svlLoad: An Automated Test-Driven Architecture for
Load Testing in Cloud Systems

Jannatun Noor*, Md. Golam Hossain’, Muhammad Ahad Alam*, Ashraf Uddin$,
Sriram Chellappan¥, A. B. M. Alim Al Islam!

*iHDepartrnent of CSE, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
t81Pvision Canada Inc., Dhaka, Bangladesh, ﬂDepartment of CSE, University of South Florida, Tampa, USA
*mucse066 @yahoo.com, {nghhimu, §raselashraf21}@grnail.com, i1005118.rnaua@ugrad.cse.buet.ac.bd
Ysrirame @usf.edu, I alim_razi@cse.buet.ac.bd

Abstract—Nowadays, Internet-based technologies possess im-
mense processing power, capacity, flexibility, and are gradually
moving towards a service-oriented functionality in order to build
new distributed storage systems in the cloud. Several distributed
systems are currently running in different geographically located
data centers for successful deployment of modern web and social
services such as Facebook, Twitter, ringlD, etc. Both cache and
backend servers in such distributed systems must be functional
and reliable for incoming workloads by means of efficient allo-
cation of capacity along with proper configuration and tuning
of multiple system resources. To address these challenges, in this
paper, we propose a test-driven automated architecture for load
testing, named as ‘svLoad’ to compare the performance of cache
and backend servers. Here, we designed test cases considering
diversified real scenarios such as different protocol types, same
or different URLSs, with or without load, cache hit or miss, etc.
using tools namely JMeter, Ansible, and some custom utility bash
scripts. To validate the efficacy of our proposed methodology, we
conduct a set of experiments by running these test cases over
a real private cloud development setup using two open source
projects - Varnish as the cache server and OpenStack Swift as
the backend server. Our focus is also to find out bottlenecks of
Varnish and Swift by executing load requests, and then tune the
system based on our load test analysis. After successfully tuning
the Swift, Varnish, and network system, based on our test analysis,
we were able to improve the response time by up to 80%.

Keywords—Load Testing, Cloud, Test Case Metrics, Response
Time, System and Network Tuning

I. INTRODUCTION

In this era of connected devices, the demand of storage
systems are increasing exponentially [1]. Using various open-
source projects [1], [2], several distributed private cloud stor-
age systems are now emerging [3], [4]. At the same time,
clients are increasingly demanding faster and easier access to
data from these systems. In addition, system designers need
to test the behavior of these distributed architectures under
massive operational loads to designing architectures properly
and flawlessly. Furthermore, service providers use cache(s)
in front of backend servers for retrieving data faster from
distributed private cloud systems. Hence, information about
the time elapsed for retrieving data from cache or backend in
different test scenarios is necessary to design a reliable system.
Analyzing that information, service providers can find out
numbers and appropriate locations of the cache and backend
servers for achieving the best outcome. Apart from these, load

testing is also needed to tune the parameters of the software,
hardware, and network used in the system.

As of today, private and public cloud service providers
design their own distributed storage systems using several
data centers. Choosing best locations for deploying cache and
backend cloud servers in data centers is one of the challenging
task for most service providers. Here, time delays in object
uploading and downloading are directly related to how the
cache and backend servers are distributed. Furthermore, for
successful deployment of distributed architectures including
caches and clouds in production environments, proper load
testing is mandatory. As such, several existing research stud-
ies focus on load testing tools and architectures based on
performance and functional testing criteria. The study in [5]
proposes an empirical testing by monitoring user experience
and system health in a feedback loop between traffic shifts.
Other studies [6]-[8] propose automated approaches to validate
whether a performance test resembles the field workload or not.
Unfortunately, these studies propose and analyze only real-time
test cases without focusing on network and software tuning
using the outcomes of the test analysis.

Furthermore, recent studies do not focus on finding a
general load testing architecture for testing distributed systems
that combine both cache and backend servers. Hence, in this
paper, by means of a rigorous study we propose a load test
architecture ‘svLoad’ that facilitates the process of finding out
the best values of parameters based on real scenarios. We
also locate the bottlenecks of OpenStack Swift and Varnish
cache servers when they are operating with extensive load.
In our study, we offer extensive load requests from some
predefined clients based on our proposed test cases. Hence,
the server will be busy on handling the requests. At the same
time, we send concurrent download requests using bash scripts
and observe percentage of success rates among the requests,
and how much time they need for ending up with successful
responses. Besides, we identify resource utilization bottlenecks
in both system and network performances, and tune the system
and networks parameters accordingly, and analyze the system
behavior through subsequent load tests.

