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Understanding  
Android Security

with existing online services. 
However, as the importance of the 
data and services our cell phones 
support increases, so too do the 
opportunities for vulnerability. It’s 
essential that this next generation 
of platforms provides a compre-
hensive and usable security infra-
structure.

Developed by the Open Hand-
set Alliance (visibly led by Google), 
Android is a widely anticipated 
open source operating system for 
mobile devices that provides a 
base operating system, an applica-
tion middleware layer, a Java soft-
ware development kit (SDK), and 
a collection of system applications. 
Although the Android SDK has 
been available since late 2007, the 
first publicly available Android-
ready “G1” phone debuted in late 
October 2008. Since then, An-
droid’s growth has been phenom-
enal: T-Mobile’s G1 manufacturer 
HTC estimates shipment volumes 
of more than 1 million phones by 
the end of 2008, and industry in-
siders expect public adoption to 
increase steeply in 2009. Many 
other cell phone providers have ei-
ther promised or plan to support it 
in the near future.

A large community of devel-
opers has organized around An-
droid, and many new products 

and applications are now available 
for it. One of Android’s chief sell-
ing points is that it lets developers 
seamlessly extend online services 
to phones. The most visible exam-
ple of this feature is, unsurprising-
ly, the tight integration of Google’s 
Gmail, Calendar, and Contacts 
Web applications with system util-
ities. Android users simply supply a 
username and password, and their 
phones automatically synchro-
nize with Google services. Other 
vendors are rapidly adapting their 
existing instant messaging, social 
networks, and gaming services to 
Android, and many enterprises are 
looking for ways to integrate their 
own internal operations (such as 
inventory management, purchas-
ing, receiving, and so forth) into 
it as well.

Traditional desktop and server 
operating systems have struggled 
to securely integrate such per-
sonal and business applications 
and services on a single platform. 
Although doing so on a mobile 
platform such as Android remains 
nontrivial, many researchers hope 
it provides a clean slate devoid of 
the complications that legacy soft-
ware can cause. Android doesn’t 
officially support applications de-
veloped for other platforms: ap-
plications execute on top of a Java 
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middleware layer running on an 
embedded Linux kernel, so de-
velopers wishing to port their 
application to Android must use 
its custom user interface environ-
ment. Additionally, Android re-
stricts application interaction to its 
special APIs by running each ap-
plication as its own user identity. 
Although this controlled interac-
tion has several beneficial security 
features, our experiences devel-
oping Android applications have 
revealed that designing secure 
applications isn’t always straight-
forward. Android uses a simple 
permission label assignment model 
to restrict access to resources and 
other applications, but for reasons 
of necessity and convenience, its 
designers have added several po-
tentially confusing refinements as 
the system has evolved.

This article attempts to un-
mask the complexity of Android 
security and note some possible 
development pitfalls that occur 
when defining an application’s se-
curity. We conclude by attempt-
ing to draw some lessons and 
identify opportunities for future 
enhancements that should aid in 
clarity and correctness. 

Android Applications
The Android application frame-
work forces a structure on devel-
opers. It doesn’t have a main() 
function or single entry point for 
execution—instead, developers 
must design applications in terms 
of components. 

Example Application
We developed a pair of applications 
to help describe how Android ap-
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plications operate. Interested readers 
can download the source code from 
our Web site (http://siis.cse.psu.
edu/android_sec_tutorial.html).

Let’s consider a location-sen-
sitive social networking applica-
tion for mobile phones in which 
users can discover their friends’ 
locations. We split the functional-
ity into two applications: one for 
tracking friends and one for view-
ing them. As Figure 1 shows, the 
FriendTracker application consists 
of components specific to tracking 
friend locations (for example, via a 
Web service), storing geographic 
coordinates, and sharing those co-
ordinates with other applications. 
The user then uses the Friend-
Viewer application to retrieve the 
stored geographic coordinates and 
view friends on a map.

Both applications contain mul-
tiple components for performing 
their respective tasks; the com-
ponents themselves are classi-
fied by their component types. An 
Android developer chooses from 
predefined component types de-
pending on the component’s pur-
pose (such as interfacing with a 
user or storing data).

