### CIS 6930/4930 Computer and Network Security

Topic 3.2 Secret Key Cryptography – Modes of Operation

# Cipher Feedback Mode (CFB)



Ciphertext block C<sub>i</sub> depends on all preceding plaintext blocks

### **CFB** Decryption



No block decryption required!

# **CFB** Properties

- Does information leak?
  - Identical plaintext blocks produce different ciphertext blocks
- Can ciphertext be manipulated predictably?
   ???
- Parallel processing possible?
   no (encryption), yes (decryption)
- Do ciphertext errors propagate?
   ???

### Counter Mode (CTR)



# **CTR Mode Properties**

- Does information leak?
  - Identical plaintext block produce different ciphertext blocks
- Can ciphertext be manipulated predictably

   ???
- Parallel processing possible
  - Yes (both generating pad and XORing)
- Do ciphertext errors propagate?
  - ???

### CIS 6930/4930 Computer and Network Security

#### Topic 3.3 Secret Key Cryptography – Triple DES

### Stronger DES

- Major limitation of DES
  - Key length is too short
- Can we apply DES multiple times to increase the strength of encryption?

# Double Encryption with DES

•Does encrypting using the same key make things more secure?



# **Double** Encryption with DES

- Encrypt the plaintext twice, using two different DES keys
- •Total key material increases to 112 bits
  - is that the same as key strength of 112 bits?



# The Meet-in-the-Middle Attack

- 1. Choose a plaintext P and generate ciphertext C, using double-DES with  $\mathcal{K}_{1+\mathcal{K}_{2}}$
- 2. Then...
  - a. encrypt P using single-DES for all possible 2<sup>56</sup> values K<sub>1</sub> to generate all possible single-DES ciphertexts for P: X<sub>1</sub>,X<sub>2</sub>,...,X<sub>2</sub><sup>56</sup>; store these in a table indexed by ciphertex values
  - b. decrypt C using single-DES for all possible 2<sup>56</sup> values K<sub>2</sub> to generate all possible single-DES plaintexts for C:
     Y<sub>1</sub>,Y<sub>2</sub>,...,Y<sub>2</sub><sup>56</sup> ; for each value, check the table

# Steps ... (Cont'd)

- 3. Meet-in-the-middle:
  - Each match (X<sub>i</sub> = Y<sub>i</sub>) reveals a candidate key pair K<sub>i</sub>+K<sub>i</sub>
  - There are 2<sup>112</sup> pairs but there are only 2<sup>64</sup> X's
- 4. On average, how many pairs have identical X and Y?
  - For any pair (X, Y), the probability that X = Y is  $1/2^{64}$
  - There are 2<sup>112</sup> pairs.
  - The expected number of pairs that result in identical X and Y is  $2^{112} / 2^{64} = 2^{48}$

# Steps ... (Cont'd)

- 5. The attacker uses a second pair of plaintext and ciphertext to try the 2<sup>48</sup> Key pairs
- There are 2<sup>48</sup> key pairs and 2<sup>64</sup> X's (Y's)
- The probability that a false key pair results in identical X and Y is  $2^{48} / 2^{64} = 2^{-16}$
- The correct key pair always leads to identical X and Y
- A false key pair leads to identical X and Y at the probability of 2<sup>-16</sup> (i.e., 1/65536)
- Hence, after examine two pairs of plaintext and ciphtertext, the attacker can normally identify the key

# Attack Complexity

• How many DES encryptions and decryptions the attacker need to compute?

 $-2 \times 2^{56} + 2 \times 2^{48}$ 

- An expensive attack (computation + storage)
  - still, enough of a threat to discourage use of double-DES

### Triple Encryption (Triple DES-EDE)



- Apply DES encryption/decryption three times
  - why EDE?
  - One reason might be that by taking k1 = k2 = key, 3DES becomes single DES with key. 3DES can communicate with single DES.

# Triple DES (Cont'd)

- Widely used
  - equivalent strength to using a 112 bit key
  - strength about 2<sup>112</sup> against M-I-T-M attack



# Triple DES (Cont'd)

- However: inefficient / expensive to compute
  - one third as fast as DES on the same platform, and DES is already designed to be slow in software
- Next question: how is block chaining used with triple-DES?

