CIS 6930/4930 Computer and Network Security

Topic 3.2 Secret Key Cryptography Modes of Operation

Cipher Feedback Mode (CFB)

- Ciphertext block C_{j} depends on all preceding plaintext blocks

CFB Decryption

- No block decryption required!

CFB Properties

- Does information leak?
- Identical plaintext blocks produce different ciphertext blocks
- Can ciphertext be manipulated predictably? - ???
- Parallel processing possible?
- no (encryption), yes (decryption)
- Do ciphertext errors propagate?
- ???

Counter Mode (CTR)

CTR Mode Properties

- Does information leak?
- Identical plaintext block produce different ciphertext blocks
- Can ciphertext be manipulated predictably
- ???
- Parallel processing possible
- Yes (both generating pad and XORing)
- Do ciphertext errors propagate?
- ???

CIS 6930/4930 Computer and Network Security

Topic 3.3 Secret Key Cryptography Triple DES

Stronger DES

- Major limitation of DES
- Key length is too short
- Can we apply DES multiple times to increase the strength of encryption?

Double Encryption with DES

-Does encrypting using the same key make things more secure?

Double Encryption with DES

- Encrypt the plaintext twice, using two different DES keys
-Total key material increases to 112 bits
- is that the same as key strength of 112 bits?

The Meet-in-the-Middle Attack

1. Choose a plaintext P and generate ciphertext C, using double-DES with $\mathcal{K} 1+\mathcal{K} 2$
2. Then...
a. encrypt P using single-DES for all possible 2^{56} values K_{1} to generate all possible single-DES ciphertexts for P :
$X_{1}, X_{2}, \ldots, X_{2}{ }^{56}$;
store these in a table indexed by ciphertex values
b. decrypt C using single-DES for all possible 2^{56} values K_{2} to generate all possible single-DES plaintexts for C :
$Y_{1}, Y_{2}, \ldots, Y_{2} 56$;
for each value, check the table

Steps ... (Cont'd)

3. Meet-in-the-middle:

- Each match ($\mathrm{X}_{\mathrm{i}}=\mathrm{Y}_{\mathrm{j}}$) reveals a candidate key pair $\mathrm{K}_{\mathrm{i}}+\mathrm{K}_{\mathrm{j}}$
- There are 2^{112} pairs but there are only 2^{64} X's

4. On average, how many pairs have identical X and Y ?

- For any pair (X, Y), the probability that $\mathrm{X}=\mathrm{Y}$ is $1 / 2^{64}$
- There are 2^{112} pairs.
- The expected number of pairs that result in identical X and Y is $2^{112} / 2^{64}=2^{48}$

Steps ... (Cont'd)

5. The attacker uses a second pair of plaintext and ciphertext to try the 2^{48} Key pairs

- There are 2^{48} key pairs and 2^{64} X's (Y's)
- The probability that a false key pair results in identical X and Y is $2^{48} / 2^{64}=2^{-16}$
- The correct key pair always leads to identical X and Y
- A false key pair leads to identical X and Y at the probability of 2^{-16} (i.e., 1/65536)
- Hence, after examine two pairs of plaintext and ciphtertext, the attacker can normally identify the key

Attack Complexity

- How many DES encryptions and decryptions the attacker need to compute?

$$
-2 \times 2^{56}+2 \times 2^{48}
$$

- An expensive attack (computation + storage)
- still, enough of a threat to discourage use of double-DES

Triple Encryption (Triple DES-EDE)

Encryption

Decryption

- Apply DES encryption/decryption three times
- why EDE?
- One reason might be that by taking k1 = k2 = key, 3DES becomes single DES with key. 3DES can communicate with single DES.

Triple DES (Cont'd)

- Widely used
- equivalent strength to using a 112 bit key
- strength about 2^{112} against $\mathrm{M}-\mathrm{I}-\mathrm{T}-\mathrm{M}$ attack

Observation:

$$
\mathrm{X}=\mathrm{D}_{\mathrm{K}_{2}}\left\{\mathrm{E}_{\mathrm{K}_{1}}\{\mathrm{P}\}\right\}=\mathrm{D}_{\mathrm{K}_{1}}\{\mathrm{C}\}
$$

Triple DES (Cont'd)

- However: inefficient / expensive to compute
- one third as fast as DES on the same platform, and DES is already designed to be slow in software
- Next question: how is block chaining used with triple-DES?

