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Abstract—Securing information transmission is critical today.
However, with rapidly developing powerful quantum technolo-
gies, conventional cryptography techniques are becoming more
prone to attacks each day. New techniques in the realm of
quantum cryptography to preserve security against powerful
attacks are slowly emerging. What is important though now is
the fidelity of the cryptography, because security with massive
processing power is not worth much if it is not correct. Focusing
on this issue, we propose a method to enhance the fidelity of
quantum cryptography using maximally entangled qubit pairs.
For doing so, we created a graph state along a path consisting of
all the qubits of ibmqx4 and ibmq 16 melbourne respectively and
we measure the strength of the entanglement using negativity
measurement of the qubit pairs. Then, using the qubits with
maximal entanglement, we send the modified encryption key to
the receiver. The key is modified by permutation and superdense
coding before transmission. The receiver reverts the process and
gets the actual key. We carried out the complete experiment in
the IBM Quantum Experience project. Our result shows a 15% to
20% higher fidelity of encryption and decryption than a random
selection of qubits.

Index Terms—security, quantum cryptography, entanglement,
fidelity

I. INTRODUCTION

Information security has always been a critical component
of digital communications, and the need for security is only
increasing. Recent advances, such as quantum computers,
threaten many existing public-key cryptography systems (RSA
[1], [2], ElGamal [3], ECC [4], and so on). To resist the threats
of quantum computing, new cryptosystems based on quantum
technology, i.e., quantum cryptography, are already being
explored. Quantum cryptography, a combination of quantum
mechanics and classical cryptography, is an important branch
of cryptography today. Although quantum cryptography is still
in its infancy, its challenges to the security of conventional
cryptosystems cannot be ignored. A more important concern
in this regard is that the current state of quantum cryptography
still falls behind in achieving high fidelity.

Therefore, in this paper, we focus on enhancing the fi-
delity of quantum cryptography using the maximally entangled
qubits. Here, we create graph states consisting of all the qubits
of ibmqx4 and ibmq 16 melbourne and perform full quantum
state tomography on all groups of 4 connected qubits on the
path to produce highly entangled states. Then, we use the
maximally entangled qubit pairs to transmit the encryption

key to the receiver. The encrypted message is sent through a
conventional communication channel. As a result, we are able
to demonstrate higher fidelity of quantum cryptography than
the classical approach of a random selection of qubits.

Based on our work, we make the following set of contribu-
tions in this paper:

• We propose a new technique of quantum encryption
where the encryption key is transmitted to the receiver
through the quantum channel, whereas, the encrypted
message is transmitted through the conventional commu-
nication channel.

• We simulate the proposed technique in IBM Quantum
Experience.

• We measure the fidelity of our proposed technique, which
is 15% to 20% higher than the classical process of a
random selection of qubits.

The rest of this paper is organized as follows. Section 2
introduces some related research studies about the fidelity of
quantum cryptography. Section 3 discusses the background
of quantum physics and quantum communication. Section 4
presents our proposed mechanism. Section 5 discusses the
experimental setup of our research. Section 6 presents the
results of our experiment. Finally, Section 7 concludes our
paper.

II. RELATED WORK

Researchers are actively investigating the design of compo-
nents and systems involved in quantum cryptography today.
A notable secure communication method, that implements a
cryptographic protocol involving components of quantum me-
chanics, is Quantum Key Distribution (QKD) [5]. Mirhosseini
et al., [6] investigated that relying on the polarization of light
for encoding, QKD limits the amount of information that can
be sent per photon as well as confined the error rates. They
also showed that multilevel QKD systems based on spatial-
mode encoding can be more resilient against eavesdropping
attacks in addition to having an increased information capacity.
Milicevic et al., [7] introduced a quasi-cyclic code construction
for multi-edge codes, that is highly suitable for hardware-
accelerated decoding on a graphics processing unit (GPU).
Pirandola et al., [8] designed a coherent-state network protocol
to achieve remarkably high key rates at metropolitan distances.