Component Types
Android defines four component 
types:

Activity components define an 
application’s user interface. 
Typically, an application devel-
oper defines one activity per 
“screen.” Activities start each 
other, possibly passing and re-
turning values. Only one activ-
ity on the system has keyboard 
and processing focus at a time; 
all others are suspended.
Service components perform 
background processing. When 
an activity needs to perform 
some operation that must con-
tinue after the user interface 
disappears (such as download a 
file or play music), it commonly 
starts a service specifically de-
signed for that action. The de-

veloper can also use services as 
application- specific daemons, 
possibly starting on boot. Ser-
vices often define an interface 
for Remote Procedure Call 
(RPC) that other system com-
ponents can use to send com-
mands and retrieve data, as well 
as register callbacks. 
Content provider components store 
and share data using a relational 
database interface. Each content 
provider has an associated “au-
thority” describing the content it 
contains. Other components use 
the authority name as a handle 
to perform SQL queries (such as 
SELECT, INSERT, or DELETE) to 
read and write content. Although 
content providers typically store 
values in database records, data 
retrieval is implementation-
 specific—for example, files are 
also shared through content pro-
vider interfaces.
Broadcast receiver components 
act as mailboxes for messages 
from other applications. Com-
monly, application code broad-
casts messages to an implicit 
destination. Broadcast receivers 
thus subscribe to such destina-
tions to receive the messages 
sent to it. Application code can 
also address a broadcast receiv-
er explicitly by including the 
namespace assigned to its con-
taining application. 

Figure 1 shows the Friend-
Tracker and FriendViewer appli-
cations containing the different 
component types. The developer 
specifies components using a man-
ifest file (also used to define policy 
as described later). There are no 
restrictions on the number of com-
ponents an application defines for 
each type, but as a convention, one 
component has the same name as 
the application. Frequently, this is 
an activity, as in the FriendViewer 
application. This activity usually 
indicates the primary activity that 
the system application launcher 
uses to start the user interface; 
however, the specific activity cho-
sen on launch is marked by meta 
information in the manifest. In 
the FriendTracker application, 
for example, the FriendTracker-
Control activity is marked as the 
main user interface entry point. 
In this case, we reserved the name 
“FriendTracker” for the service 
component performing the core 
application logic.

The FriendTracker application 
contains each of the four com-
ponent types. The FriendTracker 
service polls an external service 
to discover friends’ locations. In 
our example code, we generate 
locations randomly, but extend-
ing the component to interface 
with a Web service is straightfor-
ward. The FriendProvider con-
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Figure 1. Example Android application. The FriendTracker and FriendViewer applications 
consist of multiple components of different types, each of which provides a different set of 
functionalities. Activities provide a user interface, services execute background processing, 
content providers are data storage facilities, and broadcast receivers act as mailboxes for 
messages from other applications.
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tent provider maintains the most 
recent geographic coordinates for 
friends, the FriendTrackerCon-
trol activity defines a user inter-
face for starting and stopping the 
tracking functionality, and the 
BootReceiver broadcast receiver 
obtains a notification from the 
system once it boots (the applica-
tion uses this to automatically start 
the FriendTracker service).

The FriendViewer application 
is primarily concerned with show-
ing information about friends’ lo-
cations. The FriendViewer activity 
lists all friends and their geograph-
ic coordinates, and the FriendMap 
activity displays them on a map. 
The FriendReceiver broadcast re-
ceiver waits for messages that in-
dicate the physical phone is near 
a particular friend and displays a 
message to the user upon such an 
event. Although we could have 
placed these components within 
the FriendTracker application, 
we created a separate application 
to demonstrate cross-application 
communication. Additionally, by 
separating the tracking and user 
interface logic, we can create al-
ternative user interfaces with dif-
ferent displays and features—that 
is, many applications can reuse the 
logic performed in FriendTracker.

Component Interaction
The primary mechanism for 
component interaction is an in-
tent, which is simply a message 
object containing a destination 
component address and data. 
The Android API defines meth-
ods that accept intents and uses 
that information to start activities 
(startActivity(Intent)), 
start services (startService 
(Intent)), and broadcast messag-
es (sendBroadcast(Intent)). 
The invocation of these methods 
tells the Android framework to 
begin executing code in the target 
application. This process of in-
tercomponent communication is 
known as an action. Simply put, an 
intent object defines the “intent” 
to perform an “action.”

