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Abstract—In a 2012 survey, in the United States alone, there
were more than 35, 000 reported suicides with approximately
1, 800 of being psychiatric inpatients. Recent CDC (Centers
for Disease Control and Prevention) reports indicate an upward
trend in these numbers. In psychiatric facilities, staff perform
intermittent or continuous observation of patients manually in
order to prevent such tragedies, but studies show that they
are insufficient, and also consume staff time and resources. In
this paper, we present the Watch-Dog system, to address the
problem of detecting self-harming activities when attempted by
in-patients in clinical settings. Watch-Dog comprises of three key
components - data sensed by tiny accelerometer sensors worn
on wrists of subjects; an efficient algorithm to classify whether
a user is active vs. dormant (i.e., performing a physical activity
vs. not performing any activity); and a novel decision selection
algorithm based on random forests and continuity indices for
fine grained activity classification. With data acquired from 11
subjects performing a series of activities (both self-harming and
otherwise), Watch-Dog achieves a classification accuracy of 98%,
94% and 70% for same-user 10-fold cross-validation, cross-user
10-fold cross-validation and cross-user leave-one-out evaluation
respectively. We believe that the problem addressed in this paper
is practical, important and timely. We also believe that our
proposed system is practically deployable, and related discussions
are provided in this paper.

Keywords—Harmful activity recognition, Smart Health, Sensors
and Public Health, Random Forest.

I. INTRODUCTION

In a survey in 2012, it was reported that psychiatric inpatient
suicides account for approximately 5% of the more than
35, 000 suicides in the United States [1], with recent reports
indicating rising numbers [2]. Psychiatric hospitals most often
implement 15-minute manual checks on inpatients (throughout
the clock) to prevent suicide attempts. While manual suicide
checks are effective at reducing the number of suicides com-
mitted by inpatients, studies show that such an approach is
ineffective [3], [4]. For instance, the study in [4] shows that
out of 15, 000 inpatient suicides that were investigated over
many years, 20% to 62% of attempts happened when patients
were on intermittent observation and 2% to 9% on constant
observation [5]. Furthermore, manual checks are known to be
prohibitive in consuming nursing resources, non-scalable and
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have caused other important responsibilities to be overlooked
[6]. There is clear need today in hospital settings for alternative
or supplementary procedures to combat suicide attempts by
inpatients, while also being cost effective.

A. Contributions of this paper:

In this paper, we present Watch-Dog, a system with appli-
cations in psychiatric facilities to detect self-harming activities
(described in Table I) attempts by inpatients. Our system
comprises of three components.

a. Wrist-worn Accelerometers: In our system, subjects will
have miniaturized accelerometer sensors embedded in acces-
sories worn on both wrists. We chose to have accelerometers
in both wrists since the dominant hand can be different for
different people when attempting activities. Note that most
psychiatric hospitals, and even other healthcare facilities in
general provide wristbands with bar-codes for patients to
minimize errors in care delivery today. It is straightforward and
cheap to embed low cost accelerometers in such bands today
as evidenced by recent efforts in the industry and academia
[7]. In this paper, for a proof of concept, we utilize the
Shimmer1 wearable sensing device, which is commercially
available, energy efficient and widely used. It has an embedded
accelerometer, a processing unit and wireless transmission
capabilities. The Shimmer device is unobtrusive, and can
comfortably be worn on the wrist like a watch. Note though
that many commercial wearables like Microsoft Band and
Samsung Gear do provide SDKs to stream real sensory data
from their devices for processing, and as such, our technologies
in this paper can directly apply when such wearables are worn
as well.

b. Algorithm to Determine Active or Dormant State of a
Subject: Modern accelerometers are capable of sensing at very
high sampling rates. Having a system that continually senses,
processes and transmits streaming data from these devices
for activity recognition can be energy consuming. In this
paper, we improve upon energy and computational overhead
by taking advantage of contextual information of inpatients
in psychiatric facilities. Specifically, patients in psychiatric
facilities are dormant for a significant portion of time (i.e.,
sleeping, lying down, reading a book etc.), during which
time the accelerometer readings are relatively stable. When
the patient attempts an activity of interest to this paper, the
accelerometer readings will suddenly spike up. By contrasting
the spikes in accelerometer readings over a moving window,
our proposed technique will effectively determine when a

1http://www.shimmersensing.com/

1



2168-2194 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2017.2692179, IEEE Journal of
Biomedical and Health Informatics

subject is transitioning from a dormant to an active state,
and only then will the complex task of fine grained activity
classification be attempted. As we show subsequently, this
approach results in significant energy savings.

c. Novel Decision Selection Algorithm: Once a subject is
determined to be active, the next step is determining the actual
activity. To do so, we first employ a Random Forest (RF) based
approach to decide on the activity by independently processing
the accelerometer readings in each wrist. RF based techniques
are fast, accurate and leverage high sampled input data streams
with minimal overhead. We then propose an approach that
combines the two decisions from either wrist to select one
final decision on the activity, based on the notion of continuity
indices. In our approach, if there are discrepancies in the
activities classified from the accelerometer readings in each
wrist, weight is given to that activity whose continuity has been
the longest. This intuitive approach improves the accuracy of
decision selection with negligible increase in energy expended.

