CIS 6930/4930 Computer and Network Security

Topic 2. Introduction to Cryptography

Cryptography

- *Cryptography*: the art of secret writing
- Converts data into unintelligible (randomlooking) form
 - Must be *reversible* (can recover original data without loss or modification)
- If cryptography is combined with compression — What is the right order?

Cryptography vs. Steganography

- *Steganography* concerns existence
 - Conceals the very existence of communication
 - Examples?

Apparently neutral's protest is thoroughly discounted and ignored. Isman hard hit. Blockade issue affects pretext for embargo on bypoducts, ejecting suets and vegetable oils.

Pershing sails from NY June I

- Cryptography concerns what
 - Conceals the contents of communication between two parties

Encryption/Decryption

- Plaintext: a message in its original form
- Ciphertext: a message in the transformed, unrecognized form
- Encryption: the process that transforms a plaintext into a ciphertext
- Decryption: the process that transforms a ciphertext to the corresponding plaintext
- Key: the value used to control encryption/decryption.

Cryptanalysis

- Cryptanalysis: the art of revealing the secret
 - Defeat cryptographic security systems
 - Gain access to the real contents of encrypted messages
 - Cryptographic keys can be unknown
- Difficulty depends on
 - Sophistication of the encryption/decryption
 - Amount of information available to the code breaker

Ciphertext Only Attacks

- An attacker intercepts a set of ciphertexts
- Breaking the cipher: analyze patterns in the ciphertext
 - provides clues about the plaintext and key

Known Plaintext Attacks

- An attacker has samples of both the plaintext and its encrypted version, the ciphertext
- Makes some ciphers (e.g., mono-alphabetic ciphers) very easy to break

Chosen Plaintext Attacks

- An attacker has the capability to choose arbitrary plaintexts to be encrypted and obtain the corresponding ciphertexts
 - How could such attacks be possible?
 - Difference between known plaintext and chosen plaintext attacks

Perfectly Secure Ciphers

1. Ciphertext does not reveal any information about which plaintexts are more likely to have produced it

e.g., the cipher is robust against ciphertext only attacks
and

- 2. Plaintext does not reveal any information about which ciphertexts are more likely to be produced
 - e.g, the cipher is robust against known/chosen plaintext attacks

Computationally Secure Ciphers

1. The cost of breaking the cipher quickly exceeds the value of the encrypted information

and/or

- 2. The time required to break the cipher exceeds the useful lifetime of the information
- Under the assumption there is not a faster / cheaper way to break the cipher, waiting to be discovered

Secret Keys v.s. Secret Algorithms

- Keep algorithms secret
 - We can achieve better security if we keep the algorithms secret
 - Hard to keep secret if used widely
- Publish the algorithms
 - Security depends on the secrecy of the keys
 - Less unknown vulnerability if all the smart (good) people in the world are examine the algorithms
- Military
 - Both secret key and secret algorithm

Some Early Ciphers

Caesar Cipher

 Replace each letter with the one 3 letters later in the alphabet

Trivial to break

A variant of Caesar Cipher

• Replace each letter by one that is δ positions later, where δ is selectable (i.e., δ is the key)

– example: IBM \rightarrow HAL (for δ =25)

Also trivial to break with modern computers (how many possibilities?)

Mono-Alphabetic Ciphers

• Generalized substitution cipher: randomly map one letter to another (How many possibilities?)

 $-26! (\approx 4.0*10^{26} \approx 2^{88})$

The key must specify which permutation; how many bits does that take?

 $-\log_2(26!)$ (≈ 90 bits)

Attacking Mono-Alphabetic Ciphers

- Known plaintext attacks
- Frequency of single letters in English language, taken from a large corpus of text:

A ≈ 8.2%	H ≈ 6.1%	O ≈ 7.5%	$V \approx 1.0\%$
B ≈ 1.5%	I ≈ 7.0%	P ≈ 1.9%	W ≈ 2.4%
C ≈ 2.8%	J ≈ 0.2%	$Q \approx 0.1\%$	X ≈ 0.2%
D ≈ 4.3%	K ≈ 0.8%	R ≈ 6.0%	Y ≈ 2.0%
E ≈ 12.7%	L ≈ 4.0%	S ≈ 6.3%	Z ≈ 0.1%
F ≈ 2.2%	M ≈ 2.4%	T ≈ 9.1%	
G ≈ 2.0%	N ≈ 6.7%	U ≈ 2.8%	