One of Android’s most pow-
erful features is the flexibility al-
lowed by its intent-addressing 
mechanism. Although  develop-
ers can uniquely address a target 
component using its application’s 
namespace, they can also specify 
an implicit name. In the latter 
case, the system determines the 
best component for an action by 
considering the set of installed ap-
plications and user choices. The 
implicit name is called an action 
string because it specifies the type 

of requested action—for exam-
ple, if the “VIEW” action string 
is specified in an intent with data 
fields pointing to an image file, 
the system will direct the intent to 
the preferred image viewer. De-
velopers also use action strings to 
broadcast a message to a group of 
broadcast receivers. On the receiv-
ing end, developers use an intent 
filter to subscribe to specific action 
strings. Android includes addi-
tional destination resolution rules, 
but action strings with optional 
data types are the most common.

Figure 2 shows the interac-
tion between components in the 
FriendTracker and FriendViewer 
applications and with components 
in applications defined as part of 
the base Android distribution. In 
each case, one component initi-
ates communication with another. 
For simplicity, we call this inter-
component communication (ICC). 
In many ways, ICC is analogous 
to  inter-process communication 
(IPC) in Unix-based systems. To 
the developer, ICC functions iden-
tically regardless of whether the 
target is in the same or a different 
application, with the exception of 
the security rules defined later in 
this article.

The available ICC actions de-
pend on the target component. 
Each component type supports 
interaction specific to its type—
for example, when FriendViewer 
starts FriendMap, the FriendMap 
activity appears on the screen. 
Service components support start, 
stop, and bind actions, so the 
FriendTrackerControl activity, 
for instance, can start and stop the 
FriendTracker service that runs 
in the background. The bind ac-
tion establishes a connection be-
tween components, allowing the 
initiator to execute RPCs defined 
by the service. In our example, 
FriendTracker binds to the loca-
tion manager in the system server. 
Once bound, FriendTracker in-
vokes methods to register a call-
back that provides updates on 
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Figure 2. Component interaction. Android’s application-level interactions let the FriendTracker 
and FriendViewer applications communicate with each other and system-provided applications. 
Interactions occur primarily at the component level.
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the phone’s location. Note that if 
a service is currently bound, an 
explicit “stop” action won’t ter-
minate the service until all bound 
connections are released.

Broadcast receiver and content 
provider components have unique 
forms of interaction. ICC targeted 
at a broadcast receiver occurs as an 
intent sent (broadcast) either ex-
plicitly to the component or, more 
commonly, to an action string 
the component subscribes to. For 
example, FriendReceiver sub-
scribes to the developer-defined 
“FRIEND_NEAR” action string. 
FriendTracker broadcasts an in-
tent to this action string when it 
determines that the phone is near 
a friend; the system then starts 
FriendReceiver and displays a 
message to the user.

Content providers don’t use in-
tents—rather, they’re addressed via 
an authority string embedded in a 
special content URI of the form 
content://<authority>/ 
<table>/[<id>]. Here,  <table> 
indicates a table in the content pro-
vider, and <id> optionally specifies 
a record in that table. Components 
use this URI to perform a SQL 
query on a content provider, op-
tionally including WHERE condi-
tions via the query API.

Security Enforcement
As Figure 3 shows, Android pro-
tects applications and data through 
a combination of two enforcement 
mechanisms, one at the system 
level and the other at the ICC lev-
el. ICC mediation defines the core 
security framework and is this ar-
ticle’s focus, but it builds on the 
guarantees provided by the under-
lying Linux system.

In the general case, each ap-
plication runs as a unique user 
identity, which lets Android limit 
the potential damage of program-
ming flaws. For example, the Web 
browser vulnerability discovered 
recently after the official release of 
T-Mobile G1 phones only affected 
the Web browser itself (http://
securityevaluators.com/content/
case-studies/android/index.jsp). 
Because of this design choice, the 
exploit couldn’t affect other ap-
plications or the system. A similar 
vulnerability in Apple’s iPhone 
gave way to the first “jail break-
ing” technique, which let users 
replace parts of the underlying 
system, but would also have en-
abled a network-based adversary 
to exploit this flaw (http://security 
eva luator s .com/content/ca se 
-studies/iphone/index.jsp).

