CIS 6930/4930 Computer and Network Security

Topic 2. Introduction to Cryptography

Cryptography

- Cryptography: the art of secret writing
- Converts data into unintelligible (randomlooking) form
- Must be reversible (can recover original data without loss or modification)
- If cryptography is combined with compression
- What is the right order?

Cryptography vs. Steganography

- Steganography concerns existence
- Conceals the very existence of communication
- Examples?

> Apparently neutral's protest is thoroughly discounted and ignored. Isman hard hit. Blockade issue affects pretext for embargo on bypoducts, ejecting suets and vegetable oils.

Pershing sails from NY June I

- Cryptography concerns what
- Conceals the contents of communication between two parties

Encryption/Decryption

- Plaintext: a message in its original form
- Ciphertext: a message in the transformed, unrecognized form
- Encryption: the process that transforms a plaintext into a ciphertext
- Decryption: the process that transforms a ciphertext to the corresponding plaintext
- Key: the value used to control encryption/decryption.

Cryptanalysis

- Cryptanalysis: the art of revealing the secret
- Defeat cryptographic security systems
- Gain access to the real contents of encrypted messages
- Cryptographic keys can be unknown
- Difficulty depends on
- Sophistication of the encryption/decryption
- Amount of information available to the code breaker

Ciphertext Only Attacks

- An attacker intercepts a set of ciphertexts
- Breaking the cipher: analyze patterns in the ciphertext
- provides clues about the plaintext and key

Known Plaintext Attacks

- An attacker has samples of both the plaintext and its encrypted version, the ciphertext
- Makes some ciphers (e.g., mono-alphabetic ciphers) very easy to break

Chosen Plaintext Attacks

- An attacker has the capability to choose arbitrary plaintexts to be encrypted and obtain the corresponding ciphertexts
- How could such attacks be possible?
- Difference between known plaintext and chosen plaintext attacks

Perfectly Secure Ciphers

1. Ciphertext does not reveal any information about which plaintexts are more likely to have produced it

- e.g., the cipher is robust against ciphertext only attacks
and

2. Plaintext does not reveal any information about which ciphertexts are more likely to be produced

- e.g, the cipher is robust against known/chosen plaintext attacks

Computationally Secure Ciphers

1. The cost of breaking the cipher quickly exceeds the value of the encrypted information
and/or
2. The time required to break the cipher exceeds the useful lifetime of the information

- Under the assumption there is not a faster / cheaper way to break the cipher, waiting to be discovered

Secret Keys v.s. Secret Algorithms

- Keep algorithms secret
- We can achieve better security if we keep the algorithms secret
- Hard to keep secret if used widely
- Publish the algorithms
- Security depends on the secrecy of the keys
- Less unknown vulnerability if all the smart (good) people in the world are examine the algorithms
- Military
- Both secret key and secret algorithm

Some Early Ciphers

Caesar Cipher

- Replace each letter with the one 3 letters later in the alphabet
plaintext alphabet
ciphertext alphabet

Trivial to break

A variant of Caesar Cipher

- Replace each letter by one that is δ positions later, where δ is selectable (i.e., δ is the key)
- example: IBM \rightarrow HAL (for $\delta=25$)
- Also trivial to break with modern computers (how many possibilities?)
plaintext alphabet
ciphertext
alphabet

Mono-Alphabetic Ciphers

- Generalized substitution cipher: randomly map one letter to another (How many possibilities?)
$-26!\left(\approx 4.0^{*} 10^{26} \approx 2^{88}\right)$
- The key must specify which permutation; how many bits does that take?
$-\log _{2}(26!)(\approx 90$ bits)
plaintext alphabet
ciphertext alphabet

Attacking Mono-Alphabetic Ciphers

- Known plaintext attacks
- Frequency of single letters in English language, taken from a large corpus of text:

$A \approx 8.2 \%$	$H \approx 6.1 \%$	$\mathrm{O} \approx 7.5 \%$	$\mathrm{~V} \approx 1.0 \%$
$B \approx 1.5 \%$	$\mathrm{I} \approx 7.0 \%$	$\mathrm{P} \approx 1.9 \%$	$\mathrm{~W} \approx 2.4 \%$
$C \approx 2.8 \%$	$\mathrm{~J} \approx 0.2 \%$	$\mathrm{Q} \approx 0.1 \%$	$\mathrm{X} \approx 0.2 \%$
$\mathrm{D} \approx 4.3 \%$	$\mathrm{~K} \approx 0.8 \%$	$\mathrm{R} \approx 6.0 \%$	$\mathrm{Y} \approx 2.0 \%$
$\mathrm{E} \approx 12.7 \%$	$\mathrm{~L} \approx 4.0 \%$	$\mathrm{~S} \approx 6.3 \%$	$\mathrm{Z} \approx 0.1 \%$
$\mathrm{~F} \approx 2.2 \%$	$\mathrm{M} \approx 2.4 \%$	$\mathrm{~T} \approx 9.1 \%$	
$\mathrm{G} \approx 2.0 \%$	$\mathrm{~N} \approx 6.7 \%$	$\mathrm{U} \approx 2.8 \%$	

