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Abstract

In this paper, we study the issue of sensor networks deployment using limited mobility sensors. By limited

mobility, we mean that the maximum distance that sensors are capable of moving to is limited. Given an initial

deployment of limited mobility sensors in a field clustered into multiple regions, our deployment problem is to

determine a movement plan for the sensors to minimize the variance in number of sensors among the regions, and

simultaneously minimize the sensor movements. Our methodology to solve this problem is to transfer the non-

linear variance/movement minimization problem into a linear optimization problem through appropriate weight

assignments to regions. In this methodology, the regions are assigned weights corresponding to the number of

sensors needed. During sensor movements across regions, larger weight regions are given higher priority compared

to smaller weight regions, while simultaneously ensuring minimum number of sensor movements. Following the

above methodology, we propose a set of algorithms to our deployment problem. Our first algorithm is the Optimal

Maximum Flow based (OMF) centralized algorithm. Here, the optimal movement plan for sensors is obtained based

on determining the minimum cost maximum weighted flow to the regions in the network. We then propose the

Simple Peak-Pit based distributed (SPP) algorithm that uses local requests and responses for sensor movements.

Using extensive simulations, we demonstrate the effectiveness of our algorithms from the perspective of variance

minimization, number of sensor movements and messaging overhead under different initial deployment scenarios.
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I. INTRODUCTION

Provisioning sensors with mobility is a topic that has received significant attention recently. The XYZ

sensor platform in [1], sensors in DARPA’s self-healing minefield program in [2], the Robomote platform

in [3] are recent instances of mobility enabled sensor models. Basically, the motivation behind this line of

activity is the significant advantages that today’s sensor networks will be able to leverage from mobility

in sensors. For instance, using mobility; sensors can move towards coverage holes to enhance quality

of initial deployment [4], [5], [6]; better routes for packets can be found [7]; data reliability can be

enhanced if sensors move closer to events [8] etc. However, despite the advantages that mobility offers to

sensor networks, there is one critical constraint on it that cannot be avoided. Sensors are severely energy

constrained, and available energy has to be shared for sensing, data processing, transmission etc. Since

mobility also consumes energy, it is very likely that there is a limit on the overall movement distance

capability of the sensors. This is especially true in environments when sensors have to work un-attended

after deployment, and where recharging sensors is not always feasible (e.g., hostile zones, battlefields etc.)

To validate our above claim on mobility limitations, we briefly discuss two recent mobile sensor

models implemented in practice. Lymberopoulos and Savvides in [1] have designed a motion-enabled

and power aware sensor node platform. A battery enabled miniature geared motor actuates sensor motion.

The maximum movement distance of sensors in this design is 165 meters. In another development, as

part of the self-healing minefield program, DARPA has designed a class of sensors with limited hop-by-

hop mobility to detect and repair breaches in battlefields [2]. Mobility here is powered by fuel-propeller

mechanism, and the sensors can make up to 100 hops. While the internal mobility semantics may be

different in both models, the fact is that the sensor’s maximum movement distance is limited.

In this paper, we address an important sensor networks deployment problem under mobility constraints

on sensors. The sensor network in our problem is a square field that has been clustered into multiple

regions. The deployment objective is for each region to have a certain number of sensors (denoted by k̄) that

is application decided. In this scenario, our problem statement is; Given a deployment of limited mobility

sensors in the network, the objective is to determine a sequence of sensor movements in order to minimize

the variance in the number of sensors from k̄ among all regions in the network, and simultaneously
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minimize the total number of sensor movements.

Motivation: Our deployment problem is representative in many sensor network applications. The

approach to cluster sensor networks into regions has been widely adopted in practice [9], [10], [11] and

[12], as clustering enhances scalability, improves routing and power efficiency, provides better support

to higher level functionality etc. The desired number of sensors (k̄) per region can be contingent on one

or more factors including sensing, fault tolerance, resilience to attacks, lifetime etc. For instance, due to

physical limitations on sensors and associated hardware, the sampling rate at which sensors can sense the

environment may be limited (e.g., 100 kHz for acoustic sensors [13], and 4200 Hz for magnetometers

[14]). Thus in applications where the environment needs to be sensed quite frequently, or at all times

of operation (e.g., intruder tracking, military surveillance etc.), multiple sensors per region have to be

deployed to meet sensing objectives. Secondly, there may be obstacles in the regions or external factors

(like heat, vibration etc.) that affect sensing ranges during network operation. Such sensing dynamics

can be compensated with multiple sensors per region. Furthermore, fault tolerance, resilience to attacks

improve with multiple sensors; lifetime can be prolonged using role rotation among multiple sensors

etc. Hence, multiple sensors per region provide many benefits to sensor networks. However, the desired k̄

sensors per region requirement may not be always satisfied. For example, if sensors are randomly deployed

(sprayed from a vehicle, airdropped etc.), the requirement is hard to satisfy. Even if at initial deployment

all regions have k̄ sensors, as time goes on, faults, failures, energy losses etc. can violate this requirement.