ICC isn’t limited by user and 

process boundaries. In fact, all 
ICC occurs via an I/O control 
command on a special device 
node, /dev/binder. Because 
the file must be world readable 
and writable for proper opera-
tion, the Linux system has no way 
of mediating ICC. Although user 
separation is straightforward and 
easily understood, controlling 
ICC is much more subtle and war-
rants careful consideration.

As the central point of secu-
rity enforcement, the Android 
middleware mediates all ICC es-
tablishment by reasoning about 
labels assigned to applications and 
components. A reference moni-
tor1 provides mandatory access 
control (MAC) enforcement of 
how applications access compo-
nents. In its simplest form, access 
to each component is restricted by 
assigning it an access permission 
label; this text string need not be 
unique. Developers assign applica-
tions collections of permission la-
bels. When a component initiates 
ICC, the reference monitor looks 
at the permission labels assigned to 
its containing application and—
if the target component’s access 
permission label is in that collec-
tion—allows ICC establishment 
to proceed. If the label isn’t in the 

FriendTracker application FriendViewer application
Android applications

Contacts application

Linux system

ICC reference monitor

Android middleware
user: app_11
home: /data/data/friendtracker

user: app_12
home: /data/data/friendviewer

user: app_4
home: /data/data/contacts

Figure 3. Protection. Security enforcement in Android occurs in two places: each application executes as its own user identity, allowing 
the underlying Linux system to provide system-level isolation; and the Android middleware contains a reference monitor that mediates 
the establishment of inter-component communication (ICC). Both mechanisms are vital to the phone’s security, but the first is 
straightforward to implement, whereas the second requires careful consideration of both mechanism and policy.
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collection, establishment is denied 
even if the components are in the 
same application. Figure 4 depicts 
this logic.

The developer assigns permis-
sion labels via the XML manifest 
file that accompanies every appli-
cation package. In doing so, the 
developer defines the application’s 
security policy—that is, assigning 
permission labels to an application 
specifies its protection domain, 
whereas assigning permissions to 
the components in an application 
specifies an access policy to protect 
its resources. Because Android’s 
policy enforcement is mandatory, 
as opposed to discretionary,2 all 
permission labels are set at install 
time and can’t change until the 
application is reinstalled. How-
ever, despite its MAC properties, 
Android’s permission label model 
only restricts access to components 
and doesn’t currently provide in-
formation flow guarantees, such as 
in domain type enforcement.3

Security Refinements
Android’s security framework is 
based on the label-oriented ICC 
mediation described thus far, but 
our description is incomplete. Par-
tially out of necessity and partially 
for convenience, the Google de-
velopers who designed Android 
incorporated several refinements 
to the basic security model, some 
of which have subtle side effects 
and make its overall security diffi-
cult to understand. The rest of this 

section provides an exhaustive list 
of refinements we identified as of 
the v1.0r1 SDK release.

Public vs. Private 
Components
Applications often contain com-
ponents that another application 
should never access—for example, 
an activity designed to return a 
user-entered password could be 
started maliciously. Instead of de-
fining an access permission, the 
developer could make a compo-
nent private by either explicitly 
setting the exported attribute to 
false in the manifest file or letting 
Android infer if the component 
should be private from other attri-
butes in its manifest definition.

Private components simplify se-
curity specification. By making a 
component private, the developer 
doesn’t need to worry which per-
mission label to assign it or how 
another application might acquire 
that label. Any application can ac-
cess components that aren’t explic-
itly assigned an access permission, 
so the addition of private compo-
nents and inference rules (intro-
duced in the v0.9r1 SDK release, 
August 2008) significantly reduces 
the attack surface for many applica-
tions. However, the developer must 
be careful when allowing Android 
to determine if a component is pri-
vate. Security-aware developers 
should always explicitly define the 
exported attribute for compo-
nents intended to be private.

Implicitly Open 
Components
Developers frequently define in-
tent filters on activities to indicate 
that they can handle certain types 
of action/data combinations. Re-
call the example of how the sys-
tem finds an image viewer when 
an intent specifying the VIEW 
action and an image reference is 
passed to the “start activity” API. 
In this case, the caller can’t know 
beforehand (much less at develop-
ment time) what access permission 
is required. The developer of the 
target activity can permit such 
functionality by not assigning an 
access permission to it—that is, if 
a public component doesn’t ex-
plicitly have an access permission 
listed in its manifest definition, 
Android permits any application 
to access it.