B. Experimental Evaluations
We conducted an experiment with 11 subjects, that was

supervised by a clinical psychiatrist. Each subject was in-
structed to perform a series of 15 activities while a Shimmer
device was securely attached to either wrist. Some of the
activities were routine (like walking, drinking, etc.) while
others were intended to mimic self-harmful behavior (like
cutting hand, hanging, etc.). Our proposed techniques achieve
an overall classification accuracy of 98%, 94% and 70% for
same-user 10-fold cross-validation, cross-user 10-fold cross-
validation and cross-user leave-one-out evaluation respectively.
The energy expended and latency in decision selection are
quite minimal, hence making our system practical.

Note that results of this paper came from an experiment
where the subjects were not in a clinic, nor known to have past
self-harmful behavior. However, studies do show that suicidal
thoughts and tendencies can come without warning, or without
advanced planning by those that attempt them [8]. As such, our
experimental studies in this paper do have contextual relevance.
Nevertheless, we caution against generalizing any conclusions
in medical contexts, but rather we demonstrate an innovative
application of wearable sensors and activity recognition al-
gorithms in psychiatric facilities, which to the best of our
knowledge has not been attempted before. To clarify, more
discussions on practical perspectives are presented in the paper.

II. RELATED WORK

A. Activity Recognition Algorithms in HealthCare
In [9] a system is developed to assist physicians to un-

derstand patient mobility without direct observation. In this
scheme, smartphone accelerometer data collected from patients
was used to classify activities like walking, sitting, standing,
going upstairs and downstairs. In [10], accelerometer sensors
attached on a subject’s leg were leveraged to assist patients
with Parkinson’s disease by detecting episodes where the gait
freezes. The system is also designed to send a rhythmic audio
signal to stimulate the patient to walk when a freeze happens.

In [11], a comprehensive survey is provided on the impact
of position of accelerometer sensors on the body for activity
classification for healthcare applications.

B. Positioning our prior work w.r.t. this paper
We have done prior work in detecting self-harming activities

from wearable devices in [12]. In [12], we attached smart-
phones in both wrists for activity recognition via implementing
a Dynamic Time Warping (DTW) based algorithm, from
accelerometer data. The system in our current paper used
Shimmer devices instead, which are much more comfortable
to wear like a watch (or an arm-band), and is hence much
more practical. In the current paper, our activity recognition
framework includes modules for contrasting active/ dormant
states of a subject (before attempting fine-grained activity
classification) for superior energy efficiency unlike our prior
work in [12] that consumed much more energy as a result
of performing fine-grained activity classification throughout.
We also introduce the notion of continuity indices in current
work for superior accuracy via fusing multiple decisions from
either wrist unlike [12]. Finally, the evaluation approach in
this paper is much more comprehensive by considering three
strategies (i.e., same-user 10-fold cross-validation, cross-user
10-fold cross-validation and cross-user leave-one-out evalua-
tion) compared to the work in [12], which was evaluated using
only cross-user cross-validation strategy. The current paper
also provides significant insights on practical applications of
our proposed technologies.

III. THE WATCH-DOG SYSTEM: PROBLEM SCOPE,
HARDWARE COMPONENT AND ALGORITHMIC COMPONENT

In this section, we present in detail our Watch-Dog system
for recognizing self harming activities.

A. Problem Scope
Our problem is to classify self-harming activities commonly

attempted by psychiatric inpatients2. Since the system is ex-
pected to be operational 24 × 7 while the patient is in the
hospital, minimizing energy and processing latency is vital.

Hanging is the most common form of inpatient suicide [4],
requiring only 4 to 5 minutes to be successful [14]. Other self-
harming activities attempted by inpatients also include cutting
themselves, hanging and self-injections [15]. After careful
discussions with domain experts, a total of eight self-harming
activities were identified for detection. To serve as a reference,
seven other activities that are not self-harming, but rather ones
that patients do as part of daily activities in psychiatric settings
were also identified for detection as part of this study. See
Table I for full activity list.

B. Hardware Component of our Watch-Dog System
In our system, two Shimmer devices were securely strapped

to subjects on either wrist like a watch as shown in Figure 1.

