CIS 6930/4930 Computer and Network Security

Topic 5.2 Public Key Cryptography

Diffie-Hellman Key Exchange

Diffie-Hellman Protocol

- For negotiating a shared secret key using only public communication
- Does not provide authentication of communicating parties
- What's involved?
 - *p* is a large prime number (about 512 bits)
 - g is a primitive root of p, and g < p</p>
 - p and g are publicly known

D-H Key Exchange Protocol

Alice	Bob
Publishes <i>g</i> and <i>p</i>	Reads <i>g</i> and <i>p</i>
Picks random number S_A (and keeps private)	Picks random number S _B (and keeps private)
Computes $T_A = g^{S_A} \mod p$	Computes $T_B = g^{S_B} \mod p$
Sends T_A to Bob,	Sends T_B to Alice,
Computes $T_B^{S_A} \mod p$	Computes $T_A^{S_B} \mod p$

Key Exchange (Cont'd)

Alice and Bob have now both computed the same secret $g^{S_A S_B}$ mod p, which can then be used as the shared secret key K S_A is the discrete logarithm of g^{S_A} mod p and S_B is the discrete logarithm of g^{S_B} mod p

D-H Example

- Let *p* = 353, *g* = 3
- Let random numbers be $S_A = 97$, $S_B = 233$
- Alice computes $T_A = _ \mod _ = 40 = g^{S_A} \mod p$
- Bob computes $T_B = _ \mod _ = 248 = g^{S_B} \mod p$
- They exchange T_A and T_B
- Alice computes $K = _\mod _$ = **160** = $T_B^{S_A} \mod p$
- Bob computes $K = \mod mod _ = 160 = T_A^{S_B} \mod p$

D-H Example

- Let *p* = 353, *g* = 3
- Let random numbers be $S_A = 97$, $S_B = 233$
- Alice computes $T_A = 3^{97} \mod 353 = 40 = g^{S_A} \mod p$
- Bob computes $T_B = 3^{233} \mod 353 = 248 = g^{S_B} \mod p$
- They exchange T_A and T_B
- Alice computes $K = 248^{97} \mod 353 = 160 = T_B^{S_A} \mod p$
- Bob computes $K = 40^{233} \mod 353 = 160 = T_A^{S_B} \mod p$

Why is This Secure?

- Discrete log problem is hard:
 - given a^x mod b, a, and b, it is computationally infeasible to compute x

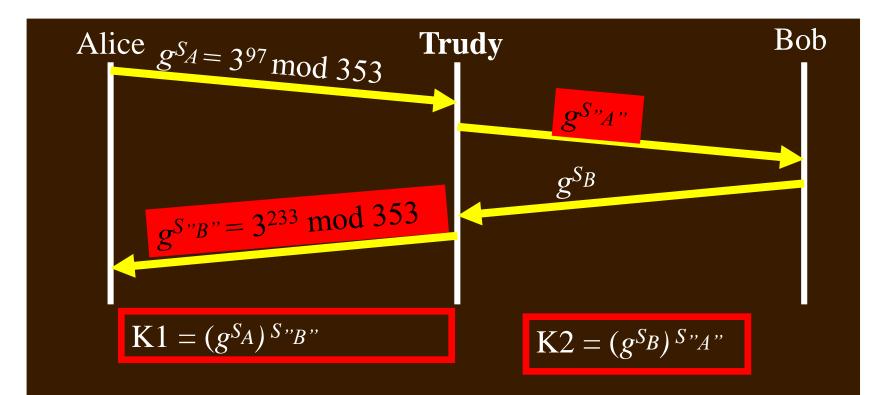
D-H Limitations

- Expensive exponential operation is required – possible timing attacks??
- Algorithm is useful for key negotiation only

 i.e., not for public key encryption/verification
- Not for user authentication
 - In fact, you can negotiate a key with a complete stranger!