Although this default policy 
specification enables functional-
ity and ease of development, it can 
lead to poor security practices and 
is contrary to Saltzer and Schroed-
er’s principle of fail-safe defaults.4 
Referring back to our example 
FriendViewer application, if the 
FriendReceiver broadcast receiver 
isn’t assigned an access permission, 
any unprivileged installed appli-
cation can forge a FRIEND_NEAR 
message, which represents a sig-
nificant security concern for appli-
cations making decisions based on 
information passed via the intent. 
As a general practice, security-
aware developers should always 
assign access permissions to public 
components—in fact, they should 
have an explicit reason for not as-
signing one. All inputs should be 
scrutinized under these conditions.

Broadcast Intent 
Permissions
Components aren’t the only re-
source that requires protection. In 
our FriendTracker example, the 
FriendTracker service broadcasts 
an intent to the FRIEND_NEAR ac-
tion string to indicate the phone is 
physically near a friend’s location. 

Permission
labels

Application 1

Inherit permissions

Application 2

B:  1A: ...

X

Permission
labels

. . .C:  21 . . .

Figure 4. Access permission logic. The Android middleware implements a reference monitor 
providing mandatory access control (MAC) enforcement about how applications access 
components. The basic enforcement model is the same for all component types. Component 
A’s ability to access components B and C is determined by comparing the access permission 
labels on B and C to the collection of labels assigned to application 1.
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Although this event notification 
lets the FriendViewer application 
update the user, it potentially in-
forms all installed applications of 
the phone’s proximity. In this case, 
sending the unprotected intent is a 
privacy risk. More generally, un-
protected intent broadcasts can 
unintentionally leak information 
to explicitly listening attackers. 
To combat this, the Android API 
for broadcasting intents optionally 
allows the developer to specify a 
permission label to restrict access 
to the intent object.

The access permission label as-
signment to a  broadcasted intent—
for example, sendBroadcast 
(intent, “perm.FRIEND_NEAR”)— 
restricts the set of applications that 
can receive it (in this example, 
only to applications containing 
the “perm.FRIEND_NEAR” per-
mission label). This lets the devel-
oper control how information is 
disseminated, but this refinement 
pushes an application’s security 
policy into its source code. The 
manifest file therefore doesn’t give 
the entire picture of the applica-
tion’s security.

Content Provider 
Permissions
In our FriendTracker application, 
the FriendProvider content pro-
vider stores friends’ geographic 
coordinates. As a developer, we 
want our application to be the only 
one to update the contents but for 
other applications to be able to 
read them. Android allows such a 
security policy by modifying how 
access permissions are assigned to 
content providers—instead of us-
ing one permission label, the de-
veloper can assign both read and 
write permissions.

If the application perform-
ing a query with write side ef-
fects  (INSERT, DELETE, UPDATE) 
doesn’t have the write permission, 
the query is denied. The separate 
read and write permissions let 
the developer distinguish between 
data users and interactions that af-

fect the data’s integrity. Security-
aware developers should define 
separate read and write permis-
sions, even if the distinction isn’t 
immediately apparent.

Service Hooks
Although it wasn’t explicitly iden-
tified, the  FriendTracker ser-
vice defines RPC interfaces: is 
Tracking() and addNickname 
(String). The isTracking() 
method doesn’t change the ser-
vice’s running state; it simply re-
turns whether FriendTracker is 
currently tracking locations. How-
ever, addNickname(String) 
does modify the running state 
by telling FriendTracker to start 
tracking another friend. Due to 
this state modification, the devel-
oper might want to differentiate 
access to the two interfaces. Un-
fortunately, Android only lets the 
developer assign one permission 
label to restrict starting, stopping, 
and binding to a service. Under 
this model, any application that can 
start or stop FriendTracker can also 
tell it to monitor new friends. To 
address this, Android provides the 
checkPermission() method, 
which lets developers arbitrarily 
extend the reference monitor with 
a more restrictive policy. In effect, 
these service hooks let the devel-
oper write code to perform custom 
runtime security.

Service hooks provide much 
greater flexibility when defining 
access policy—in fact, several ser-
vices provided in the base Android 
distribution use them. However, 
like broadcast intent permissions, 
service hooks move policy into 
the application code, which can 
cloud application security.

