
Real-world System
Attacks

Xiaolong (Daniel) Wang
Dr. Xinming (Simon) Ou

Roadmap

• Firmware

• Boot loader

• Kernel

UEFI
• UEFI, Unified Extensible

Firmware Interface, is a
standard firmware
architecture designed to
perform hardware initialization
during the booting process

• Initialize and test system
hardware components

• Load a boot loader or OS

• UEFI firmware stores in SPI
flash chip (not in ROM)

UEFI

UEFI

• Firmware Volumes are organized into a Firmware File System

• Each file is PE (Portable Executable) format

UEFI
• UEFI is stored in SPI flash chip, it is rewritable

• There are multiple layers protection

• Signed-only update interface

• SMM SPI flash write protection (SMM_BWP, BLE,
BIOWE)

• Hardware configuration protection (D_OPEN, D_LCK)

• Secure boot

Rootkits that execute earlier on the platform are in the position
to compromise code that executes later on the platform,

making earliest execution desirable

Modern platform implement the requirement that updates to
the firmware must be signed. This makes compromising the

BIOS with a root kit harder

UEFI

• BIOS is locked through chipset locks

• Most of the recent systems do not allow arbitrary
(unsigned) reflashing

• No user input except flash update process

Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number: 4 (0x4)
 Signature Algorithm: sha1WithRSAEncryption
 Issuer: CN=Fixed Product Certificate, OU=OPSD BIOS, O=Intel
 Corporation,
+L=Hillsboro, ST=OR, C=US
 Validity
 Not Before: Jan 1 00:00:00 1998 GMT
 Not After : Dec 31 23:59:59 2035 GMT
 Subject: CN=Fixed Flashing Certificate, OU=OPSD BIOS, O=Intel
+Corporation, L=Hillsboro, ST=OR, C=US
 Subject Public Key Info:
 Public Key Algorithm: rsaEncryption
 RSA Public Key: (1022 bit)
 Modulus (1022 bit):
 <snip>
 Exponent: 12173543 (0xb9c0e7)
 X509v3 extensions:
 2.16.840.1.113741.3.1.1.2.1.1.1.1: critical
 1............
 Signature Algorithm: sha1WithRSAEncryption
 <snip>

•A BIO update contains “firmware volumes”

UEFI
• BIOS update contains

some unsigned fragments

• boot splash logo can be
customized for OEM

• Intel provides Integrator
Toolkit for integrating
logo into BIOS

• BIOS displays logo when
booting, happens at the
very early stage of the
boot

tiano_edk/source/Foundation/Library/Dxe/Graphics/Graphics.c:

EFI_STATUS ConvertBmpToGopBlt ()
{
...
 if (BmpHeader->CharB != 'B' || BmpHeader->CharM !=
'M') {
 return EFI_UNSUPPORTED;
}

 BltBufferSize = BmpHeader->PixelWidth * BmpHeader-
>PixelHeight
 * sizeof (EFI_GRAPHICS_OUTPUT_BLT_PIXEL);
 IsAllocated = FALSE;
 if (*GopBlt == NULL) {
 *GopBltSize = BltBufferSize;
 *GopBlt = EfiLibAllocatePool (*GopBltSize);

Actual code:

(char*)BltBuffer + 4*(W-1)*H;

W*H computes in 32 bits and 4*(W-1)*H computes in 64 bits

Integer overflow

Parser Code

BMP File

Outbuf

IDT

#PF handler

GDT

The for loop that does the
buffer overwrite

source

Must preserve IDT

Must preserve GDT
and other stuffs

Error handler

Parser Code

BMP File

IDT

pointer

GDT

The for loop that does the
buffer overwrite

source

Must preserve IDT

Must preserve GDT
and other stuffs

Points to beginning
of shellcode

Outbuf

shellcode

Reflashing BIOS

• Two reboots: one trigger update processing, second
after refreshing, to resume infected BIOS

• No physical access to machine is needed

Bootkit
• Evil Maid Attack

• is characterized by the attacker's ability to physically
access the target multiple times without the owner's
knowledge.

• video

• Attacker boot laptop with bootable USB

• Replace Master Boot Record (MBR) with malicious
fake OS loader

http://testlab.sit.fraunhofer.de/content/output/project_results/bitlocker_skimming/bitlockervideo.php?s=2

http://testlab.sit.fraunhofer.de/content/output/project_results/bitlocker_skimming/bitlockervideo.php?s=2

Kernel
• Kernel is no more than a giant process

• Kernel is big attack surface: FS, OS modules,
device drivers, etc.

• Easy to hide, high privilege

• Uncertainty of kernel memory layout

• Hard to debug

Use-after-free Vulnerability

• Use after free errors
occur when a
program continues
to use a pointer after
it has been freed.

Kernel
• How to precisely re-occupy the memory once belonged

to an object?

• Linux kernel has it own memory management
mechanism, Slab allocator

• Object is created by Slab allocator as a container, called
“slab cache”, through function: such as kmalloc,
kmem_create_cache, etc.

• Linux always recycle free memory and try to find a fit
candidate when allocate object

Attack
• Researchers find Slab

allocator tries to merge
kernel objects of the
same size

• With the known object
size, attackers can
create malicious
memory slab cache
through API call (such
as sendmmsg)

• Spraying multiple times

Android Kernel
• PingPongRoot, is a use-after-free vulnerability

relates to a PING socket object in the kernel.

• In a certain condition (specify sa_family as
AP_UNSPEC), if try to make connections to a PING
socket twice, the reference count will becomes 0,
thus, being freed

• This vulnerability can only be triggered in Android,
since Android user process has the privilege to
create a PING socket

References
• Attacking Intel BIOS, Rafal Wojtczuk & Alexander Tereshkin, BlackHat USA 2009

• Attacks on UEFI Security, Reno Kovah & Corey Kallenberg, CanSecWest 2015

• How Many Million BIOSes Would you Like to Infect?, Reno Kovah & Corey
Kallenberg, BlackHat USA 2015

• Summary of Attacks Against BIOS and Secure Boot, Yuriy Bulygin, John
Loucaides, Andrew Furtak, Oleksandr Bazhaniuk, Alexander Matrosov, Intel
Security

• Intel x86 Considered Harmful, Joanna Rutkowska, Oct, 2015

• From Collision to Exploitation: Unleashing Use-After-Free vulnerabilities in Linux
Kernel, Wen Xu, Juanru Li, Junking Shu, Wenbo Yang, CCS 2015

• Attacking the BitLocker Boot Process, Fraunhofer SIT