2Two highest-risk times for suicide for psychiatric inpatients are in the week
after admission and very shortly after discharge [13].
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Table I. ACTIVITY SET

Normal Activities Self-harming Activities
Drink with Left Hand

(DLH)
Cutting Left Hand (CLH)

Drink with Right Hand
(DRH)

Cutting Right Hand (CRH)

Lying Down (LYNG) Cutting Throat with Left Hand
(CTLH)

Running (RUN) Cutting Throat with Right
Hand (CTRH)

Sitting (SIT) Injection in Left Arm (ILA)
Standing (STND) Injection in Right Arm (IRA)
Walking (WLK) Hanging (HNG)

Smothering (SMTH)

Figure 1. Shimmer devices worn as a watch by a subject

The Shimmer device is widely used in research today for
its miniature size and powerful sensing/ computing/ wireless
transmission abilities. The central element of the platform is
the low-power MSP430F5437A microprocessor with 24MHz
clock rate which controls the operation of the device. The CPU
has an integrated 16-channel 12-bit analog-to-digital converter
(ADC) which is used to constantly sample and capture tri-
axial acceleration signals from an in-built accelerometer in the
unit. These accelerometers have a range of ±16g (where g
is gravitational acceleration) and were sampled at 50Hz. Note
that the frequency of most human activities lie within range of
15Hz [16]. As such, a sensor sampling rate of 50Hz is ideal
for our problem, since according to the Nyquist rule for loss-
less reconstruction of a signal, it needs to be sampled at a rate
that is at-least twice its highest frequency [17].

To achieve synchronization from units in both wrists, data
was recorded using Shimmer Sync software, that synchronizes
time stamp data from both accelerometers. Devices were
calibrated using standard calibration techniques as described
in [18]. Subsequently, the accelerometer readings from both
Shimmer device were streamed via an in-built bluetooth radio
module within the unit to a computer for post-processing.

C. Algorithmic Components of Watch-Dog System

In this section, we elaborate on the algorithmic components
of the Watch-Dog system. In our implementation for this paper,
we point out that our algorithms execute on a computer where
data from both Shimmer devices are streamed (via bluetooth)

for activity classification3.
The algorithmic framework of Watch-Dog is shown in

Figure 2. Accelerometer data from each Shimmer device is
independently pre-processed to first remove noise. Then, in
order to determine whether a subject or active or dormant,
it is fed into the STA/ LTA module (discussed in Section
III-C2). Once the subject is determined to be active, our system
performs feature extraction from accelerometer data coming
from each wrist, and attempts to classify the corresponding
activity independently using a Random Forest based algorithm.
Then, the decision identified from each wrist is integrated using
the notion of continuity indices to determine the final activity.
Each step is explained in detail below.

1) Data Pre-processing: The first step of our algorithmic
framework is pre-processing the raw accelerometer data from
the Shimmer device in each wrist. Depending on the orienta-
tion of Shimmer device, gravity can influence the readings on
one or more of the components. To avoid this issue, Shimmer
API provides methods to sample linear acceleration directly
and hence eliminating the influence of gravity. Once the linear
acceleration data is extracted, we further pre-process it by
applying a median filter to smooth the data and remove any
unexpected spikes [19]. .We experimented through all odd
numbers of samples from length 3 to 31 and finally set the
length to 21 to get good smoothing on accelerometer signal.
Further we feed the data to a low pass filter using a 15Hz
cut-off 4th order Butterworth filter to limit the bandwidth of
the signal to the frequencies common in human motion, hence
removing high frequency noise.

Once noise is removed and signal is smoothened, the next
step is to determine an appropriate sliding window size for
the signals to attempt run-time classification. A window size
of WS = 200 accelerometer samples from either wrist
(approximately 4 seconds) with 50% overlap was used to create
a new database, W , that was used as the training/testing data
for activity classification. In prior related work in [20] it is
found that 2-5 seconds window works best for human activity
recognition using accelerometer data. Hence, we conducted our
experiment with window length from 2 to 5 seconds having 0.5
second intervals and found that window length of 4 seconds
is working best for our problem. Subsequently, the segmented
window W is forwarded to next steps for activity classification.
An snapshot of accelerometer readings from a Shimmer device
in the left hand for various activities is shown in Figure 3 for
visualization.

2) STA/ LTA Triggering Algorithm: Once the pre-processed
readings from both accelerometers are ready, the data is fed
into the STA/ LTA processing module to determine if the
subject is active or dormant. The Short-Time-Average/ Long-
Time-Average (STA/ LTA) algorithm is an algorithm used in
seismology to detect sudden spikes in vibration for earthquakes
detection [21]. The algorithm is simple, and energy efficient,
and is applicable to our problem scope in psychiatric settings,
where patients are dormant for a significant portion of time
wherein the accelerometer readings are stable, and when the
patient is active, the accelerometer readings suddenly spike up.