Protected APIs
Not all system resources (such as 
the network, camera, and mi-
crophone) are accessed through 
components—instead, Android 
provides direct API access. In fact, 
the services that provide indi-
rect access to hardware often use 

APIs available to third-party ap-
plications. Android protects these 
sensitive APIs with additional per-
mission label checks: an applica-
tion must declare a corresponding 
permission label in its manifest file 
to use them. Bitfrost takes a simi-
lar approach (the “one laptop per 
child” security model5), but it al-
lows controlled permission change 
after installation.

By protecting sensitive APIs 
with permissions, Android forces 
an application developer to de-
clare the desire to interface with 
the system in a specific way. Con-
sequently, vulnerable applications 
can’t gain unknown access if ex-
ploited. The most commonly en-
countered protected API is for 
network connections—for exam-
ple, the FriendViewer application 
requires Internet access for map 
information, so it must declare 
the INTERNET permission label. 
In general, protected APIs make 
an application’s protection domain 
much clearer because the policy is 
defined in the manifest file.

Permission  
Protection Levels
Early versions of the Android SDK 
let developers mark a permission 
as “application” or “system.” The 
default application level meant 
that any application requesting the 
permission label would receive it. 
Conversely, system permission la-
bels were granted only to applica-
tions installed in /data/system 
(as opposed to /data/app, which 
is independent of label assign-
ment). The likely reason is that 
only system applications should be 
able to perform operations such as 
interfacing directly with the tele-
phony API.

The v0.9r1 SDK (August 
2008) extended the early model 
into four protection levels for 
permission labels, with the meta 
information specified in the 
manifest of the package defining 
the permission. “Normal” per-
missions act like the old applica-
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tion permissions and are granted 
to any application that requests 
them in its manifest; “dangerous” 
permissions are granted only after 
user confirmation. Similar to se-
curity checks in popular desktop 
operating systems such as Micro-
soft Vista’s user account control 
(UAC), when an application is in-
stalled, the user sees a screen list-
ing short descriptions of requested 
dangerous permissions along with 
OK and Cancel buttons. Here, 
the user has the opportunity to 
accept all permission requests or 
deny the installation. “Signature” 
permissions are granted only to 
applications signed by the same 
developer key as the package de-
fining the permission (application 
signing became mandatory in the 
v0.9r1 SDK). Finally, “signature 
or system” permissions act like 
signature permissions but exist 
for legacy compatibility with the 
older system permission type.

The new permission protec-
tion levels provide a means of 
controlling how developers as-
sign permission labels. Signature 
permissions ensure that only the 
framework developer can use 
the specific functionality (only 
Google applications can directly 
interface the telephony API, for 
example). Dangerous permissions 
give the end user some say in the 
permission-granting process—for 
example, FriendTracker defines 
the permission label associated 
with the FRIEND_NEAR intent 
broadcast as dangerous. However, 
the permission protection levels 
express only trivial granting poli-
cies. A third-party application still 
doesn’t have much control if it 
wants another developer to use the 
permission label. Making a per-
mission “dangerous” helps, but it 
depends on the user understand-
ing the security implications.

Pending Intents
All the security refinements de-
scribed up to this point fall within 
the realm of an extension to the 

basic MAC model. The v0.9r1 
SDK release (August 2008) intro-
duced the concept of a “pending 
intent,” which is rather straightfor-
ward: a developer defines an intent 
object as normally done to per-
form an action (to start an activity, 
for example). However, instead of 
performing the action, the devel-
oper passes the intent to a special 
method that creates a PendingIn-
tent object corresponding to the 
desired action. The PendingIntent 
object is simply a reference pointer 
that can pass to another applica-
tion, say, via ICC. The recipient 
application can modify the origi-
nal intent by filling in unspecified 
address and data fields and specify 
when the action is invoked. The 
invocation itself causes an RPC 
with the original application, in 
which the ICC executes with all 
its permissions.

Pending intents allow applica-
tions included with the framework 
to integrate better with third-par-
ty applications. Used correctly, 
they can improve an application’s 
security—in fact, several Android 
APIs require pending intents, such 
as the  location manager, which has 
a “proximity update” feature that 
notifies an application via intent 
broadcast when a geographic area 
is entered or exited. The pending 
intent lets an application direct 
the broadcast to a specific private 
broadcast receiver. This prevents 
forging without the need to co-
ordinate permissions with system 
applications.