Cryptographers have been working on quantum-resistant
algorithms and lattice-based cryptography [9]. However, the



high computational complexity of these algorithms makes it
challenging to implement lattice-based protocols on resource-
constrained IoT devices. To address this challenge, Banerjee et
al., [10] presented a lattice cryptography processor with con-
figurable parameters, which results in a 124K-gate reduction
in the system area. Liu et al., [11] efficiently implemented
crypto-systems for 8 and 32-bit micro-controllers. Apart from
that, Ottaviani et al., [12] have shown that super-additivity of
two-way Gaussian quantum cryptography enhances security
performance. Kabir et al. [13] proposed a new technique of en-
cryption, called Supercrypt, which enhances the security level
by a significant margin with the help of quantum computing
as well as enhances data transmission rate through exploiting
the notion of Superdense Coding.

Fidelity measures in various types of quantum states and
operators are also explored by researchers. Gutoski et al., [14]
introduced a definition of the fidelity function for multi-round
quantum strategies, which is a generalization of the fidelity
function for quantum states. They illustrate an operational
interpretation of the strategy fidelity in the spirit of Uhlmann’s
Theorem and discuss its application to the security analysis of
quantum protocols for interactive cryptographic tasks, such as
bit-commitment and oblivious string transfer. Gyongyosi et
al., [15] showed an effective method to compute the fidelity
of quantum cloning based attacks in quantum cryptography
using Delaunay tessellation.

As we see existing studies have focused on quantum cryp-
tography and fidelity. However, enhancing the fidelity of quan-
tum cryptography and related analysis is still in its infancy,
and yet to be focused in the literature. This paper designs a
solution to enhance the fidelity of quantum cryptography using
maximally entangled qubit pairs.

III. BACKGROUND OF QUANTUM CRYPTOGRAPHY

Quantum computing uses the principles of quantum physics
to perform operations on data. In our proposed technique, a
very important step is creating a full quantum entangled state.
Therefore, we discuss a few necessary basics of quantum en-
tanglement along with the quantum cryptography and fidelity
in this section.

A. Quantum Computing

Quantum computing is based on quantum bit or qubit, an
analogous concept of the bit. The computation mainly deals
with quantum information. A qubit is different from a classical
bit, which has a state of either 0 or 1. On the contrary, a qubit
has a quantum state that can be a superposition of both the
classical states (0 and 1) at the same time. This quantum state,
also known as superposition state, is a linear combination of
the classical states.

The quantum state can be expressed as: |ψ⟩ = α|0⟩+ β|0⟩,
where α and β are probability amplitudes and both can be
complex numbers in general. The two states α|0⟩ and α|1⟩ are
called computational basis states and they form an orthonormal
basis for computation in a vector space [16]. Utilizing the

superposition states, the quantum computation can deal with
a huge number of calculations simultaneously.

A quantum computer is a device that performs quantum
computing. A quantum computer with 400 basic units (qubits)
could, for example, simultaneously process more bits of in-
formation than the number of atoms in the universe [17].
Therefore large-scale quantum computers are theoretically able
to rapidly solve certain problems than any classical computer.

As of 2020, the development of actual quantum computers
is still in its infancy, but experiments have been carried out
in which quantum computational operations were executed
on a very small number of quantum bits. A small 20-qubit
quantum computer has been developed and is available for
experiments via the IBM Quantum Experience project [18].
D-Wave Systems has been developing its own version of a
quantum computer that uses quantum annealing [19]. Our
experiment was carried out in the IBM Quantum Experience.

B. Quantum Entanglement

Quantum entanglement of particles is a quantum mechani-
cal phenomenon, that describes a relationship between their
fundamental properties that cannot happen by chance even
though the individual objects may be spatially separated [20].
Quantum entanglement occurs when particles such as photons,
electrons, molecules, etc interact physically and then become
separated. This interaction properly describes each resulting
member of a pair by the same quantum mechanical state. This
could refer to states, such as their momentum, position, or
polarisation.

In the case of two entangled particles, if one is observed to
be spin-up, the other one will always be observed to be spin
down and vice versa. However, according to quantum mechan-
ics, it is impossible to predict, which set of measurements will
be observed.

For example, let Alice and Bob be two observers for system
A and system B respectively. In the entangled state, if Alice
measures the eigenbasis of A, there are two possible equally
probable outcomes:

1) Alice measures 0, and the state of the system collapses to
|0⟩A⊗|1⟩B . So, any subsequent measurement performed
by Bob will always return 1.