3It is very easy to also implement our framework on a smartphone as well.
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Figure 2. Algorithmic Framework of Watch-Dog System

Figure 3. Recorded accelerometer readings throughout an activity sequence from the Shimmer device secured to participants left hand. The blue series denotes
the x component, red shows y, and purple shows z.

In this manner, as long as a subject is dormant, no fine-grained
activity classification will be attempted by our system. Rather,
only when a subject is determined to be active our framework
will attempt the more complex task of activity classification,
hence saving energy.

In Figures 3 and 4, we illustrate our rationale pictorially for a
subject. In Figure 3, we can visually see that the accelerometer
readings for activities like standing, sitting and lying down are
stable, compared to the more dynamic activities. We further
quantify this in Figure 4, where we see that variance in
accelerometer readings (for just the x axis) computed for
dormant activities like standing, lying and sitting is very
low, while the variance for other activities is higher. How
to leverage this insight to detect transitions from dormant to

active states within the context of our problem scope is our
challenge.

When we process the variance to detect activity transitions,
there are a few parameters to consider. The first is La, which
integrates acceleration variance in three axes in a moving
Long Term Window. The Long Term Window (Tlta) is a
moving window over a long time frame that captures the
long-term stability in accelerometer readings when the subject
is dormant. The second parameter is Sa, which integrates
acceleration variance in three axes in a moving Short Term
Window. The Short Term Window (Tsta) is a moving window
over a short time frame that captures the short term spikes in
accelerometer readings when the subject is transitioning from
a dormant to an active state. Finally, the last parameter is a
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Figure 4. Comparison of accelerometer variance of dormant vs active states

ratio denoted as TRth = Sa

La
, which is compared against an

predetermined application-based threshold value to determine
dormant or active state of a user.

In our system, values of these parameters are constant.
Therefore, they need to be set carefully. We experimented with
many different set of values and finally set the Tsta, Tlta and
TRth as 0.5 second, 15 seconds and 2.5 which gave us perfect
discrimination between dormant and active states for activities
of interest to this paper. To arrive at these values, we tested
TRth = Sa

La
for every pair of activities. The ratio for transitions

from a dormant activity to another dormant activity varied from
0.9 to 1.2 and the ratio for a dormant activity to a active state
activity varied from 3 to 21. Therefore, to detect transitions
from dormant to active states, setting TRth as 2.5 is an ideal
choice for our problem scope. The working structure for STA/
LTA is shown in Algorithm 1. As we can see, the accelerometer
readings are sensed continuously, and processed via the STA/
LTA module. When the ratio of the short term variances in
acceleration and the long term variances in acceleration crosses
the threshold of 2.5, the subject is classified as active now, and
the process of fine-grained activity classification begins, and
is discussed next.

Algorithm 1: STA/ LTA Algorithm
Data: STA Window length (Tsta = 0.5 second), LTA

Window length (Tlta = 15 seconds), Tri-axial
accelrometer data (axt, ayt, azt), Trigger threshold
(TRth) = 2.5

Result: Active vs Dormant States
while True do

Sa = 1 + V ar[axt]
Tsta
t=1 + V ar[ayt]

Tsta
t=1 + V ar[azt]

Tsta
t=1

La = 1 + V ar[axt]
Tlta
t=1 + V ar[ayt]

Tlta
t=1 + V ar[azt]

Tlta
t=1

if Sa/La > TRth then
Activities classified as Active state;

else
Activities classified as Dormant state;
Continue;

end if
end while

3) Our Algorithm for Activity Classification: In this sec-
tion, we present our algorithm for classifying activities once
a subject is determined to be active from the STA/ LTA
module. Core requirements of our system are accuracy, fast
response, and ability to handle high sampled data streams.
In our system, our algorithm is based on the notion of
Random Forests (RF) [22]. Basically, RF is an ensemble
supervised learning technique, wherein multiple lightweight
decision trees are constructed, and the algorithm searches
multiple trees for probabilistic classification. It is fast and
accurate (since multiple light-weight trees are constructed),
and handles streaming sensor data very well. It is also energy
efficient, as we demonstrate later in performance evaluations.
High data storage may be an issue for RF if data is big and
number of trees in forest are high. Since our algorithm runs
on moderately configured system with modest forest size and
limited data, storage is not an issue.

Feature Extraction & Selection: Feature extraction and
feature selection from input data are critical for any supervised
learning algorithm. Too few features may not be representative,
and too many features incur processing overhead and some-
times can even decrease accuracy by introducing noise [23].
As such, it is critical that we identify a limited set of features
from accelerometer data that provide good discriminatory
power among various activities of interest, while also keeping
processing delay and energy low.