Based on our study, we make the following set of specific
contributions in this paper:

e We propose 20 different test cases based on diversified
real scenario covering different protocol types (HTTP

978-1-5386-4727-1/18/$31.00 ©2018 IEEE

or HTTPS), URL types (same or different URLs) ,
load types (with or without loads), and server types
(backend, cache) for performing load test on cloud
systems using several tools - JMeter [9], Ansible [10],
and our custom bash scripts.

e We perform continuous rigorous load testing on two
open source cloud systems namely Varnish [2] and
Swift [1], and find out bottlenecks in the system and
network that are worthy of tuning.

e Subsequently, we perform parameter tuning as per our
findings of load testing. Here, first we come up with a
comparison of response times for downloading files
from cache and backend servers for each test case
through rigorous experimentation. Then, we improve
the response times and success rates of concurrent
requests up to 80% and 90% respectively through our
tuning in the Swift, Varnish, and network systems.

II. LITERATURE SURVEY

The main goal of load testing is to identify the upper limit
of systems in terms of performance of the database, hardware,
network, etc. Hence, realistic test case based architectures
for distributed cloud storage system is critical. Also, while,
functional tests may ensure the general performance of a
cloud, load tests ensure system reliablity and fault tolerance at
even very demanding load requests. Load tests give developers
confidence that the cloud is well sized. Hence, the importance
of realistic and generalized load tests for cache and backend,
today.

Furthermore, load tests for open source caches like Varnish
[2], and cloud systems like OpenStack Swift [1] are needed for
tuning system parameters for vendors who merge these two
components for building large distributed cloud architectures.
Recently, several works have appeared on load test tools, cloud
evaluation criteria based on load test, performance testing of
web applications, workload optimization, continuous valida-
tion, etc. in this realm. Here, we present a short summary
of these works to movitate our new architecture ‘svLoad’ for
testing load capabilities in cache and backend cloud servers.

A comparative performance study [11] among different
testing tools shows Webload is better in terms of assessing
response time and throughput, compared to tools like Neoload,
LoadImpact, Loadster and LoadUI. The study in [12] presented
important factors in cloud computing performance, and ana-
lyzed and evaluated cloud performance in various scenarios
based on criteria, characteristics, and simulation. The study
in [6] used the Load Runner testing tool to capture end-user
business processes and created automated performance testing
virtual scripts to organize, manage, and monitor load testing
through running virtual users. Another study in [5] analyzed
the behavior of individual systems and groups of systems to
identify resource utilization bottlenecks to ensure Facebook’s
allocated capacity for servicing download requests via tuning.

In addition, studies like [13], [14] analyze system
performance degradation or problems handling required

1)Send and install jmeter
2)send and install jdk

3)Send bash scripts and run
4)Send Testcases and run
5)Create result storage

{J

Send requests as
Client 1 definedin
testcases and bash

JMerge Results cripts.

2)Make Reports
3)Analyze Results

LN

=3
T
a

Maintenance pe

L Nadn

Backend/Cache server

=4
&
E

*Send
results.

. Denotes instructions applicable for this
* Denotes applicable for all clients

i

-$ Client 8

Fig. 1. Architectural overview of our proposed load test model

system throughput. Studies in [15]-[18] presented Ilate-
cycle measurement-based and model-based approaches.
Measurement-based approaches apply testing, diagnosis
and tuning late in the development cycle. The study in [7]
presented that performance analysts must continually validate
whether their tests are reflective of the field or not. Such
validation may be performed by comparing execution logs
from the test and the field.

After going through all these studies, we can say that these
studies on load tests address some real time test cases, and
do focus on load test based on automated framework, but
they did not cover the general load test scenarios based on
real metrics. Furthermore, these studies barely concentrated
on network and software tuning along with load tests to make
the system best suited while using open source projects such
as Swift, Varnish, etc. To the best of our knowledge, load test
architectures that vary real metrics such as network protocol,
URL type, load amount, and server type using JMeter, Ansible,
and use case centric bash scripts as load test aids for load
testing in distributed storage system are yet to be accomplished.
This motivates our paper.

