CIS 6930/4930 Computer and Network Security

Topic 6. Authentication

Authentication

- Authentication is the process of reliably verifying certain information.
- Examples
 - User authentication
 - Allow a user to prove his/her identity to another entity (e.g., a system, a device).
 - Message authentication
 - Verify that a message has not been altered without proper authorization.

Authentication Mechanisms

- Password-based authentication
 - Use a secret quantity (the password) that the prover states to prove he/she knows it.
 - Threat: password guessing/dictionary attack

I'm *Alice*, the password is *fiddlesticks*

Authentication Mechanisms (Cont'd)

- Address-based authentication
 - Assume the identity of the source can be inferred based on the network address from which packets arrive.
- Threat
 - Spoof of network address
 - Not authentication of source addresses

Authentication Mechanisms (Cont'd)

- Cryptographic authentication protocols
 - Basic idea:
 - A prover proves some information by performing a cryptographic operation on a quantity that the verifier supplies.
 - Usually reduced to the knowledge of a secret value
 - A symmetric key
 - The private key of a public/private key pair

CIS 6930/4930 Computer and Network Security

Topic 6.1 User Authentication

Authentication and Identity

- What is identity?
 - which characteristics uniquely identifies a person?
 - do we care if identity is unique?
- Authentication: verify a user's identity
 - a *supplicant* wishes to be authenticated
 - a *verifier* performs the authentication

User Authentication Can Be Based On...

- What the user knows
 - passwords, personal information, a key, a credit card number, etc.
- Where the user is or can be reached
 - email address, IP address, ...
- Physical characteristics of the user
 - fingerprints, voiceprint, signature dynamics, iris pattern, DNA, etc.
- What the user has in their possession
 - smart card, (physical) key, USB token, ...

Password Authentication

Password-Based User Authentication

- User demonstrates knowledge of a secret value to authenticate
 - most common method of user authentication

Some Issues for Password Systems

- A password should be easy to remember but hard to guess
 - that's difficult to achieve!
- Some questions
 - what makes a good password?
 - where is the password stored, and in what form?
 - how is knowledge of the password verified?

Password Storage

- Storing unencrypted passwords in a file is high risk
 - compromising the file system compromises all the stored passwords
- Better idea: use the password to compute a oneway function (e.g., a hash, an encryption), and store the output of the one-way function
- When a user inputs the requested password...
 - 1. compute its one-way function
 - 2. compare with the stored value

Attacks on Passwords

- Suppose passwords can be from 1 to 9 characters in length
- Possible choices for passwords = $26^1 + 26^2 + ... + 26^9 = 5 * 10^{12}$
- At the rate of 1 password per millisecond, it will take on the order of 150 years to test all passwords
- Unfortunately, not all passwords are equally likely to be used

Example of a Study

- In a sample of over 3000 passwords:
 - 500 were easily guessed versions of dictionary words or first name / last name
 - 86% of passwords were easily guessed

Common Password Choices

- Pet names
- Common names
- Common words
- Dates
- Variations of above (backwards, append a few digits, etc.)

Dictionary Attacks

- Attack 1 (online):
 - Create a dictionary of common words and names and their simple transformations
 - Use these to guess the password

Dictionary

Dictionary Attacks (Cont'd)

- Attack 2 (offline):
 - Usually F is public and so is the password file
 - Compute F(word) for each word in the dictionary
 - A match gives the password

Password file

Dictionary

Dictionary Attacks (Cont'd)

- Attack 3 (offline):
 - To speed up search, pre-compute F(dictionary)
 - A simple look up gives the password

Password Salt

- To make the dictionary attack a bit more difficult
- Salt is a n-bit number between 0 and 2ⁿ
- Derived from, for example, the system clock and the process identifier

Password Salt (Cont'd)

Password Salt (Cont'd)

• Verifying the passwords

Does Password Salt Help?

- Attack 1?
 - Without Salt
 - With Salt

Dictionary

Does Password Salt Help?

- Attack 2?
 - Without Salt
 - With Salt

Dictionary

Password file

Does Password Salt Help?

- Attack 3?
 - Without Salt
 - With Salt

Password Guidelines For Users

- 1. Initial passwords are system-generated, have to be changed by user on first login
- 2. User must change passwords periodically
- 3. Passwords vulnerable to a dictionary attack are rejected
- 4. User should not use same password on multiple sites

Other Password Attacks

- Technical
 - eavesdropping on traffic that may contain unencrypted passwords
 - "Trojan horse" password entry programs
- "Social"
 - careless password handling or sharing
 - phishing

The S/Key Protocol

Using "Disposable" Passwords

- Simple idea: generate a long list of passwords, use each only one time
 - attacker gains little/no advantage by eavesdropping on password protocol, or cracking one password
- Disadvantages
 - storage overhead
 - users would have to memorize lots of passwords!
- Alternative: the S/Key protocol
 - based on use of one-way (e.g. hash) function

S/Key Password Generation

- 1. Alice selects a password **x**
- 2. Alice specifies *n*, the number of passwords to generate
- Alice's computer then generates a sequence of passwords

$$- x_1 = H(\mathbf{x})$$

- $x_2 = H(x_1)$
- $x_n = H(x_{n-1})$

Generation... (cont'd)

- 4. Alice communicates (securely) to a server the last value in the sequence: x_n
- Key feature: no one knowing x_i can easily find an x_{i-1} such that H(x_{i-1}) = x_i
 - only Alice possesses that information

Authentication Using S/Key

Assuming server is in possession of x_i...

Is dictionary attack still possible?

Limitations

- Value of *n* limits number of passwords
 - need to periodically regenerate a new chain of passwords
- Does not authenticate server! Example attack:
 - 1. real server sends *i* to fake server, which is pretending to be Alice
 - 2. fake server sends *i* to Alice, who responds with x_{i-1}
 - 3. fake server then presents x_{i-1} to real server

Biometrics

- Relies upon physical characteristics of people to authenticate them
- Desired properties
 - 1. uniquely identifying
 - 2. very difficult to forge / mimic
 - 3. highly accurate
 - 4. easy to scan or collect
 - 5. fast to measure / compare
 - 6. inexpensive to implement

Assessment

- Convenient for users (e.g., you always have your fingerprints, never have to remember them), but...
 - potentially troubling sacrifice of private information
 - no technique yet has all the desired properties

Assessment (cont'd)

Biometrics	Univer- sality	Unique- ness	Perma- nence	Collect- ability	Perfor- mance	Accept- ability	Circum- vention
Face	Н	L	М	Н	L	Н	L
Fingerprint	М	Н	Н	М	Н	М	Н
Hand Geometry	M	М	М	Н	М	М	М
Keystroke Dynamics	L	L	L	М	L	М	М
Hand vein	М	М	М	М	М	М	Н
Iris	Н	Н	Н	М	Н	L	Н
Retina	Н	Н	М	L	Н	L	Н
Signature	L	L	L	Н	L	Н	L
Voice	М	L	L	М	L	Н	L
Facial Thermogram	Н	Н	L	Н	М	Н	Н
DNA H=Hìgh, M=Me	H dium, L=I	H .ow	Н	L	Н	L	L

Example Biometric Technologies

- Signature / penmanship
- Fingerprints
- DNA
- Palm geometry
- Retina scan
- Iris scan
- Face recognition
- Voice recognition