To start with, we extracted 200 features from the accelerom-
eter readings that were intuitive and used in past studies
within our problem scope4. From this vast set, we applied
Wrapper-based feature selection algorithm [24] to select the
most relevant features out of one representative feature subset
from all features. Since wrappers are more fine tuned towards a
classifier, they generally achieve high classification accuracy.
We applied wrapper based feature selection method on our
training dataset using Random Forest classifier to evaluate
subsets by their predictive accuracy (on test data) by statistical
re-sampling or cross-validation. As a result, we selected 12
best features from this pool including both time and frequency
domain. All 12 features are listed in Table II. These features
serve as an input vector x into Random Forest algorithm for
activity selection.

Random Forest Algorithm Design: Random Forest (RF) is
a supervised learning algorithm. It is a voting based ensemble
of L decision trees (DT). Each DT works as a independent
classifier and predicts one activity from processing that partic-
ular tree. The final activity selected from the algorithm is the
one selected by a majority of the trees.

A DT is represented as {Ti(x, θi)}, where x is an input
feature vector extracted from raw accelerometer data and θi
is a random vector that dictates the structure of ith tree. The
random vector θi is generated independent of the preceding
θ1 . . . . . . θi−1 vectors, but with the same distribution. In the
random subspace method, θi consists of a K integers (K�M)
randomly drawn from a uniform distribution in the interval
[1, M], where M is the number of available features. Given a
dataset set that contains N feature vectors, each consisting of

4Due to space limitations, we do not present them in the paper.
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Table II. FINAL FEATURES SELECTED FROM POOL OF FEATURES.

Norm =
N∑
i=1

√
(axi)2 + (ayi)2 + (azi)2

Standard Deviation =

√√√√ 1

N

N∑
i=1

(ai − µ)2

Max = argmax
i∈{1,2..N}

(ai)

Min = argmin
i∈{1,2..N}

(ai)

Entropy = −
N∑
i=1

pi(log pi)

Autoregressive Parameters =
N∑
i=1

ARparamai−1 + εi

Correlation =

∑N
i=1(axi − āx)(ayi − āy)√∑N

i=1(axi − āx)2
∑N

i=1(ayi − āy)2

Max reduced Mean = ( argmax
i∈{1,2..N}

ai)− ā

No of peaks = Count of local maxima

Spectral energy =

fs/2∑
f=0

|a[f ]|2

Maximum Frequency = argmax
i∈{1,2..N}

FFT (ax, ay, az)

Mean absolute Deviation =

∑N
i=1 |ai − µ|

N

M features, the RF algorithm builds the trained model using
following steps:

1) Draw N samples at random with replacement from the
dataset, to generate the training set of the tree.

2) Select any K features randomly from the set of available
features, where K�M.

3) Among the values for each of the K features drawn,
choose the best binary split according to the Gini impurity
index [25], which measures impurity degree in dataset.
Gini index value lies between 0 and 1. It is maximum
when all classes in dataset have equal probability and
minimum when any one class has maximum probability.
Finally select those features which has the least impurity.

4) Grow the tree to its maximum size according to the
stopping criterion chosen and let the tree unpruned.

Once the forest has been ensembled, an unseen data sample
is labeled with one of the activity classes having the maximum
conditional probability summed up over all decision trees: i.e.,

it is labeled with the activity which has maximum probability
combined by probability from each ensemble trees. In the RF
approach, given a feature sample x to be classified, the con-
ditional probabilities for each activity are computed by taking
the average of the conditional probabilities given by the trees
constructing the ensemble. These conditional probabilities are
computed as follows. Given a decision tree T , and an input
feature sample x to be classified, let us denote by v(x) the leaf
node where x falls when it is classified by T . The probability
P (a|x, T ) that the sample x belongs to the activity a, where
(a ∈ A1, A2, ..., A15), is estimated by the following equation:

P (a|x, T ) =
na
n

(1)

where na is the number of training samples falling into v(x)
after learning and n is the total number of training samples
assigned to v(x) by the training procedure. Given a forest
consisting of L trees and an unknown feature sample x to
be classified, the probability estimate P (a|x) that x belongs
to the activity a is computed as follows:

P (a|x) =
1

L

L∑
i=1

P (a|x, Ti) (2)

where P (a|x, Ti) is the conditional probability provided
by the ith tree and is computed according to Eq.(1). As
a consequence, for the sample x to be classified, the RF
algorithm gives as output the vector:

p = {P (A1|x) , P (A2|x) . . . . . . P (A15|x)} (3)

The activity with the highest probability in the set is chosen
as the final classified activity for the entire ensemble forest
[26]. The workflow of the Random Forest algorithm with pre-
processing, training and testing phase is formally shown in
Algorithm 2.