III. PROPOSED METHODOLOGY

In this paper, we propose a general load test architecture
for distributed storage system. Fig. 1 presents the architectural
overview of our proposed load test model. Our proposed op-
erational methodology over this architecture comprises several
key steps, which we present in the following subsections.

A. Load Test Planning

The main technique for measuring performance of servers
is to give extensive concurrent requests to respective servers.
For this, we need to run the load tests in regular basis as the
results vary with software and system variable factors such

TABLE 1. TEST CASE SCENARIOS FOR DIFFERENT METRICS

Load test metrics

as network bandwidth, CPU, memory usage, etc. Hence, we
focus on automating the whole process with minimal effort.
We give importance on several necessary questions as follows:

1) Which tools should be used for load testing purpose?

2) How many machines should be used?

3) What would be the required machine configurations?

4) How to automate the whole process?

5) What would be the most important metrics for designing
the test cases?

6) What components of the hardware, software, and network
systems would be the limiting factors of the performance?

In recent times, there are several tools for load testing with
various use cases. Among them, finding the appropriate tools
for serving vendors purposefully is tough. Besides, designing
the test bed using available machines, picking the highly
configured machines, designing test case scenarios based on
real findings are most challenging. Furthermore, for getting
better and optimized performance from distributed systems, de-
velopers need to find out the hardware, software, and network
system components which limit the performance. However,
there are many open source software for testing functional
behavior and performance. We choose Apache JMeter [9] as
a testing tool and Ansible as IT automation engine because as
they are simple, powerful and cross platform supportive. We
use 10 client machines for giving concurrent loads.

B. Creating Test Scenarios

Our strategy is to make servers busy with highest concur-
rent loads. In the meantime, we send requests to download a
specific file concurrently using curl request [19] as much as
possible during heavy loads and save the data output metrics
for further analysis. To compare the performances between
conditions with and without load, we send request to download

Test Protocol URL Load Server L T 1

case Diffe- | With . Back Cache

i | W wrres] same| DU [UL win | KL SRS e]) [ma]

TCO | X X X X

TC1 X X X X ‘ HTTP H HTTPS ‘ | Same ‘ |Diffcrcnt ‘ ‘ Without | ‘ With ‘ [Backend ‘ ‘ Cuche‘

TC2 | X X X X

TC3 | X X X X .
o= - < < [mit |
TG | X X X X Fig. 2. Test case hierarchy of proposed load test metrics

TC6 | X X X X

TC7 X X X X 400 requests concurrently while load is active -

TC8 X X X X p—

TC9 X X < < M Single request for determining metrics |um— €TV ¢"

TC10| X X X X - Response metrics for single request =

TC11| X X X X

TCI2 X X X X Fig. 3. Architecture of svLoad for single client

TCI13 X X X X)])

TC14 X X X X a specific file repeatedly as much as possible without load.
;82 i § < X X < Recently, maximum systems support HTTPS along with HTTP
T < < e < requests for enhancing the secgrlty. A 51mplei overhead arises
TCIS X X X X related to HTTPS requests, as it takes more time to download
TC19 X X X X HTTPS type URL for resolving SSL/TLS keys.

TC20 X X X X

TC21 X X X X Furthermore, concurrent requests may contain same URL
;g;g ; § X < ; or different URL which can also affect performances. Hence,

request protocol type and URL type are two necessary metrics
to design test case scenarios. As we have two type of servers,
cache and backend cloud server, the server type is also a
variable metric. Cache hits and misses are other obvious
metrics to design test case scenarios for cache servers. Since in
case of a cache miss, it takes more time to deliver a response
than in the case of a cache hit. To summarize, we state that
server type, protocol type, URL type, with or without load
conditions, cache hits and misses are our metrics for designing
test case scenarios. We propose several test case scenarios
varying those parameter metrics such as:

1) Protocol: Request protocol types are of two types i.e.
HTTP and HTTPS request protocol.

2) URL: Test cases vary according to request URL (Uni-
form resource locater). Hence, performance of cache and
backend servers depend on the concurrent hits of same or
different URL.

3) Server: Backend and cache servers are two parameter
metrics for designing the test cases. For cache server, two other
important metrics are cache hit and miss based on different
URL.

4) Load: For analyzing the system’s functionality properly,
developers should find out how the system will behave with or
without load conditions. Hence, we choose them as important
metrics for designing the test case scenarios.