2) Alice measures 1, and the state of the system collapses
to |1⟩A⊗|0⟩B and Bob’s measurement will return 0 with
certainty.

Thus, system B is altered depending on Alice’s measurement
on system A. This remains true, even if the systems A and B
are spatially separated.

C. Quantum Cryptography

Quantum cryptography exploits quantum mechanical prop-
erties to perform cryptographic tasks. Quantum cryptography
allows the completion of various cryptographic tasks, that are
proven or conjectured to be impossible using only classical
(i.e., non-quantum) computation [21]. It is a special method
of securely communicating a private key, from one party to
another for use in one-time pad encryption [22].



The correct selection of bases for measurement of qubits
is fundamental to quantum cryptography. A sender encodes
the one-time pads in strings of qubits by performing some
quantum operations using particular bases and then sends it
over a public quantum channel. Only the sender knows the
actual bases of the performed quantum operations. Therefore
the receiver cannot distinguish all original states of the qubits.

D. Fidelity

Fidelity is a measure of the distance between two quantum
states. Fidelity can be explained by assessing how good the
source or quantum state preparation is. This can be done by
comparing the state of the measured value with the ideal value.
Fidelity, denoted by F , is by definition F ∈ [0, 1]. Here, F = 1
means that two states are identical and F = 0 means they are
as different as physically distinct possible.

If the objective is to create pairs of perfectly entangled
particles, and if there are extra stray (non-entangled) photons
that were measured in an ensemble of prepared bi-photons,
then the ensemble average state will be different from the
expected perfectly entangled bi-photon pairs. In this case, how
close the result is to the perfectly entangled bi-photon pairs is
given by fidelity F .

In quantum cryptography, fidelity measures the correctness
of the information. Higher fidelity indicates more correctness
of the information. Therefore, achieving high fidelity is of
critical importance in quantum cryptography.

IV. PROPOSED MECHANISM

Our proposed mechanism involves, creating a full field
entangled state of qubits [23]. Then highly entangled states,
namely the graph states [24] are produced using optimized
low-depth circuits that are tailored to the universal gate set.
We detect full entanglement of all the qubits, using an entan-
glement criterion based on reduced density matrices. Qubits
are fully entangled in the sense that, the state involves all
physical qubits and is inseparable to any fixed partition.

For a set of vertices V and a set of edges E, the graph state
that corresponds to G(V,E) is the unique common eigenvec-
tor (of eigenvalue 1) of the set of independent commuting
operators,

Ka = XaZNa = Xa
∏
b∈Na

Zb (1)

where, X and Z denote the Pauli operators, the eigenvalues
to Ka are +1 for all a ∈ V , and Na denotes the set of
neighbor vertices of a in G [25]. A n-qubit graph state can
be prepared by the following steps:

1) Initialize the state to |+⟩⊗n by applying n Hadamard
gates to |0⟩⊗n

2) For every (a, b) ∈ E, apply a control-Z gate on qubits
a and b; the order can be arbitrary

According to one of the most widely used criteria, partial
transpose criterion [26]–[28], a bipartite state ρAB on the
Hilbert space H = HA ⊗HB is said to be separable if ρAB

can be written as,

ρAB =
∑
i

piρ
i
A ⊗ ρiB (2)

where, ρiA and ρiB are quantum states of the system A and
B, respectively, with the positive weights p to be pi ≥ 0
and

∑
i pi = 1. Otherwise ρAB is entangled. For a state

ρ of a many-body system, for any fixed bipartition AB of
the system, if ρ is entangled to the partition AB, then the
entanglement of the many-body state ρ can also be examined
via its subsystems. That is, if the subsystems are all entangled,
the whole system must be also entangled.

To be more specific, consider a 4-qubit subsystem ρA,B,C,D

in an n qubit system -

ρA,B,C,D =
1

4
(I + ZAXBZC)(I + ZBXCZD). (3)

Due to Eq. 3, for a ring graph state, each 4-qubit density
matrix of neighboring four qubits, as illustrated in Fig. 1 is
given by [23]

Fig. 1: A four-qubit subsystem that forms a chain [23]

Now, to calculate the negativity of the resulting 2-qubit
subsystem, local operations of OA = ZA+I

2 and OD = ZD+I
2

need to be applied for each 4-qubit density matrix. For
example, if (q5, q6, q7, q8) is chosen as our subsystem; after
applying OA and OD to q5 and q8 respectively, q5 and q8 will
be traced out, and the negativity of the remaining subsystem,
(q6, q7) will be measured. The reason to choose OA = ZA+I

2

and OD = ZD+I
2 is discussed below.

