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Topic 5.2 Public Key Cryptography
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Diffie-Hellman Key Exchange
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Diffie-Hellman Protocol

• For negotiating a shared secret key using only 
public communication

• Does not provide authentication of 
communicating parties

• What’s involved?

– p is a large prime number (about 512 bits)

– g is a primitive root of p, and g < p

– p and g are publicly known
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D-H Key Exchange Protocol
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Alice Bob

Publishes g and p Reads g and p

Picks random number SA 

(and keeps private)

Picks random number SB 

(and keeps private)

Computes TA = gSA mod p Computes TB = gSB mod p

Sends TA to Bob, Sends TB to Alice,

Computes TB
SA mod p Computes TA

SB mod p=



Key Exchange (Cont’d)
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Alice and Bob have now both computed the same secret gSASB

mod p, which can then be used as the shared secret key K

SA is the discrete logarithm of gSA mod p and 

SB is the discrete logarithm of gSB mod p

=



D-H Example
• Let p = 353, g = 3

• Let random numbers be SA = 97, SB = 233

• Alice computes TA = ___ mod __ = 40  = gSA mod p

• Bob computes TB = ___ mod ___ = 248  = gSB mod p

• They exchange TA and TB

• Alice computes K = __ mod __ = 160 = TB
SA mod p

• Bob computes K = __ mod ___ = 160 = TA
SB mod p
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D-H Example
• Let p = 353, g = 3

• Let random numbers be SA = 97, SB = 233

• Alice computes TA = 397 mod 353 = 40 = gSA mod p

• Bob computes TB = 3233 mod 353 = 248 = gSB mod p

• They exchange TA and TB

• Alice computes K = 24897 mod 353 = 160 =TB
SA mod p

• Bob computes K = 40233 mod 353 = 160 =TA
SB mod p
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Why is This Secure?

• Discrete log problem is hard:

– given ax mod b, a, and b, it is computationally 
infeasible to compute x
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D-H Limitations
• Expensive exponential operation is required

– possible timing attacks?? 

• Algorithm is useful for key negotiation only

– i.e., not for public key encryption/verification

• Not for user authentication

– In fact, you can negotiate a key with a complete 
stranger!
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Man-In-The-Middle Attack
• Trudy impersonates as Alice to Bob, and also 

impersonates as Bob to Alice
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Alice BobTrudy

K1 = (gSA) S”B” K2 = (gSB) S”A”



Man-In-The-Middle Attack (Cont’d)

• Now, Alice thinks K1 is the shared key, and Bob 
thinks K2 is the shared key

• Trudy intercepts messages from Alice to Bob, 
and
– decrypts (using K1), substitutes her own message, 

and encrypts for Bob (using K2)

– likewise, intercepts and substitutes messages from 
Bob to Alice

• Solution???
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Authenticating D-H Messages
• That is, you know who you’re negotiating 

with, and that the messages haven’t been 
modified

• Requires that communicating parties already
share something 

• Then use shared information to enable 
authentication
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Using D-H in “Phone Book” Mode

1. Alice and Bob each chooses a secret number, 
generate TA and TB

2. Alice and Bob publish TA, TB, i.e., Alice can get Bob’s 
TB at any time, Bob can get Alice’s TA at any time

3. Alice and Bob can then generate a shared key 
without communicating

– but, they must be using the same p and g

• Essential requirement: reliability of the published 
values (no one can substitute false values)
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Encryption Using D-H?

• How to do key establishment + message 
encryption in one step

• Everyone computes and publishes their own 
individual <pi, gi, Ti>, where Ti=gi

Si mod pi

• For Alice to communicate with Bob… 

1. Alice picks a random secret SA

2. Alice computes gB
SA mod pB

3. Alice uses KAB = TB
SA mod pB to encrypt the message

4. Alice sends encrypted message along with
(unencrypted) gB

SA mod pB
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Encryption (Cont’d)