Recall that in our system, accelerometer readings from each
Shimmer device on either wrist will be be processed as above
to determine an activity. Once this is completed, we have two
activities independently identified one from each wrist-worn
device. Integrating activities from both hands to decide on the
final activity is the last step and is discussed next.

4) Final Decision Selection Algorithm: Algorithm 3
presents our final decision selection algorithm that integrates
the individual decisions from each wrist-worn accelerometer.
As we show later in Evaluations Section next, in a majority
of cases, the activity classified from both hands is the same
because of the effectiveness of our random forest approach.
However, there is a chance that this may not happen, and the
activities identified by each hand may be different. This usually
happens when there are some unexpected dynamics in one
or more hands during performing of an activity that confuses
our algorithm. To address this issue in a simple, intuitive and
energy efficient manner, we introduce the notion of continuity
indices for final activity selection.

In this technique, a small buffer table is used for both
Shimmer devices separately. The buffer table holds activity
predictions (generated from our Random Forest algorithm)
from recent past segmented windows from each device. We
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define a new term called continuity index as the number of
times the current activity predicted appeared consecutively in
buffer table. Any activity of interest to this paper is continuous
in time. For instance, subjects are extremely unlikely to sleep
in one moment, and start drinking the very next moment,
and move on to another activity immediately. This property
is true for all activities of interest to our problem. As such, if
decisions on final activity from either wrist are different, we
give preference to that activity which has been continuously
detected the longest from either wrist. This method effectively
helps eliminate the impact of outliers affecting our final
decision, and is also simple and energy efficient to implement.

IV. RESULTS FROM EXPERIMENTAL EVALUATIONS

In this section, we present results of experimental evaluation
of our system. We first present the data collection process, then
the metrics, and finally the results of our evaluation. In our
experimental studies, a total of 11 adult subjects were recruited
for the study, and the data collected was split for training and
testing as is standard in machine learning techniques.

A. Data Collection

Figure 5. Sequence of activities performed by Subject 1 and Subject 2 while
data collection

In our experiment, two Shimmer devices were securely
strapped to subjects on either wrist like a watch as shown
in Figure 1. All subjects that participated in the experiment
attested that the devices were un-obtrusive. In our experiment,
a clinical psychiatrist supervised all experiments to subjects.
The supervisor informed each subject to maintain an activity
for approximately three minutes before initiating a new ac-
tivity. The activities of interest to this paper were presented
earlier in Table I. Sequences of activities did not follow any

specific order as long as each one was performed by the
subject. However, the subjects performed all activities one
after the other in a continuous sequence. In Figure 5, the
continuous sequence of activities for two subjects is shown
for reference. The Shimmer device was programmed such that
the accelerometer readings from each unit was exported in
real-time via bluetooth to a computer, where the data was
immediately tagged with the corresponding activity using a
tagging application developed in C#.

For each subject, an average of 9000 accelerometer samples
(for 3 minutes with 50Hz frequency) in each axis (x, y and
z) were collected for each activity. A total 89 windows were
extracted from each activity and each window consists of 4s
seconds of data with 50% overlapping which is subsequently
used for training and testing.

Note that the training was conducted only for Random For-
est Algorithm because STA-LTA module does not need training
to function. Also, the training and testing procedures happened
offline. The testing dataset was randomized to remove any bias
towards evaluating STA-LTA and Random Forest algorithms
effectively. The algorithms were executed offline for the results
reported below.

B. Metrics
The results of Watch-Dog are presented in terms of accuracy

and Confusion Matrix. Accuracy metric is a function of the true
positives (TP ), true negatives (TN ), false positives (FP ), and
false negatives (FN ). The accuracy of a classifier is the overall
classification performance defined as:

Accuracy =
TP + TN

TP + TN + FP + FN
. (4)

The Confusion Matrix (CM) is a specific table layout
that allows visualization of the performance of a supervised
learning algorithm. Each column of the matrix represents the
instances in a predicted class while each row represents the
instances in an actual class (or vice-versa) [27].

The confusion matrix reflects about how confused a predic-
tion model is. For example if an activity is predicted correctly
only 40% of the time, then this matrix will show how the
algorithm confused its prediction with the other (wrongly
classified) activities the remaining 60% of the time.

C. Results
Overview of Evaluation Methods: In this paper, we evalu-

ate the performance of our system using three well established
methods that are standard for our problem scope. These testing
methods are same user 10-fold cross-validation, cross user
10-fold cross-validation and cross user leave-one-out cross-
validation.