If ρ is graph state, and the 4-qubit subsystem corresponds
to 4 vertices that form a chain in the graph, then the resulting
2-qubit state is a maximally entangled state

|ϕ⟩ = 1√
2
(|0⟩|+⟩+ |1⟩|−⟩). (4)

Now, two local operations OA and OD will be performed
on qubit A and D respectively, and then, the reduced density
matrix of qubit B and C is obtained by tracing out qubit A
and D. The reduced density matrix for qubits B and C will
be as follows [23]

ρ
′

B,C = trA,D

(
OAODρA,B,C,DO

†
DO

†
A

tr
(
OAODρA,B,C,DO

†
DO

†
A

)). (5)

From this, the entanglement of ρ
′

B,C can be determined by
using entanglement monotones such as negativity, which has
non-zero values in the 2 qubit case, if and only if the system
is entangled [26], [28]. Therefore if ρ

′

B,C is entangled, there
is no separation with qubit B and C on different sides in the
original system. This means, the qubit B and C must be on the
same side for the original system to be biseparable concerning
a fixed partition. The pair with maximum negativity is thus
maximally entangled.



After measuring the negativity (entanglement), we perform
the encryption and decryption, which is adopted from the
Supercrypt protocol [13]. Fig. 2 depicts the whole process of
Supercrypt protocol. The protocol improves both security and
data transmission rate simultaneously as demonstrated in [13]
through comparing with other available classical alternatives,
and confirms significant performance improvements in terms
of both the network performance and average throughput of
the network.

The encryption process consists of the following steps,
• Alice (the sender) encodes the message with the key.
• She modifies the key using permutation.
• She applies the superdense coding for the key.
• She sends the encoded message through the classical

channel and the superdense coded key through the quan-
tum channel.

Fig. 2: Block diagram of Encryption-Decryption using Maxi-
mally Entangled Qubit pairs [13]

Fig. 3: Encoding process in sender device [13]

In our proposed method, a sender needs to perform two
operations to enhance the security of the transmitted key. First,
a permutation operation is required on the bit sequence of the
key. Second, the sender takes a pair of bits from the modified
bit sequence and performs Superdense Coding on those. As a
result, an n bit key is encoded in n/2 qubits. This encoding
process is elaborated in Fig. 3.

The decryption process consists of the following steps,
• Bob (the receiver) receives the encoded message from the

classical channel and the superdense coded key from the
quantum channel.

Fig. 4: Decoding process in receiver device [13]

• He applies superdense decoding to the received key.
• He retrieves the modified key by applying reverse per-

mutation.
• Finally he decodes the message using the key.
The decoding process confirms providing receiver an n bit

key from n = 2 qubits. Subsequently, the sender performs
the permutation as decided earlier and gets the original bit
sequence. At the end of this phase, the sender gets the exact
key or one-time pad to decrypt the message. This decoding
process is elaborated in the Fig. 4.

V. EXPERIMENTAL SETUP

The IBM Quantum experience is a quantum cloud service
released by IBM, which has several quantum computing
devices in the backend. A full field entangled state of 5
qubits and 14 qubits in two machines, named ibmqx4 and
ibmq 16 melbourne is created respectively. Then the graph
states, that correspond to 2 rings involving 5 qubits from
ibmqx4 and 14 qubits from ibmq 16 melbourne is generated
using optimized low-depth circuits that are tailored to the
universal gate set. The qubit connectivity is given below,

Fig. 5: Qubit topology of ibmqx4 (5 qubits)

Fig. 6: Qubit topology of ibmq 16 melbourne (14 qubits)

Here, Fig. 7a and Fig. 7b show the circuit of the
full entanglement that is implemented in ibmqx4 and
ibmq 16 melbourne.