3DES-EDE: Outside Chaining Mode

- What basic chaining mode is this?

3DES-EDE: OCM Decryption

OCM Properties

- Does information leak?
- identical plaintext blocks produce different ciphertext blocks
- Can ciphertext be manipulated predicatably? - ???
- Parallel processing possible?
- no (encryption), yes (decryption)
- Do ciphertext errors propagate?
- ???

3DES-EDE: Inside Chaining Mode

3DES-EDE: ICM Decryption

ICM Properties

- Does information leak?
- identical plaintext blocks produce different ciphertext blocks
- Can ciphertext be manipulated predictably? - ???
- Parallel processing possible?
- no (encryption), yes (partial of the decryption)
- Do ciphertext errors propagate?
- ???

CIS 6930/4930 Computer and Network Security

Topic 3.4 Secret Key Cryptography MAC with Secret Key Ciphers

Message Authentication/Integrity

- Encryption easily provides confidentiality of messages
- only the party sharing the key (the "key partner") can decrypt the ciphertext
- How to use encryption to authenticate messages and verify the integrity? That is,
- prove the message was created by the key partner
- prove the message wasn't modified by someone other than the key partner

Approach \#1

- If the decrypted plaintext "looks plausible", then conclude ciphertext was produced by the key partner
- i.e., illegally modified ciphertext, or ciphertext encrypted with the wrong key, will probably decrypt to random-looking data
- But, is it easy to verify data is "plausiblelooking"?

Approach \#2: Plaintext+Ciphertext

- Send plaintext and ciphertext
- receiver encrypts plaintext, and compares result with received ciphertext
- forgeries / modifications easily detected
- any problems / drawbacks?

Approach \#3: Use Residue

- Encrypt plaintext using DES CBC mode, with IV set to zero
- the last (final) ciphertext output block is called the residue

Approach \#3... (Cont’d)

Sender
Receiver

- Transmit the plaintext and this residue
- receiver computes same residue, compares to the received residue
- forgeries / modifications highly likely to be detected

Message Authentication Codes

MAC: a small fixed-size block (i.e., independent of message size) generated from a message using secret key cryptography

- also known as cryptographic checksum

Requirements for MAC

1. Given M and $M A C(M)$, it should be computationally infeasible (expensive) to construct (or find) another message M^{\prime} such that MAC(M') = MAC(M)
2. $\operatorname{MAC}(M)$ should be uniformly distributed in terms of M

- for randomly chosen messages M and M^{\prime}, $P\left(\operatorname{MAC}(M)=\operatorname{MAC}\left(M^{\prime}\right)\right)=2^{-k}$, where k is the number of bits in the MAC

Requirements ... (cont'd)

3. Knowing $\operatorname{MAC}(M)$, it should be computationally infeasible for an attacker to find M.

S.K. Crypto for Confidentiality AND Authenticity?

- So far we've got
- confidentiality (encryption),
or...
- authenticity (MACs)
- Can we get both at the same time with one cryptographic operation?

Attempt \#1

1. Sender computes an error-detection code $F(P)$ of the plaintext P
2. Sender concatenates P and $F(P)$ and encrypts

- i.e., $C=E_{k}(P \mid F(P))$

3. Receiver decrypts received ciphertext C^{\prime} using K, to get $P^{\prime} \mid F^{\prime}$
4. Receiver computes $F\left(P^{\prime}\right)$ and compares to F^{\prime} to authenticate received message $\mathrm{P}^{\prime}=\mathrm{P}$

- How does this authenticate P?

Attempt \#1... (Cont’d)

Attempt \#2

1. Compute residue (MAC) using key K1
2. Encrypt plaintext message M using key K 2 to produce C
3. Transmit MAC|C to receiver
4. Receiver decrypts received C^{\prime} with K 2 to get P^{\prime}
5. Receiver computes MAC($\left.P^{\prime}\right)$ using K1, compares to received MAC'

Attempt \#2... (cont'd)

- Good (cryptographic) quality, but...
- Expensive! Two separate, full encryptions with different keys are required

Summary

1. ECB mode is not secure

- CBC most commonly used mode of operation

2. Triple-DES (with 2 keys) is much stronger than DES

- usually uses EDE in Outer Chaining Mode

3. MACs use crypto to authenticate messages at a small cost of additional storage / bandwidth

- but at a high computational cost