• For Bob to decipher the encrypted message 
from Alice

1. Bob computes KAB = (gB
SA)SB mod pB

2. Bob decrypts message using KAB
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Example

• Bob publishes <pB, gB, TB>  = <401, 5, 51> and 
keeps secret SB = 58

• Steps
1. Alice picks a random secret SA = 17

2. Alice computes gB
SA mod pB = ___ mod ___ = 173

3. Alice uses KAB = TB
SA mod pB = 

___ mod ___ = 360 to encrypt message M

4. Alice sends encrypted message along with 
(unencrypted) gB

SA mod pB = 173

5. Bob computes KAB = (gB
SA)SB mod pB = 

___ mod ___ = 360

6. Bob decrypts message M using KAB
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Example

• Bob publishes <pB, gB, TB>  = <401, 5, 51> and 
keeps secret SB = 58

• Steps
1. Alice picks a random secret SA = 17

2. Alice computes gB
SA mod pB = 517 mod 401 = 173

3. Alice uses KAB = TB
SA mod pB = 

5117 mod 401 = 360 to encrypt message M

4. Alice sends encrypted message along with 
(unencrypted) gB

SA mod pB = 173

5. Bob computes KAB = (gB
SA)SB mod pB = 

17358 mod 401 = 360

6. Bob decrypts message M using KAB
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Picking g and p

• Advisable to change g and p periodically

– the longer they are used, the more info available 
to an attacker

• Advisable not to use same g and p for 
everybody
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Digital Signature Standard (DSS)
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Digital Signature Standard (DSS)

• Useful only for digital signing (no encryption 
or key exchange)

• Components
– SHA-1 to generate a hash value (some other hash 

functions also allowed now) 

– Digital Signature Algorithm (DSA) to generate the 
digital signature from this hash value

• Designed to be fast for the signer rather than 
verifier
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Digital Signature Algorithm (DSA)

1. Announce public parameters used for signing
– pick p (a prime with >= 1024 bits)

– pick q (a 160 bit prime) such that q|(p1)

– choose g  h(p1)/q mod p, where 1 < h < (p – 1), 
such that g > 1

– note: g is of order q mod p
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ex.: if h = 2, g = 26 mod 103 = 64

ex.: p = 103

ex.: q = 17  (divides 103 - 1)

ex.: powers of 64 mod 103 = 

64 79 9 61 93 81 34 13 8 100 14 72 76 23 30 66 1

17 values



DSA (Cont’d)

2. User Alice generates a long-term private key x
– random integer with 0 < x < q

3. Alice generates a long-term public key y
– y = gx mod p
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ex.: x= 13

ex.: y = 6413 mod 103 = 76



DSA (Cont’d)

4. Alice randomly picks a per message secret 
number k such that  0 < k < q, and generates
k-1 mod q

5. Signing message M

– r = (gk mod p) mod q

– s = [k1*(H(M)+x*r)] mod q

– transmitted info = M, r, s
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ex.: k = 12,  12-1 mod 17 = 10

ex.: r = (6412 mod 103) mod 17 = 4 

ex.: s = [10 * (75 + 13*4)] mod 17 = 12 

ex.: H(M) = 75

ex.: M, 4, 12



Verifying a DSA Signature

• Known : g, p, q, y

• Received from signer: M, r, s

1. w = (s)1 mod q

2. u1 = [H(M) *w] mod q     

3. u2 = (r*w) mod q

4. v = [(gu1*yu2) mod p] mod q

5. If v = r, then the signature is verified

24

ex.: M, 4, 12

ex.: w = 12-1 mod 17 = 10 

ex.: u1 = 75*10 mod 17 = 2

ex.: u2 = 4*10 mod 17 = 6

ex.: v = [(642 * 766) mod 103] mod 17 = 4

ex.: p = 103, q = 17, g = 64, y = 76, H(M) = 75 



Why Does it Work?
• Correct?  The signer computes

• s = [k-1 * (H(m) + x*r)] mod q

• so k = [s-1 * (H(m) + x*r)] mod q

= [(H(m) + x*r)*s-1 ]mod q

= {[H(m) + x*r] mod q} *(s-1 mod q) 

= {[H(m) + x*r] mod q} *w

= [H(m)*w mod q] + (x*r*w mod q)
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Why Does it Work? (Cont’d)

• gk = g[H(m)*w] mod q *g(x*r*w) mod q

= gu1 * g(x mod q)*(r*w mod q)

= gu1 * gx*u2  (x < q) 

r = (gk mod p) mod q =[(gu1 * gx*u2 )mod p] mod q 

=[(gu1 mod p) * (gx*u2 mod p )] mod q 

=[(gu1 mod p) * (gx mod p )u2] mod q 

=[(gu1 mod p) * yu2] mod q 

=[(gu1 * yu2 ) mod p)] mod q  = v
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Is it Secure?
• Given y, it is difficult to compute x

— x is the discrete log of y to the base g, 
mod p

• Likewise, given r, it is difficult to compute k

• Cannot forge a signature without x

• Signatures are not repeated (only used once 
per message) and cannot be replayed
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Assessment of DSA

• Slower to verify than RSA, but faster signing 
than RSA

• Key lengths of 2048 bits and greater are also 
allowed
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