(a) Full entanglement circuit in the ibmqx4 processor

(b) Full entanglement circuit in the ibmq 16 melbourne processor

Fig. 7: Full entanglement circuits used in our experiment

After measuring the entanglement for all the qubit pairs,
the encryption and decryption process is implemented. In
our experiment, two different devices to communicate with
each other using encryption and decryption is not available.
Therefore, an assumption is made that there is no information
loss in data communication, and the encryption and decryption
processes are implemented on the same device. And then, the
fidelity for each predefined qubit pairs is checked. Implemen-
tation of the encryption and decryption of key in ibmqx4 for
qubit pair (q3, q4) is shown in Fig. 8.

(a) Encryption-Decryption of 00 (b) Encryption-Decryption of 01

(c) Encryption-Decryption of 10 (d) Encryption-Decryption of 11

Fig. 8: Encryption and decryption for qubit pair (q3, q4)

VI. EXPERIMENTAL RESULTS

For ibmqx4, the measured qubit pairs were (q0, q1),
(q0, q2), (q1, q2), (q2, q3), (q2, q4), (q3, q4) and for
ibmq 16 melbourne, the measured qubit pairs were (q0, q1),
(q1, q2), (q2, q3), (q3, q4), (q4, q5), (q5, q6), (q6, q8), (q7, q8),
(q8, q9), (q9, q10), (q10, q11), (q11, q12), (q12, q13), (q13, q1).

In both quantum processors, the entanglement measure for
each pair of qubits is calculated and the results are plotted
in Fig. 9. The entanglement measure, i.e., Negativity, ranges
between 0, and 0.5, where 0 indicates no entanglement and
larger values indicate more entanglement [23], [29]. We found
that, the magnitude of entanglement between pairs of qubits
in the ibmq 16 melbourne processor surpasses the ibmqx4
processor.

The fidelity for each pair of qubits for encryption and de-
cryption in both quantum computers is measured. To determine
the fidelity, total 20 measurements are conducted, where a total
of 8192 shots were used for each measurement. The average
fidelity of all the measurements is calculated, which are shown
in Fig. 10. The fidelity ranges between 0 and 1.0, where 0
indicates the states of the qubits are completely different and
1.0 indicates the states are identical.

Now, Fig. 9a and Fig. 10a clearly indicate that, qubits with
the higher entanglement show higher fidelity. The same is
true for Fig. 9b and Fig. 10b. It is worth mentioning that,
if the entanglement was not considered in this experiment, the
average fidelity for a random selection of qubits would not be
better.

Considering the maximally entangled qubit pairs, we found
the fidelity of the encryption and decryption process ap-
proximately 15% to 20% higher than the random selection
of qubits. This result is shown in Fig. 11. It can also be
observed from Fig. 11 that, the standard error of the fidelity
is lower in case of the maximally entangled qubits, especially,
in the ibmqx4 processor. The maximally entangled fidelity
of ibmq 16 melbourne processor is slightly higher than the
ibmqx4 processor.

(a) Entanglement measure in ib-
mqx4 processor

(b) Entanglement measure in
ibmq 16 melbourne processor

Fig. 9: Entanglement measure for each qubit pairs

(a) Qubit vs Fidelity in ibmqx4
processor

(b) Qubit vs Fidelity in
ibmq 16 melbourne processor

Fig. 10: Fidelity for each qubit pairs



Fig. 11: Fidelity comparison between randomly selected qubits
(average case) and maximally entangled qubits

VII. CONCLUSION AND FUTURE WORK

Recent advancements in quantum computers pose signif-
icant risks to both conventional public-key and symmetric
key algorithms. As a result, new encryption techniques that
could offer more security becomes necessary. Here, the fidelity
of resulting cryptography techniques is important to ensure
correctness, and the current state here has room for improve-
ment. In this paper, we enhanced the fidelity of quantum
cryptography using the notion of maximally entangled qubit
pairs to transmit the super dense key to the receiver. Our
experiment shows that using maximally entangled qubits, the
fidelity of cryptography significantly improves by up to 20%
compared to the classical method of a random selection of
qubits. We plan to implement our work for a higher number
of qubits in two separate devices for encryption and decryption
in the near future. Furthermore, we plan to conduct a detailed
correctness analysis of our proposed methodology also.
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