Man-In-The-Middle Attack

• Trudy impersonates as Alice to Bob, and also impersonates as Bob to Alice



Man-In-The-Middle Attack (Cont'd)

- Now, Alice thinks K1 is the shared key, and Bob thinks K2 is the shared key
- Trudy intercepts messages from Alice to Bob, and
 - decrypts (using K1), substitutes her own message, and encrypts for Bob (using K2)
 - likewise, intercepts and substitutes messages from Bob to Alice
- Solution???

Authenticating D-H Messages

- That is, you know who you're negotiating with, and that the messages haven't been modified
- Requires that communicating parties already share something
- Then use shared information to enable authentication

Using D-H in "Phone Book" Mode

- 1. Alice and Bob each chooses a secret number, generate T_A and T_B
- 2. Alice and Bob *publish* T_A , T_{B_A} i.e., Alice can get Bob's T_B at any time, Bob can get Alice's T_A at any time
- 3. Alice and Bob can then generate a shared key without communicating
 - but, they must be using the same p and g
- Essential requirement: reliability of the published values (no one can substitute false values)

Encryption Using D-H?

- How to do key establishment + message encryption in one step
- Everyone computes and publishes their own individual <p_i, g_i, T_i>, where T_i=g_i^{S_i} mod p_i
- For Alice to communicate with Bob...
 - 1. Alice picks a random secret S_A
 - 2. Alice computes $g_B^{S_A} \mod p_B$
 - 3. Alice uses $K_{AB} = T_B^{S_A} \mod p_B$ to encrypt the message
 - 4. Alice sends encrypted message along with (unencrypted) $g_B^{S_A} \mod p_B$

Encryption (Cont'd)

- For Bob to decipher the encrypted message from Alice
 - 1. Bob computes $K_{AB} = (g_B^{S_A})^{S_B} \mod p_B$
 - 2. Bob decrypts message using K_{AB}

Example

- Bob publishes $\langle p_{B'}, g_{B'}, T_{B'} \rangle = \langle 401, 5, 51 \rangle$ and keeps secret $S_{B'} = 58$
- Steps
 - 1. Alice picks a random secret $S_A = 17$
 - 2. Alice computes $g_B^{S_A} \mod p_B = __\mod __= 173$
 - 3. Alice uses $K_{AB} = T_B^{S_A} \mod p_B =$ _____ mod ____ = **360** to encrypt message M
 - 4. Alice sends encrypted message along with (unencrypted) $g_B^{S_A} \mod p_B = 173$
 - 5. Bob computes $K_{AB} = (g_B^{S_A})^{S_B} \mod p_B = \mod p_B = \mod p_B$
 - 6. Bob decrypts message M using K_{AB}

Example

- Bob publishes $\langle p_{B'}, g_{B'}, T_{B'} \rangle = \langle 401, 5, 51 \rangle$ and keeps secret $S_{B'} = 58$
- Steps
 - 1. Alice picks a random secret $S_A = 17$
 - 2. Alice computes $g_B^{S_A} \mod p_B = 5^{17} \mod 401 = 173$
 - 3. Alice uses $K_{AB} = T_B^{S_A} \mod p_B =$ 51¹⁷ mod 401 = **360** to encrypt message M
 - 4. Alice sends encrypted message along with (unencrypted) $g_B^{S_A} \mod p_B = 173$
 - 5. Bob computes $K_{AB} = (g_B^{S_A})^{S_B} \mod p_B =$ 173⁵⁸ mod 401 = **360**
 - 6. Bob decrypts message M using K_{AB}

Picking g and p

- Advisable to change g and p periodically
 - the longer they are used, the more info available to an attacker
- Advisable not to use same g and p for everybody

Digital Signature Standard (DSS)

Digital Signature Standard (DSS)

- Useful only for digital signing (no encryption or key exchange)
- Components
 - SHA-1 to generate a hash value (some other hash functions also allowed now)
 - Digital Signature Algorithm (DSA) to generate the digital signature from this hash value
- Designed to be fast for the signer rather than verifier

Digital Signature Algorithm (DSA)