Attacking... (Cont'd)

Suppose the attacker intercepts the following message

UXGPOGZCFJZJTFADADAJEJNDZMZHBBGZGGKQGVVGXCDIWGX

Α	В	С	D	Ε	F	G	Н	I	J	К	L	Μ	Ν	0	Ρ	Q	R	S	Т	U	V	W	Χ	Y	Ζ
3	2	2	4	1	2	8	1	1	4	1	0	1	1	1	1	1	0	0	1	1	2	1	3	0	5

A ≈ 8.2%	H ≈ 6.1%	O ≈ 7.5%	V ≈ 1.0%
B ≈ 1.5%	$I \approx 7.0\%$	P ≈ 1.9%	W ≈ 2.4%
C ≈ 2.8%	J ≈ 0.2%	$Q \approx 0.1\%$	X ≈ 0.2%
D ≈ 4.3%	K ≈ 0.8%	R ≈ 6.0%	Y ≈ 2.0%
E ≈ 12.7%	L ≈ 4.0%	S ≈ 6.3%	Z ≈ 0.1%
F ≈ 2.2%	M ≈ 2.4%	T ≈ 9.1%	
G ≈ 2.0%	N ≈ 6.7%	U ≈ 2.8%	

FREQUENCY ANALYSIS IS AMAZING NOW WE NEED BETTER CIPHER

Letter Frequencies

Vigenere Cipher

- A set of mono-alphabetic substitution rules (shift amounts) is used
 - the key determines what the sequence of rules is
 - also called a *poly-alphabetic* cipher
- Ex.: key = (3 1 5)
 - i.e., substitute first letter in plaintext by letter+3, second letter by letter+1, third letter by letter+5
 - then repeat this cycle for each 3 letters

Vigenere... (Cont'd)

• Ex.: plaintext = "BANDBAD"

plaintext message

ciphertext message

What are the possible attacks?

– Known plaintext? Frequency analysis?

Hill Ciphers

- Encrypts *m* letters of plaintext at each step
 i.e., plaintext is processed in blocks of size *m*
- Encryption of plaintext p to produce ciphertext c is accomplished by: c = Kp
 - the *m*×*m* matrix *K* is the key
 - decryption is multiplication by inverse: $p = K^{-1}c$
 - remember: all arithmetic mod 26

Hill... (Cont'd)

- Fairly strong for large *m*
- Possible attacks
 - Ciphertext only?
 - Known/Chosen plaintext attack?
 - Choose *m* plaintexts, generate corresponding ciphertexts
 - Form a m x m matrix X from the plaintexts, and m x m matrix Y from the ciphertexts
 - Can solve directly for *K* (i.e., *K* = *Y X*⁻¹)
 - How many (plaintext, ciphertext) pairs are required?

Permutation Ciphers

- The previous codes are all based on substituting one symbol in the alphabet for another symbol in the alphabet
- Permutation cipher: permute (rearrange, transpose) the letters in the message
 - the permutation can be fixed, or can change over the length of the message

Permutation... (Cont'd)

- Permutation cipher ex. #1:
 - Permute each successive block of 5 letters in the message according to position offset <+1,+3,-2,0,-2>

plaintext message

ciphertext message

Permutation... (Cont'd)

- •Permutation cipher ex. #2:
- arrange plaintext in blocks of n columns and m rows
- then permute columns in a block according to a key K

ciphertext sequence (by plaintext position) for one block

Permutation... (Cont'd)

 A longer example: plaintext = "ATTACK POSTPONED UNTIL TWO AM"

ciphertext

TTNA APTM TSUO AODW COIX PETZ KNLY

A Perfectly Secure Cipher: One-Time Pads

- According to a theorem by Shannon, a perfectly secure cipher requires:
 - a key length at least as long as the message to be encrypted
 - the key can only be used once (i.e., for each message we need a new key)
- Very limited use due to need to negotiate and distribute long, random keys for every message

OTP... (Cont'd)

- Idea
 - generate a random bit string (the key) as long as the plaintext, and share with the other communicating party
 - encryption: XOR this key with plaintext to get ciphertext
 - decrypt: XOR same key with ciphertext to get plaintext

 $0 \oplus 0 = 0$ $0 \oplus 1 = 1$ $1 \oplus 0 = 1$ $1 \oplus 1 = 0$

29

• Why can't the key be reused?

