CIS 6930/4930 Computer and Network Security

Topic 8.2 Internet Key Management

Key Management

- Why do we need Internet key management
 - AH and ESP require encryption and authentication keys
- Process to negotiate and establish IPsec SAs between two entities

Security Principles

- Basic security principle for session keys
 - Compromise of a session key
 - Doesn't permit reuse of the compromised session key.
 - Doesn't compromise future session keys and longterm keys.

Security Principles (Cont'd)

- Perfect forward secrecy (PFS)
 - Compromise of current keys (session key or long-term key) doesn't compromise past session keys.
 - Concern for encryption keys but not for authentication keys.

Perfect Forward Secrecy Example

Alice Bob [Alice, $g^{S_A} \mod p$] Alice

[Bob, $g^{S_B} \mod p$] _{Bob}

hash($g^{S_A S_B} \mod p$)

 $hash(1, g^{S_A S_B} \mod p)$

Examples of Non Perfect Forward Secrecy

- Alice sends all messages with Bob's public key, Bob sends all messages with Alice's public key
- Kerberos
- Alice chooses session keys, and sends them to Bob, all encrypted with Bob's public key

Internet Key Management

- Manual key management
 - Mandatory
 - Useful when IPsec developers are debugging
 - Keys exchanged offline (phone, email, etc.)

Internet Key Management

- Automatic key management
 - Two major competing proposals
 - Simple Key Management for Internet Protocols (SKIP)
 - Internet Security Association and Key Management Protocol (ISAKMP) + OAKLEY

Automatic Key Management

- Key establishment and management combined
 - SKIP
- Key establishment protocol
 - Oakley
 - focus on key exchange
- Key management
 - Internet Security Association & Key Management Protocol (ISAKMP)
 - Focus on SA and key management
 - Clearly separated from key exchange.

SKIP

- Idea
 - Use sessionless key establishment and management
 - Pre-distributed and authenticated D-H public key
 - Packet-specific encryption keys are included in the IP packets

SKIP (Cont'd)

- KEK should be changed periodically
 - Minimize the exposure of KEK
 - Prevent the reuse of compromised packet keys
- SKIP's approach
 - KEK = h (K_{AB}, n), where h is a one-way hash function, K_{AB} is the the long term key between A and B, and n is a counter.

SKIP (Cont'd)

- Limitations
 - No Perfect Forward Secrecy
 - No concept of SA; difficult to work with the current IPsec architecture
- Not the standard, but remains as an alternative.

Oakley

- Oakley is a refinement of the basic Diffie-Hellman key exchange protocol.
- Why need refinement?
 - Resource clogging attack
 - Replay attack
 - Man-in-the-middle attack
 - Choice of D-H groups

Resource Clogging Attack

Many bogus requests With false source IPs

- Stopping requests is difficult
 We need to provide services.
- Ignoring requests is dangerous
 Denial of service attacks

Resource Clogging Attack (Cont'd)

- Counter measure
 - If we cannot stop bogus requests, at least we should know from where the requests are sent.
 - Cookies are used to thwart resource clogging attack
 - Thwart, not prevent

Resource Clogging Attack (Cont'd)

- Cookie
 - Each side sends a pseudo-random number, the cookie, in the initial message, which the other side acknowledges.
 - The acknowledgement must be repeated in the following messages.
 - Do not begin D-H calculation until getting acknowledgement for the other side.

Requirements for cookie generation

- An attacker cannot reuse cookies.
- Impossible to predict

– Use secret values

- Efficient
- Cookies are also used for key naming

 Each key is uniquely identified by the initiator's cookie and the responder's cookie.

Replay Attack

- Counter measure
 - Use nonce

Man-In-The-Middle Attack

- Counter measure
 - Authentication
 - Depend on other mechanisms.
 - Pre-shared key.
 - Public key certificates.

Oakley Groups

- How to choose the DH groups?
 - -0 no group (placeholder or non-DH)
 - 1 MODP, 768-bit modulus
 - -2 MODP, 1024-bit modulus
 - 3 MODP, 1536-bit modulus

Ephemeral Diffie-Hellman

Short-term public key

Short-term public key

- Session key is computed on the basis of shortterm DH public keys.
- Exchange of these short-term public keys requires authentication and integrity.
 - Digital signatures.
 - Keyed message digests.
- Perfect forward secrecy?