From the combination of these parameters, we design a
total of 24 test case scenarios i.e. TCO, TC1, TC2, up to TC23.
Table I and Fig. 2 presents the test case scenarios. Here, TC4,
TC5, TC16, and TC17 are invalid test cases as same URL
cache miss can not be possible. Hence, we run load tests for
each of the other 20 test cases.

C. Creating and Disseminating Scripts

We design several shell scripts for determining some met-
rics e.g. download time, connection time, HTTPS resolve time,
etc. We run the scripts to hit URL either in backend or cache,

depending on test cases. We also run JMeter [9] in every
machine independently. Hence, we have machine independent
data for further processing. Furthermore, we design JMeter
scripts for all 20 test cases and a bash script to send a
specific requests multiple times for measuring performances.
We manage the whole task from one management machine
using Ansible [10] to install required software, transfer scripts
to all machines and run test cases for specified durations.

After running test cases, results are saved to a specific
folder in each machine. They are then moved to a management
node to merge them for analysis, and converted to a central
excel file. The whole task is completed from management node
using minimal commands. Since we also need to extract all
URL information of user accounts from backend server for
concurrent get requests, we design the following script files:

1) UrlExtractScript: Scripts used to extract all URL from
backend server. These script were run from management node.

2) JMeterScript: JMeter script for all test cases. This script
was run individually from all test client machines.

3) ResponseMetricsScript: This script is used to collect
data variables from each curl requests after a complete transfer
of requests. This script extracts some predefined data metrics
from every URL request and averages the data results. We
collect several necessary data metrics among the responses
from curl requests. Besides, we find out that these data
metrics are important for analyzing system behavior for further
improvement. Here, we summarize the critical data variable
metrics from curl response [19]:

Size_download: The total amount of bytes that are down-
loaded. Size_header: The total amount of bytes of the down-
loaded headers. Size_request: The total amount of bytes that
are sent in the HTTP request. Speed_download: The average
download speed that curl measured for the complete download.
Time_appconnect: The time, in seconds, needed from the start
until the SSL/SSH/etc connect/handshake to the remote host
is completed. Time_connect: The time, in seconds, it takes
from the start until the TCP connect to the remote host (or
proxy) is completed. Time_namelookup: The time, in seconds,
it takes from the start until the name resolving is completed.
Time_pretransfer: The time, in seconds, it takes from the start
until the file transfer is just about to begin. Time_redirect: The
time, in seconds, it takes for all redirection steps including
name lookup, connect, pre-transfer and transfer before the final
transaction is started. 7Time_starttransfer: The time, in seconds,
it takes from the start until the first byte is just about to be
transferred. This includes time_pretransfer and also the time
the server needs to calculate the result. Time_total: The total
time, in seconds, that the full operation lasted.

4) DataAnalysisScript: This script moves all files to central
management node and generates an excel file from response
metrics.

Furthermore, in a distributed denial-of-service (DDoS) at-
tack, multiple compromised computer systems attack a server,
website or other network resource. In our proposed methodol-
ogy, our target is also to flood requests in cache or backend
server using proposed test cases and observe miss rate, CPU,
and memory usages. From statistics of these usages, we can

TABLE II. GEOGRAPHIC LOCATION OF ALL MACHINES

[Machine name | Machine type [Geographic location |

Bal Backend Server Montreal, Canada
Cal Cache Server Montreal, Canada
Mal Management Server Montreal, Canada
A Client 1 Montreal, Canada
B Client 2 Montreal, Canada
C Client 3 Toronto, Canada
D Client 4 Montreal, Canada
E Client 5 Toronto, Canada
F Client 6 Toronto, Canada
G Client 7 New Jersey, USA
H Client 8 Montreal, Canada
1 Client 9 Toronto, Canada
J Client 10 Montreal, Canada
TABLE III. CONFIGURATION OF MACHINES USED IN LOAD TEST
. ‘ Backend ‘ Cache ‘ Managemen‘t Client ‘
Informations H .
server server machine machine
Architecture x86_64 x86_64 x86_64 x86_64
CPU(s) 16 48 16 1
On-line CPU(s) list 0-15 0-47 0-15 0
Thread(s) per core 2 1 2 1
Core(s) per socket 4 12 4 1
Socket(s) 2 4 2 1
NUMA node(s) 2 8 2 1
CPU family 6 16 6 6
Intel(R) Intel(R) QEMU
Xeon®) | [ﬁi\fi (m| Xeon®) | Virual
Model name CPU Processor CPU CPU
E5620 617‘4 E5620 version
@2.40GHz @2.40GHz 153
CPU MHz 2394.141 2199.967 2394.103 2393.998
Virtualization type VT-x AMD-V VT-x full
Storage

check stability of our system under DDoS attacks as well.