- 1. Announce public parameters used for signing
 - pick p (a prime with >= 1024 bits) ex.: p = 103
 - pick q (a 160 bit prime) such that q | (p-1)

ex.: q = 17 (divides 103 - 1)

- choose $g \equiv h^{(p-1)/q} \mod p$, where 1 < h < (p-1), such that g > 1ex.: if $h = 2, g = 2^6 \mod 103 = 64$
- note: g is of order q mod p

ex.: powers of 64 mod 103 = 64 79 9 61 93 81 34 13 8 100 14 72 76 23 30 66 1

DSA (Cont'd)

- 2. User Alice generates a long-term private key x
 - random integer with 0 < x < q</p>

ex.: *x*= *13*

- 3. Alice generates a long-term public key y
 - $y = g^x \mod p$

ex.:
$$y = 64^{13} \mod 103 = 76$$

DSA (Cont'd)

- 4. Alice randomly picks a per message secret number k such that 0 < k < q, and generates $k^{-1} \mod q$ ex.: $k = 12, 12^{-1} \mod 17 = 10$
- 5. Signing message *M*

 $- r = (g^k \mod p) \mod q$

ex.: $r = (64^{12} \mod 103) \mod 17 = 4$

 $- s = [k^{-1*}(H(M)+x*r)] \mod q$

ex.: $s = [10 * (75 + 13*4)] \mod 17 = 12$

– transmitted info = M, r, s

ex.: M, 4, 12

ex.: H(M) = 75

Verifying a DSA Signature

- Known: g, p, q, y ex.: p = 103, q = 17, g = 64, y = 76, H(M) = 75
- Received from signer: *M*, *r*, *s*

1.
$$w = (s)^{-1} \mod q$$

2.
$$u_1 = [H(M) * w] \mod q \exp(1 - \frac{1}{2}) \exp(1 - \frac{1}{2})$$

3.
$$u_2 = (r^*w) \mod q$$

ex.:
$$u_2 = 4*10 \mod 17 = 6$$

ex.: $w = 12^{-1} \mod 17 = 10$

ex.: M, <u>4</u>, 12

4.
$$v = [(g^{u1*}y^{u2}) \mod p] \mod q$$

ex.: $v = [(64^2 * 76^6) \mod 103] \mod 17 = \mathbf{4}$

5. If v = r, then the signature is verified

Why Does it Work?

- Correct? The signer computes
- $s = [k^{-1} * (H(m) + x^*r)] \mod q$
- so k = [s⁻¹ * (H(m) + x*r)] mod q
 - $= [(H(m) + x^*r)^*s^{-1}]mod q$
 - $= \{ [H(m) + x^*r] \mod q \} * (s^{-1} \mod q) \}$
 - $= \{[H(m) + x^*r] \mod q\} *w$
 - $= [H(m)*w \mod q] + (x*r*w \mod q)$

Why Does it Work? (Cont'd)

• $g^{k} = g^{[H(m)*w] \mod q} * g^{(x*r*w) \mod q}$ $= g^{u1} * g^{(x \mod q)*(r*w \mod q)}$ $= g^{u1} * g^{x^*u2} (x < q)$ $r = (g^k \mod p) \mod q = [(g^{u1} * g^{x^*u^2}) \mod p] \mod q$ $=[(g^{u1} \mod p) * (g^{x^{*}u^{2}} \mod p)] \mod q$ $=[(g^{u1} \mod p) * (g^{x} \mod p)^{u2}] \mod q$ $=[(g^{u1} \mod p) * y^{u2}] \mod q$ $=[(g^{u1} * y^{u2}) \mod p)] \mod q = v$

Is it Secure?

- Given *y*, it is difficult to compute *x*
 - *x* is the discrete log of *y* to the base *g*,
 mod *p*
- Likewise, given r, it is difficult to compute k
- Cannot forge a signature without x
- Signatures are not repeated (only used once per message) and cannot be replayed

Assessment of DSA

- Slower to verify than RSA, but faster signing than RSA
- Key lengths of 2048 bits and greater are also allowed