CIS 6930/4930 Computer and Network Security

Topic 6.2 Authentication Protocols

Authentication Handshakes

- Secure communication almost always includes an initial authentication handshake.
 - Authenticate each other
 - Establish session keys
 - This process is not trivial; flaws in this process undermine secure communication

Authentication with Shared Secret

- Weaknesses
 - Authentication is not mutual; Trudy can convince Alice that she is Bob
 - Trudy can hijack the conversation after the initial exchange
 - If the shared key is derived from a password, Trudy can mount an off-line password guessing attack

Authentication with Shared Secret (Cont'd)

Weaknesses

- Alice still cannot authenticate Bob
- Trudy can easily get pairs of (plaintext , ciphertext)
- Trudy can hijack the conversation after the initial exchange
- Other vulnerability?

Authentication with Public Key

- Weaknesses
 - Authentication is not mutual; Trudy can convince Alice that she is Bob
 - Trudy can hijack the conversation after the initial exchange
 - Trudy can trick Alice into signing something

Authentication with Public Key (Cont'd)

Alice	I'm Alice $\{R\}_{Alice}$	Bob
	<i>R</i> ,	

A variation

What Bob can trick Alice to do?

Mutual Authentication

• Reflection attack

Reflection Attacks (Cont'd)

- Lesson: Don't have Alice and Bob do exactly the same thing
 - Different keys
 - Totally different keys
 - K_{Alice-Bob} = K_{Bob-Alice} + 1
 - Different Challenges: Alice and Bob's challenges cannot be the same
 - The initiator should be the first to prove its identity
 - Assumption: initiator is more likely to be the bad guy

- Public keys
 - Authentication of public keys is a critical issue

- Mutual authentication with timestamps
 - Require synchronized clocks
 - Alice and Bob have to encrypt different timestamps

Alice	I'm Alice, $f(K_{Alice-Bob}, timestamp)$ $f(K_{Alice-Bob}, timestamp+1)$	Bob

Integrity/Encryption for Data

- Communication after mutual authentication should be cryptographically protected as well
 - Require a session key established during mutual authentication

Establishment of Session Keys

- Secret key based authentication
 - Assume the following authentication happened.
 - Can we use $K_{Alice-Bob}$ as the session key?
 - Can we use $K_{Alice-Bob}$ {*R***+1**} as the session key?
 - Can we use $K_{Alice-Bob}$ +1 {R} as the session key?
 - In general, modify $K_{Alice-Bob}$ and encrypt R. Use the result as the session key.

Establishment of Session Keys

- Secret key based authentication
 - Can we use $f(K_{Alice-Bob}, R_1)$, or $f(K_{Alice-Bob}, R_2)$ as the session key?
 - Can we use $f(K_{Alice-Bob}, R_1+1)$, or $f(K_{Alice-Bob}, R_2+1)$ as the session key?
 - Can we use $f(K_{Alice-Bob}+1, R_1)$, or $f(K_{Alice-Bob}+1, R_2)$ as the session key?

Two-Way Public Key Based Authentication

- Approach I
 - Alice chooses and encrypts $\rm R_1$ with Bob's public key
 - Bob chooses and encrypts R_2 with Alice's public key
 - Session key is $R_1 \oplus R_2$
 - Trudy will have to compromise both Alice and Bob
- Approach II
 - Alice and Bob establish the session key with Diffie-Hellman key exchange
 - Alice and Bob signs the quantity they send

Establishment of Session Keys (Cont'd)

- One-way public key based authentication
 - It's only necessary to authenticate the server
 - Alice encrypts R with the server Bob's public key
 - Diffie-Hellman key exchange
 - Bob signs the D-H public key

Trusted Key Servers

- How do a large number of users authenticate each other?
 - inefficient / impractical for every pair of users to negotiate a secret key or share passwords
- Alternative: everybody shares a key with (and authenticates to) a single trusted third party
- Assumes there is a way to negotiate a key with the *third party*

Trusted... (cont'd)

Shared keys between the Key Distribution
Center (KDC) and users

(Simplified) Example of Use

- Alice wishes to communicate securely with Bob; Alice has previously negotiated K_{A-KDC} with the KDC, Bob has negotiated K_{B-KDC}
- 1. Alice requests from the KDC a session key to use with Bob
- 2. KDC generates session key K_s , sends to Alice, encrypted with K_{A-KDC}
- 3. KDC also sends K_s to Bob, encrypted with K_{B-KDC}
- Alice and Bob can then communicate using K_s

Assessment

- Simplifies mutual authentication / key negotiation, but...
 - secure against attacks?
 - robust to failures?
 - efficient?

A Hierarchy of KDCs

- For an Internet, not practical to have a single KDC
 - instead, imagine one KDC per *domain*
- To communicate securely with user in your own domain, just contact your domain's KDC
- To talk with user in another domain, your KDC needs to contact the other domain's KDC
 - KDCs must be able to authenticate each other and communicate securely

Hierarchy... (cont'd)

Mediated Authentication (With KDC)

KDC operation (in principle)

- Some concerns
 - Trudy may claim to be Alice and talk to KDC
 - Trudy cannot get anything useful
 - Messages encrypted by Alice using K_{AB} may arrive at Bob before KDC's message $K_{Bob}\{K_{AB}\}$ arrive
 - It may be difficult for KDC to connect to Bob

Mediated Authentication (With KDC)

KDC operation (in practice)

- Must be followed by a mutual authentication exchange
 - To confirm that Alice and Bob have the same key

Needham-Schroeder Protocol

- Classic protocol for authentication with KDC
 - Many others have been modeled after it (e.g., Kerberos)

How is Bob authenticated? How is Alice authenticated? How is KDC authenticated? What are the N's used for? Why is N-1 needed?

Needham-Schroeder Protocol (Cont'd)

- A vulnerability
 - When Trudy gets a previous key K_{AB} used by Alice, Trudy may reuse a previous ticket issued to Bob for Alice
 - Essential reason
 - The ticket to Bob stays valid even if Alice changes her key

Expanded Needham-Schroeder Protocol

Otway-Rees Protocol

- Only has five messages
- KDC checks if N_c matches in both cipher-texts
 - Make sure that Bob is really Bob