In summary, JMeter allows maximum 400 to 500 concur-
rent requests from a single machine. We ran around concurrent
4000 load requests using JMeter from all client machines to the
respective cache or backend servers. Besides, we sent a single
get request sequentially using our proposed script algorithm for
obtaining download related necessary information under this
huge load test (in Fig. 3). We also transfer and collect files and
automate the architecture using Ansible tool. This test based
architecture using tools JMeter, Ansible and proposed scripts
for load testing is not proposed yet in any literature.

IV. EXPERIMENTAL EVALUATION

We evaluate performance of our proposed load test ar-
chitecture through a real implementation. We also present a
comparison of performance between Varnish cache and Swift
backend server after tuning the network system, Varnish cache,
and Swift backend parameters in real scenarios. Before this,
we first elaborate our experimental settings.

A. Experimental Settings

We use state-of-the-art configured machines i.e. one Swift
cluster, one Varnish cache, one management machine, and ten
client machines which are distributed to three different geo-
graphical locations i.e., Montreal and Toronto in Canada, and
New Jersey in USA (Table II). Table III presents the hardware
and software related informations of machines used for load

Management
Machine

T
'
'
1 Account +
'
'
d
'
'

(Proxy
Bal)

Receive response

i
'
i H
! i
: :
R '
E Swift / Container i
1 | Backend !
' il
L 1
: :
! 1
' il
' '
H
'

Toron l:): :

S
-

Montreal

S
g

S
o

-------- Clients

Clients

Fig. 4. Experimental settings of test bed

TABLE IV. VARNISH CACHE SERVER TUNING PARAMETERS
Intermediate Final
Parameters Default tuned tuned
values
values values
Thread_pool_minimum 5 5 400
Thread_pool_maximum 500 1000 5000
Thread_queue_limit 20 50 100
Workspace_thread 2k 4k 8k
Workspace_session 4k 0.5k 0.5k
Pipe_timeout 60 sec 15 sec 30 sec
Lru_interval 2 sec 10 sec 20 sec
Listen_depth 1024 2048 4096

testing. The average upload speeds of machines located in
Montreal, Toronto, and New Jersey are 5.66 Mbps, 8.64 Mbps,
and 207.9 Mbps respectively. Average download speeds are
14.35 Mbps, 3.98 Mbps, and 9.33 Mbps respectively.

Varnish cache server has 16 Gb memory, 64 Gb hard disk
and six 1 Gb network interface cards. We install one proxy,
one account-container, and one object server for Swift cluster.
The memory and disk configurations of Swift servers are as
follows: one proxy having 32 Gb memory and 1.2 Tb disk, one
account-container having 32 Gb memory and 3 disks each of
400 Gb, and one object having 32 Gb memory and 3 disks each
of 400 Gb. Each server had six 1 Gb network interface cards.
Figure 4 presents the experimental setups of our testbeds. Here,
we focus on proxy server as backend server as all requests hit
through proxy server for further processing. We create 10, 000
accounts and 10,000 containers in Swift cluster and upload
around 55,000 image files in those accounts for concurrent
requests. We use 10 clients to provide concurrent loads on
server, and from each client, 400 concurrent requests are sent
for each test case.

B. Experimental Results

In this section, first, we present experimental results. Next,
we delineate the parameters for system and network tuning.

Running the Scenario: We run the whole testing process 5
to 6 times with 2 hours duration for each test cases. We needed
around 15 to 20 days for collecting the results and tuning the
system. We also collect some predefined data response metrics

TABLE V. SWIFT BACKEND SERVER TUNING PARAMETERS

Intermediate .
Parameters Variables Default tuned Final tuned
values values
values
M ached MAXCONN 1024 2048 4096
emeached I CACHESIZE 64K 1024k 4096k
File fs.file-max 8192 32768 2097192
Descriptor
Ulimit Hard limit 4096 100000 400000
Soft limit 1024 4096 100000
TABLE VI SYSTEM NETWORK TUNING PARAMETERS
Default Intermediate Final tuned
Parameters tuned
values values
values
net.core.wmem_default 212992 131072 262144
net.core.wmem_max 212992 1048576 4194304
net.core.rmem_default 212992 131072 262144
net.core.rmem_max 212992 1048576 4194304

from curl responses i.e., HTTP connection time, dns lookup
time, download speed, app connection time, connection time,
pre-transfer, start transfer, total response time, etc. to measure
performances for each test case [19].