In such cases, the limited mobility sensors have to self-adjust their positions to correct such violations.

Recently, some works have appeared where sensor mobility is leveraged to enhance deployment [4],

[5], [6] and [15]. However, the key shortcoming in such works is that sensor mobility limitations are

not explicitly considered. Specifically, it is assumed that if a sensor wishes to move to a new location, it

can do so without any restriction in its movement distance. However, as discussed in the sensor mobility

instances above, this may not always be true. Under hard mobility constraints, existing works have limited

applicability. For instance, in the well known virtual force approach [4], [6] and [15], sensors exert virtual

forces among themselves. Two sensors repel (or attract) each other if they are too close (or too far

apart). By balancing virtual forces, sensors spread themselves in the field. However, under hard mobility
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constraints, two sensors may not be able to achieve force balance if the distance required to be traversed

is too large. Secondly, the virtual force approach results in several back and forth movements during force

balancing, which across many iterations will rapidly deplete sensor mobility capacity. For similar reasons,

other works on mobility assisted deployment also have limited applicability under hard sensor mobility

constraints (more discussions on the challenges of limited mobility appear in the next section). In this

paper, we address the issue of limited mobility sensor networks deployment.

Contributions: In this paper, we design a set of movement algorithms for our deployment problem

that can be executed by limited mobility sensors. Our contributions are:

A methodology for translating our non-linear optimization problem: Our first contribution is a weight-

based methodology that translates our non-linear variance objective into a linear one. We propose a weight

assignment rule for regions depending on k̄, so that when sensors move, larger weights regions are given

higher priority to balance sensor movements among all regions. We then define a new linear objective

function called Score that captures weighted sensor movements, and prove that maximizing the Score

minimizes the deployment Variance and vice versa. The number of sensor movements is minimized by

treating each movement as a cost, and minimizing overall costs during Score maximization.

The Optimal maximum flow based centralized algorithm: Our first algorithm is the Optimal Maximum

Flow based (OMF) centralized algorithm. Here, the sensor network at initial deployment is translated

into a graph (GV ). Vertices in GV represent regions, and are assigned appropriate weights based on the

above methodology. Edges represent movement ability between regions, and are assigned corresponding

capacities and costs. We first show how the minimum cost maximum weighted flow plan in GV maximizes

the Score with minimum cost. We then show how this flow plan can be translated as a sensor movement

plan that minimizes deployment Variance and sensor movements in the network. Note that the maximum

weighted flow problem is similar to the maximum flow problem except that each target (vertex) has a

weight, and the objective is to maximize the summation of the flow amount to each target multiplied with

the target weight. The maximum flow problem is its special case, where the weight of each target is one.

The Simple Peak-Pit based distributed algorithm: We then propose a local, light-weight and purely

distributed Simple Peak-Pit based (SPP) algorithm that is executed by sensors themselves. Regions needing
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sensors send local requests containing weights based on number of sensors needed. Surplus regions that

receive the requests will serve them in a descending order of weights, along with minimizing sensor

movements in serving them. As discussed subsequently, path feasibility (to guarantee unbroken chain of

movements) is ensured in our algorithms before sensors make real movements.

Theoretical analysis and Performance evaluations: We conduct a detailed theoretical analysis and

performance evaluations of our algorithms. We formally prove the optimality of our OMF algorithm

in minimizing variance and number of sensor movements, and derive its complexity. We then conduct

extensive simulations to evaluate the performance of our algorithms. For comprehensiveness, we also

simulate the well known Virtual Force algorithm [4]. In general the OMF algorithm (being optimal),

achieves best variance and sensor movement minimization. However, under certain scenarios (small k̄,

uniform initial deployment), performance of the SPP algorithm is close to the OMF algorithm. We also

study communication overhead in our algorithms. We observe that the overhead in the SPP algorithm

is generally lower. However, when initial deployment is highly concentrated, the overhead in the OMF

algorithm is quite close to the SPP algorithm, while being smaller in some cases. Finally, we observe that

all our algorithms have better performance than the virtual force algorithm, with less overhead. As pointed

before, this is due to many back and forth sensor movements in the virtual force algorithm resulting in

rapid expiration of sensor mobility capacity.

Our paper is organized as follows. In Section II, we formally define our deployment problem, and

detail the methodology of our proposed algorithms in Section III. In Section IV, we present our OMF

algorithm and prove its optimality. In Section V, we present our SPP algorithm and its features. We

present some discussions in Section VI, and performance evaluations in Section VII. Related work is

presented in Section VIII, and we conclude our paper in Section IX.

