_3)=11$
 - Pass 4, $s(d_0)=6$, $s(d_1)=21$, $s(d_2)=15$, $s(d_3)=10$

(In)security of MD5

- A few recently discovered methods can find collisions in a few hours
 - A few collisions were published in 2004
 - Can find many collisions for 1024-bit messages
 - In 2005, two X.509 certificates with different public keys and the same MD5 hash were constructed
 - This method is based on differential analysis
 - 8 hours on a 1.6GHz computer
 - Much faster than birthday attack