Monitoring the Scenario: We monitor and collect the
output of CPU and memory usage, disk utilization, process
queues, JVM out of memory exceptions, etc. while running
test cases in corresponding server. We observed that 70% to
80% memory is used for all 48 cores in Varnish cache due to
leveraging tasks to OS. After running 1% round of load test, we
observe that some parameters of Swift, Varnish, and machine’s
network system must be tuned for better performance. We
find out several bottlenecks related to these software through
continuous load testing.

Next, we present necessary components and proper param-
eter values related to system and network tuning from analysis
of data metrics through rigorous load testing. We benchmark
system behavior through changing default values gradually
identifying system metrics. Here, we only present best tuning
values due to lack of space.

Swift Tuning: We locate three bottlenecks related to Swift
tuning. When maximum load is given to the backend Swift
proxy server, the memory cache (memcached) fails to handle
large amount of requests, and after sometime, unsuccessful
responses are generated. So, we change the memcache.conf
file and increase the size of memory, cache and maximum
number of allowed connection, and executed the load tests
again. We also find out some parameters related to memcache,
file descriptor, and ulimit that have great impact on load tests
by changing them repeatedly. Table V presents the default and
tuned values for Swift.

Varnish Tuning: We tune the necessary parameters
of Varnish cache i.e. Thread_pool_minimum,
Thread_pool_maximum, Thread_queue_limit,
Workspace_thread, Workspace_session, Pipe_timeout,
Lru_interval and Listen_depth, keeping other values default.
Table IV presents default and tuned values for Varnish cache.

Network system tuning: Kernel buffer parameters
i.e. net.core.wmem_default, net.core.rmem_default,
net.core.rmem_max and net.core.wmem_max show the

TABLE VII. SUCCESS AND MISS RATES (%) OF REQUESTS
] Before Tuning [After Tuning
Test case id | Success] Miss | Success] Miss |
TC13 57% 43% 100% 0%
TCI15 99% 1% 100% 0%
TC19 51% 49% 99% 1%
TC21 99% 1% 100% 0%
TC23 99% 1% 100% 0%
TABLE VIII. PERCENTAGE OF AVERAGE RESPONSE TIME

IMPROVEMENT FOR ALL CLIENTS

. Response time (s
Test case id Befol;e Af(te)r Improvement
tuning tuning

TCO 0.10 0.02 79%
TC1 0.14 0.41 -66%
TC2 0.07 0.03 57%
TC3 0.93 1.13 -18%
TC6 0.10 0.02 81%
TC7 1.20 0.47 60%
TC8 0.08 0.02 69%
TC9 0.71 0.42 41%
TC10 0.08 0.02 69%
TCl11 0.78 0.82 -5%
TCI12 0.27 0.24 10%
TCI13 0.27 1.83 -85%
TCl14 0.27 0.25 6%

TCI15 1.56 2.14 -27%
TC18 0.27 0.24 10%
TC19 2.50 1.66 34%
TC20 0.28 0.25 10%
TC21 1.79 1.18 34%
TC22 0.28 0.25 12%
TC23 1.59 1.67 -5%

OMemory wCPU o

OMemory ®CPU

20

= X s

R, &

& b

=

g g 10

S 3 =

20 5

10

0 0
J0B8B98A349R8RHAN B S 85 HEY
EFe - bbdpoEgb 8 E e e 2 8gd oo

Test case Test case

(a) Cache server (b) Backend server

Fig. 5. Average memory and CPU usage of cache and backend server for 20
test cases

default and maximum write (receiving) and read (sending)
buffer size allocated to any type of connection. The default
values are low since the allocated space is taken from the
RAM. Increasing this improves the performance for systems
running servers. Table VI presents the defaults and tuned
values for network system.