Attacking... (Cont'd)

- Suppose the attacker intercepts the following message

UXGPOGZCFJZJTFADADAJEJNDZMZHBBGZGGKQGVVGXCDIWGX

A	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}	\mathbf{F}	\mathbf{G}	\mathbf{H}	\mathbf{I}	\mathbf{J}	\mathbf{K}	\mathbf{L}	\mathbf{M}	\mathbf{N}	\mathbf{O}	\mathbf{P}	\mathbf{Q}	\mathbf{R}	\mathbf{S}	\mathbf{T}	\mathbf{U}	\mathbf{V}	\mathbf{W}	\mathbf{X}	\mathbf{Y}	\mathbf{Z}
$\mathbf{3}$	2	2	4	1	2	8	1	1	4	1	0	1	1	1	1	1	0	0	1	1	2	1	3	0	5

$A \approx 8.2 \%$	$H \approx 6.1 \%$	$O \approx 7.5 \%$	$V \approx 1.0 \%$
$B \approx 1.5 \%$	$I \approx 7.0 \%$	$P \approx 1.9 \%$	$W \approx 2.4 \%$
$C \approx 2.8 \%$	$J \approx 0.2 \%$	$Q \approx 0.1 \%$	$X \approx 0.2 \%$
$D \approx 4.3 \%$	$K \approx 0.8 \%$	$R \approx 6.0 \%$	$Y \approx 2.0 \%$
$E \approx 12.7 \%$	$L \approx 4.0 \%$	$S \approx 6.3 \%$	$Z \approx 0.1 \%$
$F \approx 2.2 \%$	$M \approx 2.4 \%$	$T \approx 9.1 \%$	
$G \approx 2.0 \%$	$N \approx 6.7 \%$	$U \approx 2.8 \%$	

FREQUENCY ANALYSIS IS
AMAZING NOW WE NEED BETTER CIPHER

Letter Frequencies

Vigenere Cipher

- A set of mono-alphabetic substitution rules (shift amounts) is used
- the key determines what the sequence of rules is
- also called a poly-alphabetic cipher
- Ex.: key = ($\begin{array}{ll}3 & 1\end{array}$ 5)
- i.e., substitute first letter in plaintext by letter+3, second letter by letter+1, third letter by letter+5
- then repeat this cycle for each 3 letters

Vigenere... (Cont’d)

- Ex.: plaintext = "BANDBAD"
plaintext message
B
A
N
B
A
D
shift amount
3
1
5
$\mid 3$
1
5
3
ciphertext message

E	B	S	G	C	F	G

What are the possible attacks?

- Known plaintext? Frequency analysis?

Hill Ciphers

- Encrypts m letters of plaintext at each step - i.e., plaintext is processed in blocks of size m
- Encryption of plaintext p to produce ciphertext c is accomplished by: $c=K p$
- the $m \times m$ matrix K is the key
- decryption is multiplication by inverse: $p=K^{-1} c$
- remember: all arithmetic mod 26

Hill Cipher Example

- For $m=2$, let $\boldsymbol{K}=\begin{array}{lll}1 & 2, \\ 3 & 5\end{array} \quad \boldsymbol{K}^{-1}=\begin{array}{cc}21 & 2 \\ 3 & 25\end{array}$

Plaintext $p=$

A	B	X	Y	D	G
0	1	23	24	3	6

$\underline{(21 * 15+2 * 13) \bmod 26}$

Ciphertext $c=$	2		$(3 * 23+5 * 24) \bmod 26$			

Hill... (Cont'd)

- Fairly strong for large m
- Possible attacks
- Ciphertext only?
- Known/Chosen plaintext attack?
- Choose m plaintexts, generate corresponding ciphertexts
- Form a $m \times m$ matrix X from the plaintexts, and $m \times m$ matrix Y from the ciphertexts
- Can solve directly for \boldsymbol{K} (i.e., $\boldsymbol{K}=\boldsymbol{Y} \boldsymbol{X}^{-1}$)
- How many (plaintext, ciphertext) pairs are required?

Permutation Ciphers

- The previous codes are all based on substituting one symbol in the alphabet for another symbol in the alphabet
- Permutation cipher: permute (rearrange, transpose) the letters in the message
- the permutation can be fixed, or can change over the length of the message

Permutation... (Cont'd)

- Permutation cipher ex. \#1:
- Permute each successive block of 5 letters in the message according to position offset <+1,+3,-2,0,-2>
plaintext message

ciphertext message

Permutation... (Cont'd)

-Permutation cipher ex. \#2:

- arrange plaintext in blocks of n columns and m rows
- then permute columns in a block according to a key K

ciphertext sequence (by plaintext position) for one block

$$
\begin{array}{|llllllllllll|}
\hline 3 & 7 & 11 & 4 & 8 & 12 & 2 & 6 & 10 & 1 & 5 & 9
\end{array}
$$

Permutation... (Cont'd)