# **3DES-EDE: Outside Chaining Mode**



• What basic chaining mode is this?

#### **3DES-EDE: OCM Decryption**



# **OCM** Properties

• Does information leak?

 identical plaintext blocks produce different ciphertext blocks

- Can ciphertext be manipulated predicatably?
   ???
- Parallel processing possible?
   no (encryption), yes (decryption)
- Do ciphertext errors propagate?
   ???

### **3DES-EDE:** Inside Chaining Mode



### **3DES-EDE: ICM Decryption**



# **ICM Properties**

• Does information leak?

 identical plaintext blocks produce different ciphertext blocks

- Can ciphertext be manipulated predictably?
   ???
- Parallel processing possible?
   no (encryption), yes (partial of the decryption)
- Do ciphertext errors propagate?
   ???

# CIS 6930/4930 Computer and Network Security

#### Topic 3.4 Secret Key Cryptography – MAC with Secret Key Ciphers

# Message Authentication/Integrity

- Encryption easily provides confidentiality of messages
  - only the party sharing the key (the "key partner") can decrypt the ciphertext
- How to use encryption to authenticate messages and verify the integrity? That is,
  - prove the message was created by the key partner
  - prove the message wasn't modified by someone other than the key partner

## Approach #1

- If the decrypted plaintext "looks plausible", then conclude ciphertext was produced by the key partner
  - i.e., illegally modified ciphertext, or ciphertext encrypted with the wrong key, will probably decrypt to random-looking data
- But, is it easy to verify data is "plausiblelooking"?

# Approach #2: Plaintext+Ciphertext



- Send plaintext and ciphertext
  - receiver encrypts plaintext, and compares result with received ciphertext
  - forgeries / modifications easily detected
  - any problems / drawbacks?

# Approach #3: Use Residue

- Encrypt plaintext using DES CBC mode, with IV set to zero
  - the last (final) ciphertext output block is called the *residue*



# Approach #3... (Cont'd)



- Transmit the plaintext and this residue
  - receiver computes same residue, compares to the received residue
  - forgeries / modifications highly likely to be detected

### Message Authentication Codes

- MAC: a small fixed-size block (i.e., independent of message size) generated from a message using secret key cryptography
  - also known as cryptographic checksum

### Requirements for MAC

- Given M and MAC(M), it should be computationally infeasible (expensive) to construct (or find) another message M' such that MAC(M') = MAC(M)
- 2. MAC(M) should be uniformly distributed in terms of M
  - for randomly chosen messages M and M',
     P( MAC(M)=MAC(M') ) = 2<sup>-k</sup>, where k is the number of bits in the MAC

### Requirements ... (cont'd)

 Knowing MAC(M), it should be computationally infeasible for an attacker to find M.

# S.K. Crypto for Confidentiality AND Authenticity?

- So far we've got
  - confidentiality (encryption),

or...

- authenticity (MACs)
- Can we get **both** at the same time with **one** cryptographic operation?

### Attempt #1

- Sender computes an error-detection code F(P) of the plaintext P
- 2. Sender concatenates P and F(P) and encrypts
  - i.e., C = E<sub>K</sub>(P | F(P))
- 3. Receiver decrypts received ciphertext C' using K, to get P'|F'
- Receiver computes F(P') and compares to F' to authenticate received message P' = P
- How does this authenticate P?

### Attempt #1... (Cont'd)



# Attempt #2

- 1. Compute residue (MAC) using key K1
- 2. Encrypt plaintext message M using key K2 to produce C
- 3. Transmit MAC | C to receiver
- 4. Receiver decrypts received C' with K2 to get P'
- 5. Receiver computes MAC(P') using K1, compares to received MAC'

### Attempt #2... (cont'd)



- Good (cryptographic) quality, but...
- Expensive! Two separate, full encryptions with different keys are required

# Summary

- 1. ECB mode is not secure
  - CBC most commonly used mode of operation
- 2. Triple-DES (with 2 keys) is much stronger than DES
  - usually uses EDE in Outer Chaining Mode
- MACs use crypto to authenticate messages at a small cost of additional storage / bandwidth
  - but at a high computational cost