Some "Key" Issues

Types of Cryptography

- Number of keys
 - <u>Hash functions</u>: no key
 - <u>Secret key cryptography</u>: one key
 - Public key cryptography: two keys public, private
- The way in which the plaintext is processed
 - <u>Stream cipher</u>: encrypt input message one symbol at a time
 - <u>Block cipher</u>: divide input message into blocks of symbols, and processes the blocks in sequence
 - May require padding

Secret Key Cryptography

- Same key is used for encryption and decryption
- Also known as
 - Symmetric cryptography
 - Conventional cryptography

Secret Key Cryptography (Cont'd)

- Basic technique
 - Product cipher:
 - Multiple applications of interleaved substitutions and permutations

Secret Key Cryptography (Cont'd)

- Ciphertext approximately the same length as plaintext
- Examples
 - Stream Cipher: RC4
 - Block Cipher: DES, IDEA, AES

Applications of Secret Key Cryptography

- Transmitting over an insecure channel
 - Challenge: How to share the key?
- Authentication
 - Challenge-response
 - To prove the other party knows the secret key
 - Must be secure against chosen plaintext attack
- Integrity check
 - Message Integrity Code (MIC)
 - a.k.a. Message Authentication Code (MAC)

- Invented/published in 1975
- A public/private key pair is used
 - Public key can be publicly known
 - Private key is kept secret by the owner of the key
- Much slower than secret key cryptography
- Also known as
 - Asymmetric cryptography

Public Key Cryptography (Cont'd)

- Another mode: digital signature
 - Only the party with the private key can create a digital signature.
 - The digital signature is verifiable by anyone who knows the public key.
 - The signer cannot deny that he/she has done so.

Applications of Public Key Cryptography

- Data transmission:
 - Alice encrypts m_a using Bob's public key e_B , Bob decrypts m_a using his private key d_B .
- Storage:
 - Can create a safety copy: using public key of trusted person.
- Authentication:
 - No need to store secrets, only need public keys.
 - Secret key cryptography: need to share secret key for every person to communicate with.

Applications of Public Key Cryptography (Cont'd)

- Digital signatures
 - Sign hash H(m) with the private key
 - Authorship
 - Integrity
 - Non-repudiation: can't do with secret key cryptography
- Key exchange
 - Establish a common session key between two parties
 - Particularly for encrypting long messages

Hash Algorithms

- Also known as
 - Message digests
 - One-way transformations
 - One-way functions
 - Hash functions
- Length of *H*(*m*) much shorter then length of *m*
- Usually fixed lengths: 128 or 160 bits

Hash Algorithms (Cont'd)

- Desirable properties of hash functions
 - <u>Performance</u>: Easy to compute *H*(*m*)
 - <u>One-way property</u>: Given H(m) but not m, it's difficult to find m
 - <u>Weak collision free</u>: Given H(m), it's difficult to find m' such that H(m') = H(m).
 - <u>Strong collision free</u>: Computationally infeasible to find m_1 , m_2 such that $H(m_1) = H(m_2)$

Applications of Hash Functions

• Primary application

Applications of Hash Functions (Cont'd)

- Password hashing
 - Doesn't need to know password to verify it
 - Store H(password+salt) and salt, and compare it with the user-entered password
 - Salt makes dictionary attack more difficult
- Message integrity
 - Agree on a secrete key k
 - Compute H(m | k) and send with m
 - Doesn't require encryption algorithm, so the technology is exportable

Applications of Hash Functions (Cont'd)

- Message fingerprinting
 - Verify whether some large data structures (e.g., a program) has been modified
 - Keep a copy of the hash
 - At verification time, recompute the hash and compare
 - Hashing program and the hash values must be protected separately from the large data structures

Summary

 Cryptography is a fundamental, and most carefully studied, component of security

not usually the "weak link"

- "Perfectly secure" ciphers are possible, but too expensive in practice
- Early ciphers aren't nearly strong enough
- Key distribution and management is a challenge for any cipher