- A longer example: plaintext = "ATTACK POSTPONED UNTIL TWO AM"

ciphertext
TTNA APTM TSUO AODW COIX PETZ KNLY

A Perfectly Secure Cipher: One-Time

 Pads- According to a theorem by Shannon, a perfectly secure cipher requires:
- a key length at least as long as the message to be encrypted
- the key can only be used once (i.e., for each message we need a new key)
- Very limited use due to need to negotiate and distribute long, random keys for every message

OTP... (Cont'd)

- Idea
- generate a random bit string (the key) as long as the plaintext, and share with the other communicating party
- encryption: XOR this key with plaintext to get ciphertext
- decrypt: XOR same key with ciphertext to get plaintext

$$
\begin{aligned}
& 0 \oplus 0=0 \\
& 0 \oplus 1=1 \\
& 1 \oplus 0=1 \\
& 1 \oplus 1=0
\end{aligned}
$$

OTP... (Cont’d)

plaintext
010110010100010101010011
key (pad) 000101110000101001110011
$\downarrow=\quad \dagger \bigoplus$
ciphertext 010011100100111100100000

- Why can't the key be reused?

Some "Key" Issues

Types of Cryptography

- Number of keys
- Hash functions: no key
- Secret key cryptography: one key
- Public key cryptography: two keys - public, private
- The way in which the plaintext is processed
- Stream cipher: encrypt input message one symbol at a time
- Block cipher: divide input message into blocks of symbols, and processes the blocks in sequence
- May require padding

Secret Key Cryptography

- Same key is used for encryption and decryption
- Also known as
- Symmetric cryptography
- Conventional cryptography

Secret Key Cryptography (Cont'd)

- Basic technique
- Product cipher:
- Multiple applications of interleaved substitutions and permutations

Secret Key Cryptography (Cont’d)

- Ciphertext approximately the same length as plaintext
- Examples
- Stream Cipher: RC4
- Block Cipher: DES, IDEA, AES

Applications of Secret Key Cryptography

- Transmitting over an insecure channel
- Challenge: How to share the key?
- Authentication
- Challenge-response
- To prove the other party knows the secret key
- Must be secure against chosen plaintext attack
- Integrity check
- Message Integrity Code (MIC)
- a.k.a. Message Authentication Code (MAC)

Public Key Cryptography

- Invented/published in 1975
- A public/private key pair is used
- Public key can be publicly known
- Private key is kept secret by the owner of the key
- Much slower than secret key cryptography
- Also known as
- Asymmetric cryptography

Public Key Cryptography (Cont’d)

- Another mode: digital signature
- Only the party with the private key can create a digital signature.
- The digital signature is verifiable by anyone who knows the public key.
- The signer cannot deny that he/she has done so.

Applications of Public Key Cryptography

- Data transmission:
- Alice encrypts m_{a} using Bob's public key e_{B}, Bob decrypts m_{a} using his private key d_{B}.
- Storage:
- Can create a safety copy: using public key of trusted person.
- Authentication:
- No need to store secrets, only need public keys.
- Secret key cryptography: need to share secret key for every person to communicate with.

Applications of Public Key Cryptography (Cont’d)

- Digital signatures
- Sign hash $H(m)$ with the private key
- Authorship
- Integrity
- Non-repudiation: can't do with secret key cryptography
- Key exchange
- Establish a common session key between two parties
- Particularly for encrypting long messages

Hash Algorithms

- Also known as
- Message digests
- One-way transformations
- One-way functions
- Hash functions
- Length of $H(m)$ much shorter then length of m
- Usually fixed lengths: 128 or 160 bits

Hash Algorithms (Cont'd)

- Desirable properties of hash functions
- Performance: Easy to compute $H(m)$
- One-way property: Given $H(m)$ but not m, it's difficult to find m
- Weak collision free: Given $H(m)$, it's difficult to find m^{\prime} such that $H\left(m^{\prime}\right)=H(m)$.
- Strong collision free: Computationally infeasible to find m_{1}, m_{2} such that $H\left(m_{1}\right)=H\left(m_{2}\right)$

Applications of Hash Functions

- Primary application
- Generate/verify digital signatures

Private key

Applications of Hash Functions (Cont'd)

- Password hashing
- Doesn't need to know password to verify it
- Store H(password+salt) and salt, and compare it with the user-entered password
- Salt makes dictionary attack more difficult
- Message integrity
- Agree on a secrete key k
- Compute $H(m \mid k)$ and send with m
- Doesn't require encryption algorithm, so the technology is exportable

Applications of Hash Functions (Cont'd)

- Message fingerprinting
- Verify whether some large data structures (e.g., a program) has been modified
- Keep a copy of the hash
- At verification time, recompute the hash and compare
- Hashing program and the hash values must be protected separately from the large data structures

Summary

- Cryptography is a fundamental, and most carefully studied, component of security
- not usually the "weak link"
- "Perfectly secure" ciphers are possible, but too expensive in practice
- Early ciphers aren't nearly strong enough
- Key distribution and management is a challenge for any cipher