After 1% round of load test, we observe that for TCO, TC1,
TC2, TC3, TC6, TC7, TC8, TC9, TC10, TC11, TC12, TC14,
TC18, TC20, and TC22 success response is 100%. Five test
cases have highest miss rate due to HTTPS requests and lack
of tuning. Hence, we tune the system and perform load test
multiple times. After tuning, success rates for all test cases
improved to 99%. We present the success and miss rates for
TC13, TC15, TC19, TC21, and TC23 in Table VII.

TABLE IX. IMPROVEMENT OF CACHE SERVER RESPONSE TIMES

OVER BACKEND SERVER

Backend Test Cache Test Improvement

case id case id (%)
TCO TC2 29%
TCl TC3 -85%
TC8 23%

TC6 TCT0 5%
TCY 40%

e TCI1 34%
TCI12 TC14 0%
TC13 TC15 -83%
TC20 -4%

TC18 TC22 -4%
TC21 29%

TC19 TC23 36%

TABLE X. COMPARISON OF HTTP REQUEST RESPONSE TIMES OVER

HTTPS REQUEST RESPONSE TIMES

HTTP Test case HTTPS Test Improvement

id case id on HTTP (%)
TCO TCI2 91%
TC1 TCI13 77%
TC2 TC14 87%
TC3 TCI15 47%
TC6 TCI18 91%
TC7 TCI19 71%
TC8 TC20 90%
TC9 TC21 64%
TC10 TC22 90%
TCI11 TC23 50%

Table VIII shows the %improvement of response time after
final tuning. In these test cases, miss rate is high hence total
response time is bit higher before tuning. Furthermore, after
tuning the system, miss rate is decreased hence lower the
response time. Figure 5 presents average memory and CPU
usage of cache and backend server. These usage are remain
almost same after the tuning.

C. Experimental Findings

In this section, we present the findings of tuning the system,
cache and backend, and comparing request times of HTTP and
HTTPS by analyzing the results.

Analyze test results: We analyze test cases for comparing
the average response time from all the clients for Varnish
cache and Swift backend server. This behavior remains same
after tuning the servers as response time ratio from cache and
backend servers varies depending on the test cases. Note that,
each client machine requests for downloading same URL once
when testing without load criterion, hence clients hit total 10
requests concurrently. Besides, each client machines requests
for downloading same or different URL for 400 times when
testing with load criterion, hence clients hit total 4000 requests
concurrently.

Furthermore, we present comparison of cache and backend
server response time in Table IX. In every machine, TC2’s
response time is 29% faster than TCO’s. The condition holds
upto 6-7 threads per machine. TC1’s response time is 85%
faster than TC3’s. The response time for cache is 5 to 6 times
higher than backends. TC6’s response time is 23% and 18%
slower than TC8’s and TC10’s. TC7’s response time is 40%
and 34% slower than TC9’s and TC11’s. TC12’s response

time is almost the same to TC14’s. TC13’s response time is
83% faster than TC15’s as the server takes some extra time to
translate a HTTPS request to HTTP request. TC18’s response
time is 4% faster than TC20’s and TC22’s as cache hit and
miss in without load condition. TC19’s response time is 29%
and 36% slower than TC21’s and TC23’s.

In addition, we present comparison of HTTP and HTTPS
requests response time in Table X. Here, HTTP type test cases
are up to 90% faster than HTTPS protocol type as more times
needed for resolving SSL/TLS keys. Besides, TCO, TC1, TC2,
TC3, TC6, TC7, TC8, TC9, TC10, and TC11 are 91%, 77%,
87%, 47%, 91%, 71%, 90%, 64%, 90%, 50% faster than TC12,
TC13, TC14, TC15, TC18, TC19, TC20, TC21, TC22, and
TC23 respectively. In summary, we conclude that for each test
case scenario in every machine, response time for cache is
lower than the backend except for the same URL requests.
Varnish restricts concurrent request at a time for same URL'’s.

V. CONCLUSION AND FUTURE WORK

Performing load testing, identifying system bottlenecks and
tuning them accordingly are not focused much in the literature
for cloud systems. Therefore, in this paper, we perform our
study on these aspects. Here, we investigate several load
testing considering diversified real scenarios and tuning system
parameters based on findings of load testing. Our tuning results
in substantial improvement in most cases. There is a plenty of
room to extend the study. We plan to explore in future that how
the system will behave for extensive PUT and POST requests,
as the proxy server has extra overhead related to processing
and I/O operations of such requests. Our future plan also aims
to use more clients and expand the cache and backend servers.

