10 points for each of the questions 1-8

1. Textbook 4.5.4: What is a practical method for finding a triple of keys that maps a given plaintext to a given ciphertext using EDE.
2. Manually complete the following operations. Explain your reason for each step. (Hints: Use Fermat Theorem, Euler Theorem, etc.)
(a) $1234^{16} \bmod 17$
(b) $54^{51} \bmod 17$
(c) $\varnothing(51)$
(d) $\operatorname{gcd}(33,121)$
(e) $2^{-1} \bmod 17$
(f) $\log _{2,5}(4)$
3. A server uses a Challenge-Response protocol to authenticate users. The server stores the legitimate users' public key. Each time when a user wants to login, the server generates a random challenge and sends it to the user. The user then generates a digital signature on his/her workstation and sends the digital signature to the server. The server authenticates the user by verifying his/her signature on the random message. Describe an attack against the server.
4. Perform encryption and decryption using the RSA algorithm for $p=5 ; q=11, e=3 ; M=9$. Show how you got your results.
5. Bob uses Alice's public key <e, $n>$ to encrypt an original message M by computing $C=$ M^{e} mod n . Eve doesn't know Alice's private key d, but she was told that M and n have a non-trivial common divisor (i.e., the common divisor is not equal to 1). Suppose Eve intercepts C. Is it possible for Eve to figure out Alice's private key d and obtain Bob's original message M ? (Hint: Eve may test whether or not C is a prime number)
6. Bob intercepts a ciphertext C intended for Alice and encrypted with Alice's public key e, n. Bob wants to obtain the original message $M=C^{d} \bmod n$. Bob chooses a random value r less than n and computes

$$
\begin{aligned}
& Z=r^{e} \bmod n \\
& X=Z C \bmod n \\
& t=r \bmod n
\end{aligned}
$$

Next, Bob gets Alice to authenticate (sign) X with her private key, thereby decrypting X. Alice returns $Y=X^{d}$ mod n. Show how Bob can use this information now available to him to determine M .
7. Consider the following key establishment protocol. Alice selects a random number x and computes X^{9}, where g is a number that is known to the public. Bob selects a random
number y and computes y^{g}. Alice and Bob send x^{g} and y^{g} to each other. The shared key is computed as (xy) ${ }^{9}$. Describe an attack against such key establishment protocol.
8. Alice and Bob use the Diffie-Hellman protocol to create two keys k1 and k2. In generating $k 1$, Alice selects a random number x and computes $S A=g^{x} \bmod p$. Bob selects a random number y and computes $\mathrm{SB}=\mathrm{g}^{\mathrm{y}}$ mod p . Alice and Bob exchange SA and SB , and $\mathrm{k} 1=\mathrm{g}^{\mathrm{xy}}$ mod p . In generating k2. Alice chooses another random number x 1 but Bob still uses the same random number y . Suppose an eavesdropper knows that x and x 1 differ each other by t (i.e., $\|\mathrm{x}-\mathrm{x} 1\|=\mathrm{t}$). Given the knowledge of k 1 and a pair of plaintext M and ciphertext C encrypted by k 2 , can the eavesdropper find out k 2 ?