10-fold cross-validation divides the dataset into 10 subsets,
and evaluates them 10 times. Each time, one of the 10 subsets
is used as the test set and the other 9 subsets are put together
to form a training set. Then, the average error across all 10
trials is computed for final result. Within this method, there
are two approaches to evaluate. In the Same user 10-fold
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Algorithm 2: RF-based Algorithm for Watch-Dog System
Training data from right and left sensors = TDr, TDl;
Testing data from right and left sensors = Dr, Dl;
Features extracted from right and left sensors = Fr, Fl;
Classified Activity from right and left sensors= Ar, Al;
Prob. that feature F belongs to Activity A = P (A|F );
Segmented window size = W ;
No. of trees in Random Forest = L;
Step 1 Pre-Processing:

1) Median filters are applied to remove accidental spikes
from Dr, Dl.

2) Low-pass filters are applied to remove high frequency
signals from Dr, Dl.

3) Features Fr, Fl are extracted from processed data Drp,
Dlp obtained from (1) and (2).

Step 2 Training:
Input: Training data set Fr, Fl

Output: Random Forest model to classify normal vs
harmful activities

1) Select a bootstrap sample of size N from the training
data.

2) Grow a decision tree T by selecting K features at
random from the set of M features. Choose the best
feature among the K. Split the node into two daughter
nodes and let the tree grow to its maximum size.

Step 3 Prediction:
Input: Dr, Dl

Output: Ar, Al

while True do
if Window size > W then

if STA/ LTA algorithm triggers Active state then
Fr, Fl = Extracting feature set from Drp, Dlp;

for each T in Forest do

P (A|F ) = 1
L

L∑
i=1

P (A|F, T );

end for

Ar = argmax
i∈{1,2..15}

(
P (Ai|Fr)

)
Al = argmax

i∈{1,2..15}

(
P (Ai|Fl)

)
if Ar and Al are available and valid then

Afs = Final Activity Selection(Al, Ar)
end if

else
Afs = Static or Safe activity

end if
end if

end while

Step 4 Final Activity Selection:
Data: Al,Ar; Detected activity from right and left sensors
Result: Finally activity selected; Afs

Initialization;
Left hand buffer table = LHBi,i−1,..i−h;
Right hand buffer table = RHBi,i−1,..i−h;
Finally activity selected = Fas;
Current selection = i;
Size of buffer table = h;

while decision is available from both sensors do
if i < h then

LHB·Add[Al(i)];
RHB·Add[Ar(i)];

else
if Al(i) is equal to Ar(i) then

Fas = Al(i);
else

for k = h; k >= 0; k−− do
if Al(i) is equal to Al(i− k) and Ar(i) is not

equal to Ar(i− k) then
Fas = Al(i);

break;
else if Al(i) is not equal to Al(i− k) and

Ar(i) is equal to Ar(i− k) then
Fas = Ar(i);

break;
else
Fas = Activity from Dominant hand;
break;

end if
end for

end if
end if

end while

cross-validation method the data evaluated belongs to only
one subject. In Cross user 10-fold cross-validation method,
the data is aggregated from all subjects and then 10-fold cross-
validation is applied. In Cross user leave-one-out method out
of n subjects, n − 1 are chosen for training dataset and one
is left for testing. The process repeats for every subject then
average is computed for final result.

While discussing results few things are very important to
point out. First, the distribution of each activity in dataset is
kept uniform. This removes inherent biases, and yields results
that are fair. Also, among the three strategies evaluated, some
may show better results that others. Usually evaluations on
same users show better result compared to any cross user
technique. This is intuitive, since there are subtle variations
among people even when they do the same activity that are
sometimes hard to detect when training and testing are done on
different subjects. However, as we show, our algorithms still
achieve high performance both within and across users for a
number of activities, hence demonstrating the effectiveness of
our system. However, with more training and testing across
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more subjects, we clearly expect improved outcomes. Also,
due to space limitations, we do not present evaluations of the
STA/LTA module to detect the active or dormant state of a
subject, since the algorithm performed with 100% accuracy
every time in our experiments.

Results and Interpretations: At the outset, we point out
that Watch-Dog obtained 98%, 94% and 70% overall accuracy
for same user cross-validation, cross user cross-validation
and cross user leave-one-out cross-validation testing methods
respectively. The Standard Deviation is also shown in the
figures where appropriate.

In Figures 6 and 7, we show the performance of our system
for same user 10-fold cross validation method. In Figure 6
(Top), we present our activity classification results in the
form of accuracy. The X-axis refers to the activity classified
(identified in Table I), and the Y-axis refers to the performance
in accuracy percentage. In Figure 6, for each activity three
accuracy metrics is shown in the corresponding legends. The
top, middle and last figures show the accuracy from same user
10-fold, cross user 10-fold and cross user leave-one-out cross-
validation evaluation strategy. The corresponding Confusion
Matrix for same user 10-fold cross validation method is
presented in Figure 7. Similarly in Figures 6 (middle) and
7 (middle), we show the performance (in terms of Accuracy)
and the Confusion Matrix for the Cross user 10-fold cross-
validation method.