ACKNOWLEDGMENTS

This research was funded and supported by the ICT Divi-
sion, Government of Bangladesh and IPvision Canada Inc. This
work was also supported in part by the US National Science
foundations under grants IIS 1559588 and CBET 1743985.
Any opinions, thoughts and findings are those of the authors
and do not reflect views of the funding agency. The authors
would like to thank Hasan I. Akbar and Ruhul A. Sujon for
their help during the study.

REFERENCES

[1] J. Arnold and members of the SwiftStack team, OpenStack Swift.
O’Reilly, Copyright SwiftStack, Inc., ISBN 978-1-491-90082-6, 2015.

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]
(10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

“Varnish cache.” [Online]. Available: http://dx.doi.org/10.1090/S0894-
0347-96-00192-0. Accessed: Mar. 28, 2018.

J. Noor and A. B. M. A. A. Islam, “ibuck: Reliable and secured image
processing middleware for openstack swift,” in IEEE International
Conference on Networking, Systems and Security (NSysS), Dhaka,
Bangladesh, Jan. 2017.

J. Noor, H. I. Akbar, R. A. Sujon, and A. B. M. A. A. Islam, “Secure
processing-aware media storage (spms),” in 36th IEEE International
Performance Computing and Communications Conference (IPCCC),
San Diego, California, USA, Dec. 2017.

K. Veeraraghavan, J. Meza, D. Chou, W. Kim, S. Margulis, S. Michel-
son, R. Nishtala, D. Obenshain, D. Perelman, and Y. J. Song, “Kraken:
Leveraging live traffic tests to identify and resolve resource utilization
bottlenecks in large scale web services,” in 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI ’16), Nov. 2-4,
2016.

R. Khan and M. Amjad, “Performance testing (load) of web applications
based on test case management.” Perspectives in Science, vol. 8, pp.
355-357, Sep. 2016.

M. D. Syer, W. Shang, Z. M. Jiang, and A. E. Hassan, “Continuous
validation of performance test workloads.” Automated Software Engi-
neering, vol. 24, no. 1, pp. 189-231, Mar. 2017.

A. Avritzer, J. Kondek, D. Liu, and E. J. Weyuker, “Software perfor-
mance testing based on workload characterization,” in WOSP ’02, Rome,
Italy, Jul. 24-26, 2002.

“Apache jmeter,” [Online]. Available: http://jmeter.apache.org/. Ac-
cessed: 7 Jun. 2017.

“Ansible,” [Online]. Available: https://www.ansible.com/. Accessed: 7
Jun. 2017.

R. Bhatia and A. Ganpati, “In depth analysis of web performance testing
tools,” IRACST Engineering Science and Technology: An International
Journal (ESTILJ), ISSN: 2250-3498, vol. 6, no. 5, Sep.-Oct. 2016.

N. Khanghahi and R. Ravanmehr, “Cloud computing performance
evaluation: Issues and challenges,” International Journal on Cloud
Computing: Services and Architecture (IJCCSA), vol. 3, no. 5, Oct.
2013.

E. J. Weyuker and F. 1. Vokolos, “Experience with performance testing
of software systems: Issues, an approach, and case study,” IEEE
Transactions on Software Engineering, vol. 26, no. 12, Dec. 2000.

S. Anand, E. Burke, T. Y. Chen, J. Clark, M. B. Cohen, W. Grieskamp,
M. Harman, M. J. Harrold, P. McMinn, J. J. L. A. Bertolino, and H. Zhu,
“An orchestrated survey on automated software test case generations.”
The Journal of Systems and Software, 2013.

M. Woodside, G. Franks, and D. C. Petriu, “The future of software
performance engineering,” Future of Software Engineering(FOSE’07),
0-7695-2829-5/07, IEEE.

Compuware, “Applied performance management survey,” Sep.-Oct.
2006.

C. U. Smith, Performance Engineering of Software Systems.
Wesley, 1990.

C. Smith, Software Performance Engineering.
ware Engineering, Wiley, 2002.

“Curl.1 the man page,’ [Online]. Available:
https://curl.haxx.se/docs/manpage.html. Accessed: 7 Jun. 2017.

Addison

Encyclopedia of Soft-

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