However, pending intents 
diverge from Android’s MAC 
model by introducing delegation. 
By using a pending intent, an ap-
plication delegates the ability to 
influence intent contents and the 
time of performing the action. 
Historically, certain delegation 
techniques have substantial nega-
tive effects on the tractability of 
policy evaluation.6

URI Permissions
The v1.0r1 SDK release (Sep-

tember 2008) introduced another 
delegation mechanism—URI per-
missions. Recall that Android 
uses a special content URI to ad-
dress content providers, optionally 
specifying a record within a table. 
The developer can pass such a 
URI in an intent’s data field—for 
example, an intent can specify the 
VIEW action and a content URI 
identifying an image file. If used 
to start an activity, the system will 
choose a component in a differ-
ent application to view the image. 
If the target application doesn’t 
have read permission to the con-
tent provider containing the im-
age file, the developer can use a 
URI permission instead. In this 
case, the developer sets a read flag 
in the intent that grants the target 
application access to the specific 
intent-identified record.

URI permissions are essen-
tially capabilities for database re-
cords. Although they provide least 
privilege4 access to content provid-
ers, the addition of a new delega-
tion mechanism further diverges 
from the original MAC model. As 
mentioned with pending intents, 
delegation potentially impacts the 
tractability of policy analysis. A 
content provider must explicitly 
allow URI permissions, therefore 
they require the data store devel-
oper’s participation.

Lessons in  
Defining Policy
Our experiences working with 
the Android security policy re-
vealed that it begins with a rela-
tively easy-to-understand MAC 
enforcement model, but the num-
ber and subtlety of refinements 
make it difficult for someone to 
discover an application’s policy 
simply by looking at it. Some re-
finements push policy into the 
application code. Others add dele-
gation, which mixes discretionary 
controls into the otherwise typical 
MAC model. This situation makes 
gathering a firm grasp on An-
droid’s security model nontrivial.
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Even with all the refinements, 
holistic security concerns have 
gone largely unaddressed. First, 
what does a permission label really 
mean? The label itself is merely 
a text string, but its assignment 
to an application provides access 
to potentially limitless resources. 
Second, how do you control access 
to permission labels? Android’s 
permission protection levels pro-
vide some control, but more ex-
pressive constraints aren’t possible. 
As a purposefully simple example, 
should an application be able to 
access both the microphone and 
the Internet?

W ill granting a permission 
break the phone’s security? 

Do the access permission assign-
ments to an application’s com-
ponents put the phone or the 
application at risk? Android cur-
rently provides no means of an-
swering these questions.

We developed an enhanced 
installer and security frame-
work to answer a variant of 
these questions—namely, “does 
an application break some larger 
phone-wide security policy?” 
Our tool, called Kirin,7 extracts 
an application’s security policy 
from its manifest file to deter-
mine if the requested permis-
sions and component permission 
assignments are consistent with 
the stakeholders’ definition of 
a secure phone (stakeholders in 
this context range from the net-
work provider to an enterprise to 
a user). Kirin uses a formalized 
model of the policy mechanisms 
described in this article to gen-
erate automated proofs of com-
pliance using a Prolog engine 
running on the phone. If an ap-
plication’s policy isn’t compliant, 
it won’t be installed. By defining 
security requirements in logic, 
which we call policy invariants, 
we significantly reduce the need 
to defer install-time decisions to 
the user—that is, the policy in-

variants capture the appropriate 
response. We’ve successfully used 
Kirin to identify multiple vulner-
abilities in the base applications 
provided with Android and have 
subsequently established an ongo-
ing relationship with Google to 
fix the flaws and further investi-
gate Android’s security via Kirin.

In many ways, Android pro-
vides more comprehensive security 
than other mobile phone platforms. 
However, learning how to effec-
tively use its building blocks isn’t 
easy. We’re only beginning to see 
different types of applications, and 
as Android matures, we’ll learn 
how faulty application policy af-
fects the phone’s security. We be-
lieve that tools such as Kirin and 
those like it will help mold An-
droid into the secure operating 
system needed for next-generation 
computing platforms. 
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other article in our issue? Send a 
letter to the editor! Please email 
editor, Jenny Stout, at jstout@
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