II. OUR SENSOR NETWORK DEPLOYMENT PROBLEM

A. Problem Definition

Our sensor network is a square field of size Q. It is clustered into 2-dimensional square regions, where

each region is of size R. The number of regions is denoted as S (S = (Q
R
)2). We denote the number of
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sensors in region i at time of initial deployment as ni. The deployment objective is for each region to

have a certain number of sensors, denoted by k̄. At the time of initial deployment, not all regions will

have k̄ sensors. The sensors deployed are limitedly mobile. If a sensor moves from one region to any of

its adjacent neighboring regions, we consider that as one hop made by the sensor. We denote H as the

maximum number of such hops a sensor is capable of. In this context, our problem statement is; Given

a sensor network with S regions each of size R, an initial deployment of N limited mobility sensors,

we want to determine a sequence of sensor movements so that 1) at the conclusion of movements, the

variance in the number of sensors from k̄ among all the regions in the network with less than k̄ sensors is

minimized, and 2) the overall number of hops of the limited mobility sensors is also minimized. Denoting

ki as the number of sensors in a region i at the conclusion of sensor movements, the variance V ar is,

V ar =
1

S

S
∑

i=1

(k̄ − min(ki, k̄))2. (1)

Denoting hi as the number of hops made by sensor i (where, hi ≤ H), and denoting N as the number

of sensors initially deployed, the overall number of sensors movement hops is,

M =
N

∑

i=1

hi. (2)

Our problem is to simultaneously minimize two objectives, namely V ar (a non-linear function) and M .

Problem Features: Our problem is general, since we place no restriction on k̄. If k̄ = 1, then the

requirement is one sensor per region. To enhance reliability, k̄ can be set larger than 1. Also, it is not

necessary that k̄ is same for all regions. In non-uniform environments, some regions may need more

sensors than others, meaning k̄ is different for different regions. The Variance definition still holds, except

that k̄ in equation (1) becomes k̄i for region i. Our problem is also not contingent on the number of

mobile sensors. It holds even when only a part of sensors in the network are mobile 1.

An important feature of our problem is that we do not minimize the variance in number of sensors

among all regions from k̄. We minimize it among only the regions that have less than k̄ sensors at final

1In the following, we discuss solutions for the basic problem first. Extensions to other problems are discussed later.
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deployment, which is captured by the term min(ki, k̄) in equation (1). In many cases, sensors are over-

deployed. When the deployment objective is only k̄ sensors per region, the nature of our problem will not

let extra sensors move, when the requirement of at least k̄ sensors among all regions has been met. This

is to preserve the mobility of sensors in such cases. Eventually, when some sensors fail (due to faults,

power losses etc), the deficiency in k̄ requirement can be met by the spare sensors whose limited mobility

was initially preserved, effectively complementing the motivations for over-deployment.

Assumptions: We make the following assumptions. We assume that min{ Ssen√
2

, Str√
5
} ≥ R, where R is

the region size, and Ssen and Str are a sensor’s sensing and transmission ranges respectively. If each

region has k̄ sensors at final deployment, then Ssen√
2

≥ R means every point in each region is covered

by k̄ sensors, and Str√
5
≥ R means a sensor in any region can communicate with k̄ sensors in each of

its four adjacent regions. We also assume sensors are homogeneous in sensing and transmission ranges,

and they are unaffected during network operation as in [4], [5], [6], [15]. We assume a free space radio

propagation model, where there exists a clear line of sight path between two communicating sensors in

the network. We assume that each sensor knows which region it resides in. To do so, sensors can be

provisioned with GPS devices, or methods in [16] can be used, where sensor location are determined

using sensors themselves as landmarks. For simplicity, we first assume that the regions to which a sensor

can move to, are regions in its adjacent left, right, top and bottom directions only (denoted as neighboring

regions). After discussing this case, the general case where a sensor can move in any arbitrary direction

is discussed next. Also, we first assume that the network is not partitioned. The issue of partitions is

discussed later.

B. An Example of our Problem and Challenges

We illustrate our problem further with an example. Consider an instance of initial deployment in the

network, shown in Figure 1 (a). The number inside circles denotes the number of sensors in that region.

The number in the upper left corner denotes the corresponding region ID. Let maximum number of hops

H = 1, and k̄ = 2. There are 32 sensors initially deployed. At time of initial deployment, regions 2, 3,

9, 10, 11, 14, 15 have less than k̄ sensors. An intuitive way to minimize the variance from k̄ is to let
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neighboring regions locally synchronize for movement. Using local information exchanges, it is likely

that the sensors move according to the sequence shown in Figure 1 (a). The arrows indicate direction of

movement, and the numbers beside arrows indicate number of sensors moved from that region.

