10 points for each of the questions 1-8

1. Textbook 4.5.4: What is a practical method for finding a triple of keys that maps a given plaintext to a given ciphertext using EDE.

2. Manually complete the following operations. Explain your reason for each step. (Hints: Use Fermat Theorem, Euler Theorem, etc.)

- (a) 1234¹⁶ mod 17
- **(b)** 54⁵¹ mod 17
- **(c)** ø(51)
- (d) gcd(33, 121)
- (e) $2^{-1} \mod 17$
- (f) $\log_{2.5}(4)$

3. A server uses a Challenge-Response protocol to authenticate users. The server stores the legitimate users' public key. Each time when a user wants to login, the server generates a random challenge and sends it to the user. The user then generates a digital signature on his/her workstation and sends the digital signature to the server. The server authenticates the user by verifying his/her signature on the random message. Describe an attack against the server.

4. Perform encryption and decryption using the RSA algorithm for p = 5; q=11, e=3; M = 9. Show how you got your results.

5. Bob uses Alice's public key <e, n> to encrypt an original message M by computing $C = M^e \mod n$. Eve doesn't know Alice's private key d, but she was told that M and n have a non-trivial common divisor (i.e., the common divisor is not equal to 1). Suppose Eve intercepts C. Is it possible for Eve to figure out Alice's private key d and obtain Bob's original message M? (Hint: Eve may test whether or not C is a prime number)

6. Bob intercepts a ciphertext C intended for Alice and encrypted with Alice's public key e,n. Bob wants to obtain the original message $M = C^d \mod n$. Bob chooses a random value r less than n and computes

 $Z = r^{e} \mod n$ $X = ZC \mod n$ $t = r \mod n$

Next, Bob gets Alice to authenticate (sign) X with her private key, thereby decrypting X. Alice returns $Y = X^d \mod n$. Show how Bob can use this information now available to him to determine M.

7. Consider the following key establishment protocol. Alice selects a random number x and computes X⁹, where g is a number that is known to the public. Bob selects a random

number y and computes y^g . Alice and Bob send x^g and y^g to each other. The shared key is computed as $(xy)^g$. Describe an attack against such key establishment protocol.

8. Alice and Bob use the Diffie-Hellman protocol to create two keys k1 and k2. In generating k1, Alice selects a random number x and computes $SA = g^x \mod p$. Bob selects a random number y and computes $SB = g^y \mod p$. Alice and Bob exchange SA and SB, and k1 = $g^{xy} \mod p$. In generating k2. Alice chooses another random number x1 but Bob still uses the same random number y. Suppose an eavesdropper knows that x and x1 differ each other by t (i.e., ||x-x1|| = t). Given the knowledge of k1 and a pair of plaintext M and ciphertext C encrypted by k2, can the eavesdropper find out k2?