As we can see, the performance of our algorithms in terms
of accuracy across all activities is very high. This demonstrates
the validity of the Random Forest approach for classifying self-
harming activities. Furthermore, we can see that the accuracy is
still very high when the activity is attempted to be classified
independently from the right or left wrist. As such, the im-
provement in these two evaluation strategies is minor with the
Continuity Index approach that integrates decisions from both
wrists. This is further validity of our Random Forest approach
for activity classification for our problem scope of detecting
self-harming activities.

In Figure 6 (Bottom), we demonstrate the performance of
our system for cross-user leave one out strategy, which is
the stricter benchmark, since not only the testing data sets
are completely unseen to training data sets unlike the above
evaluation strategies but also testing subject was not allowed
to give samples for training data. We can see in this case, that
independent decisions from either wrist are not so accurate
like in the previous evaluation strategies, and the need for our
Continuity Index approach is more prominent here. For some
activities like Cutting and Drinking, the improvement is as
much as 50%, which is quite significant.

The overall performance in terms of accuracy is about 70%
for this evaluation method, which is lower than ideal. While
adding more data from more subjects will help improve the
system, from the confusion matrix in Figure 7 (Right), we
can see that some our system confuses some self-harming
activities with others - for instance cutting with drinking,
injecting with right hand with injecting with left hand. It also
confuses some non self-harming activities with other non self-
harming activities - like for example standing with sitting. This
is because, when evaluated across users, the subtle differences

in performing self-harming activities confuse the system more
than expected. But when we see other activities like running,
walking, lying down they have more similar pattern from one
subject to another. That is the reason for the overall relatively
lower performance in this stricter evaluation strategy.

A Note on Binary Classification: We agree that for a
system like ours, and in the relatively sensitive (psychiatric)
settings where they are intended for, false negatives and false
positives are important parameters. High false positives in
detecting self-harming activities will burden staff, and false
negatives are more dangerous for patients. To address this
fact, we present results of our framework, where the problem
is not fine-grained activity classification, but rather a binary
one of detecting if an activity performed in self-harming or
not. This problem, which we discussed with domain experts
is very important in psychiatric facilities, since accurately
detecting that a self-harming activity is being attempted by
an inpatient may itself enough to trigger an urgent response
from the healthcare staff to save the patient in most cases,
and the need for actually determining the fine-grained activity
(while also important) may be secondary. We present results
for the binary classification problem in Figure 8, where the
accuracy of detection is excellent - in fact it is 95% even for
the leave-one-out stricter evaluation strategy, which is very en-
couraging. Building upon this result, and further understanding
of domain specific challenges for superior activity recognition
in psyciatric facilities is part of on-going work.

Discussions on Energy Efficiency and Latency: Energy
evaluation is very crucial for Watch-Dog system due to its
nature of running continuously 24 × 7. We conducted our
evaluation on a system with Intel Core i7-5600 processor
having clock frequency of 2.60 GHz. We ran STA-LTA and
RF independently for half an hour each to test CPU stress
by keeping other settings intact. For executing the STA-LTA
module, the CPU usage was always under 2% with average
below 1% whereas the peak for executing Random Forest with
the Continuity Index algorithm during activity classification
was under 10% with average below 5%. The average delay
incurred while executing our algorithms from start to finish
for one window of data was around 500ms-1.5 seconds, which
demonstrates the speed of our proposed system. Note that
on an average, the STA/ LTA module takes about 300ms
to make a decision, while the RF algorithm take about a
second to predict the class on an input window. These numbers
are quite reasonable, hence enabling the practicality of our
contributions. While the execution of our algorithms in this
paper was done offline, we are currently designing a framework
to enable the system operate in real-time. Also, implementing
all algorithms in the form of an executable smartphone app,
and evaluating its overhead is part of on-going work.

V. CONCLUSION

In this paper, we have presented Watch-Dog, a system to
detect self-harming activities with applications in psychiatric
hospital facilities. Watch-Dog comprises of wrist worn ac-
celerometers, algorithms to detect active or dormant state of
a subject, and fine grained classification algorithms to detect
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Figure 6. Accuracy matrix evaluated on aggregated data from both hands

Figure 7. Confusion matrix for evaluation by Same user 10-fold cross-validation method (left), Cross user 10-fold cross-validation method (middle), Cross user
Leave-one-out cross-validation method (right)

Figure 8. Accuracy for binary classification of Self-harming vs non Self-
harming activities

self-harming activities. We demonstrated the performance of
our system from several metrics and also with multiple evalu-
ation strategies. To the best of our knowledge, ours is the first
work that addresses a problem related to activity recognition
with core applications to aid inpatients in psychiatric hospi-
tals. Considering this, we also highlighted important practical
perspectives of our Watch-Dog system.
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