Ephemeral Diffie-Hellman

Question: What happens if the long term key is compromised?

ISAKMP

- Oakley
 - Key exchange protocol
 - Developed to use with ISAKMP
- ISAKMP
 - Internet security association and key management protocol
 - Defines procedures and packet formats to establish, negotiate, modify, and delete security associations.
 - Defines payloads for security association, key exchange, etc.

ISAKMP Message

- Fixed format header
 - 64 bit initiator and responder cookies
 - Exchange type (8 bits)
 - Next payload type (8 bits)
 - Flags: encryption, authentication, etc.
 - 32 bit message ID
 - Variable number of payloads
 - Each has a generic header with
 - Payload boundaries
 - Next payload type (possible none)

ISAKMP Phases

- Phase 1
 - Establish ISAKMP SA to protect further ISAKMP exchanges
 - Or use pre-established ISAKMP SA
 - ISAKMP SA identified by initiator cookie and responder cookie
- Phase 2
 - Negotiate security services in SA for target security protocol or application.

ISAKMP Exchange Types

- 0 none
- 1 base
- 2 identity protection
- 3 authentication only
- 4 aggressive
- 5 informational

ISAKMP Exchange Types

- Base exchange
 - reveals identities
- Identity protection exchange
 Protects identities at cost of extra messages.
- Authentication only exchange
 - No key exchange
- Aggressive exchange
 - Reduce number of messages, but reveals identity
- Informational exchange
 - One-way transmission of information.

ISAKMP Payload Types

- 0 none
- 1 SA security association
- 2 P proposal
- 3 T transform
- 4 KE key exchange
 - identification
- 6 CERT

• 5 ID

- certificate
- 7 CR certificate request

ISAKMP Payload Types

- 8 H hash
- 9 SIG signature
- 10 NONCE nonce
- 11 N notification
- 12 D delete

IKE Overview

- IKE = ISAKMP + part of OAKLEY
 - ISAKMP determines
 - How two peers communicate
 - How these messages are constructed
 - How to secure the communication between the two peers
 - No actual key exchange
 - Oakley
 - Key exchange protocol

IKE Overview (Cont'd)

- Request-response protocol
 - Initiator
 - Responder
- Two phases
 - Phase 1: Establish an IKE (ISAKMP) SA
 - Phase 2: Use the IKE SA to establish IPsec SAs

IKE Overview (Cont'd)

- Several Modes
 - Phase 1:
 - Main mode: identity protection
 - Aggressive mode
 - Phase 2:
 - Quick mode
 - Other modes
 - New group mode
 - Establish a new group to use in future negotiations
 - Not in phase 1 or 2;
 - Must only be used after phase 1
 - Informational exchanges

IPSEC Architecture

IKE policies (How to establish the IPsec SAs):1. Encryption algorithm; 2. Hash algorithm;3. D-H group; 4. Authentication method.

A Clarification About PFS

- In RFC 2409:
 - Perfect Forward Secrecy (PFS) refers to the notion that compromise of a single key will only permit access to data protected by a single key.
 - The key used to protect transmission of data MUST NOT be used to derive any additional keys.
 - If the key used to protect transmission of data was derived from some other keying material, that material MUST NOT be used to derive any more keys.

IKE Phase 1

- Negotiating cryptographic parameters
 - Specifies suites of acceptable algorithms:
 - {(3DES, MD5, RSA public key encryption, DH),
 - (AES, SHA-1, pre-shared key, elliptic curve), ...}
 - Specifies a MUST be implemented set of algorithms:
 - Encryption=DES, hash=MD5/SHA-1, authentication=preshared key/DH
 - The lifetime of the SA can also be negotiated

IKE Phase 1

- Four authentication methods
 - Authentication with public signature key
 - Authentication with public key encryption
 - Authentication with public key encryption, revised
 - Authentication with a pre-shared key

IKE Phase 1: Public Signature Keys, Main Mode

K{"Bob", proof I am Bob, [certificate]}

IKE Phase 1: Public Signature Keys, aggressive Mode Alice Bob

CP, $g^a \mod p$, nonce_A, "Alice"

CPA, g^b mod p, nonce_B, "Bob", proof I am Bob, [certificate]

proof I am Alice, [certificate]

IKE Phase 1: Public Encryption Keys, Main Mode

IKE Phase 1: Public Encryption Keys, aggressive Mode

Alice

Bob

CP, $g^a \mod p$, {nonce_A } _{Bob} ,{"Alice"} _{Bob}

CPA, $g^b \mod p$, {nonce_B} _{Alice} ,{"Bob"} _{Alice} , proof I am Bob

proof I am Alice

IKE Phase 1: Public Encryption Keys(revised), Main Mode

K{proof I am Bob}

IKE Phase 1: Public Encryption Keys(revised), Aggessive Mode

Alice

Bob

 $K_A = hash(nonce_A, cookie_A)$

CP, {nonce_A} $_{Bob}$, K_A { $g^a \mod p$ }, K_A {"Alice"}, K_A {Alice'cert"}

 $K_B = hash(nonce_B, cookie_B)$

CPA, {nonce_B}_{Alice}, K_B { $g^b \mod p$ }, K_B {"Bob"}, proof I am Bob

Compute $K = f(g^{ab} \mod p, \text{ nonce}_A, \text{ nonce}_B, \text{ cookie}_A, \text{ cookie}_B)$ K{proof I am Alice}

IKE Phase 1: Pre-shared Secret, Main Mode

Compute $K = f(J, g^{ab} \mod p, \text{nonce}_A, \text{nonce}_B, \text{cookie}_A, \text{cookie}_B)$ K{"Alice", proof I am Alice}

K{"Bob", proof I am Bob}

IKE Phase 1: Pre-Shared secret, aggressive Mode

Alice (share a secret *J*)

CP, $g^a \mod p$, nonce_A, "Alice"

CPA, g^b mod p, nonce_B, proof I am Bob, "Bob"

proof I am Alice

Bob

IKE Phase 1: Establish a Shared Key

- Establish a shared secret SKEYID
 - With signature authentication
 - SKEYID = prf(Ni_b | Nr_b, g^{xy})
 - With public key encryption
 - SKEYID = prf(hash(Ni_b | Nr_b), CKY-I | CKY-R)
 - With pre-shared key
 - SKEYID = prf(pre-shared-key, Ni_b | Nr_b)
 - Notations:
 - prf: keyed pseudo random function prf(key, message)
 - CKY-I/CKY-R: I's (or R's) cookie
 - Ni_b/Nr_b: I's (or R's) nonce

IKE Phase 1: Establish a Shared Key (Cont'd)

- Three groups of keys
 - Derived key for non-ISAKMP negotiations
 - SKEYID_d = prf(SKEYID, $g^{xy} | CKY-I | CKY-R | 0)$
 - Authentication key
 - SKEYID_a = prf(SKEYID, SKEYID_d | g^{xy} | CKY-I | CKY-R | 1)
 - Encryption key
 - SKEYID_e = prf(SKEYID, SKEYID_a | g^{xy} | CKY-I | CKY-R | 2)

IKE Phase 2 -- Quick Mode

- Negotiates parameters for the phase-2 SA
- Information exchanged with quick mode must be protected by the phase-1 SA
- Essentially a SA negotiation and an exchange of nonces
- Used to derive keying materials for IPsec SAs

IKE Phase 2 -- Quick Mode (Cont'd)

3-messages protocol

X, Y, CP, traffic, SPI_A , nonce_A, $g^a \mod p$

X, Y, CPA, traffic, SPI_B , nonce_B, $g^b \mod p$

X, Y, ack

IKE Phase 2 -- Quick Mode (Cont'd)

- All messages are encrypted using SKEYID_e, and integrity protected using SKEYID_a (except X, Y)
- Parameters:
 - X: pair of cookies generated during phase 1
 - Y: 32-bit number unique to this phase 2 session chosen by the initiator
 - DH is optional and could be used to provide PFS

Conclusion

- Perfect forward secrecy (PFS)
- SKIP
 - long term shared keys, no PFS
- Oakley
 - a refinement of the basic Diffi-Hellman key exchange protocol.
- ISAKMP
 - Internet security association and key management protocol
- IKE
 - Two phases, main and aggressive modes