(b)(a)
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Fig. 1. An instance of initial deployment and an intuitive movement plan to minimize variance (a), and the resulting deployment (b).

Let us denote regions that have at least one sensor at initial deployment as source regions (or sources),

and denote regions that do not have any sensor at initial deployment as holes. Region 4 is a source

and moves sensors to region 3, since region 3 is close to it, and needs sensors. With local information

exchange, region 7 will not move sensors to region 3, rather it will move sensors to region 11, after

synchronizing with regions 4 and 6. Similarly, since region 13 has four sensors, and since regions 9 and

14 do not have any sensor, a sensor moves from region 13 to fill regions 9 and 14. But since region 5

has two sensors, and it receives two sensors from region 1, two sensors move from region 5 to region 9.

Other regions also follow the same intuition and synchronization to move sensors. The final deployment is

shown in Figure 1 (b). Note that regions 14, 15 and 16 have only one sensor. In fact with this movement

plan, minimum variance (equal to 0) cannot be achieved. Consider region 14. The only way region 14 can

get a sensor is from regions 13, 10 or 15. However, regions 10 and 15 initially did not have any sensor.

Thus, no sensor can move to region 14 via regions 10 and 15 since H = 1. Similarly, no sensor can move

to region 13 via region 9. Besides, region 13 has no extra sensor now. Consequently all paths to region

14 are blocked in this movement plan. A pertinent question to raise at this point is; whether there exists

an optimal movement plan that can make the variance 0. If so, what is the plan, or more importantly,

what are the challenges need to be addressed in this movement plan. We discuss both issues below.

There are two key challenges to our problem. The first challenge is due to our objective of simultaneously

minimizing variance and the number of sensor movement hops. Consider the movement plan in Figure
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Fig. 2. An instance of initial deployment and an optimal movement plan (a), and the resulting deployment (b).

1 (a). Region 6 that has six sensors in it, wishes to fill regions 2 and 10. The intuition is because both

regions are empty and region 6 is close to them. But this plan, that attempts to minimize hops, cannot

minimize variance. There is thus a conflict that may be present in minimizing variance, and the number

of hops using local information. For optimum deployment, region 6 should move sensors to regions 10

and 15 (in Figure 2 (a)). The path to region 15 may appear long, but it is the one that makes the global

variance 0, shown in Figures 2 (a) and (b).

The second challenge is; due to limited mobility, if a sensor in one region wishes to move to some far

away region, then depending on H , there must be mobile sensors in one or more intermediate regions

(like a chain) in the corresponding path (if H = 1, then all intermediate regions in the path need to have

a mobile sensor). If there is no mobile sensor after a sensor has traveled H hops to a particular region,

no sensor can move beyond that region, resulting in blocked paths. For instance in Figure 1 (b), although

region 1 still has extra mobile sensors, all paths from region 1 to region 14 are blocked. The challenge is

in determining such optimal chains for sensor movements. Such a path may traverse many intermediate

regions as shown in Figure 2 (a), where the path from region 6 to region 15 traverses five regions, and

a chain of movements is possible in each intermediate region. Determining such a chain of movements

for optimal variance and sensor movement hops is not trivial. If sensors make purely local decisions,

then optimality cannot be achieved. Also, it is preferable for sensors to make a movement plan (which

sensors should move, and where) prior to their movement, in order to avoid erroneous movements, and

compensating such errors later on.
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III. METHODOLOGY OF OUR ALGORITHMS

Our sensor network deployment problem has two objectives; 1) minimizing variance and 2) minimizing

overall number of movement hops of the limited mobility sensors. In the following, we discuss our

methodology to achieve both objectives. Consider any two regions i and j in a sensor network. Let the

number of sensors in region i be less than that of region j, both of which are less than k̄. If one sensor

is available to move to one of these two regions, the contribution to global variance minimization in the

network is larger if the sensor moves to region i than if it moves to region j. Our methodology to capture

this notion of priority is by weight assignment to regions. When sensors move, larger weight regions are

given priority compared to smaller weight regions with the objective of global variance minimization. In

the above example region i will have larger weight than region j to prioritize sensor movements to region

i. We discuss our methodology in further detail below.

The overall variance is minimized (equal to 0), when each region has at least k̄ sensors. Thus, for each

region i in the sensor network, we first create k̄ virtual sinks (or simply sinks) in order to allocate a

position (virtually) for each of the k̄ sensors that are needed in each region. Let each sink in region i be

denoted by s1
i , s2

i , s3
i , . . . , sk̄

i . For each sink s1
i , s2

i , s3
i , . . . , sk̄

i , we assign weights to them denoted by w1
i ,

w2
i , w3

i , . . . , wk̄
i respectively to prioritize movements towards larger weight sinks. The weights are,

wj
i = 2 ∗ j − 1 (1 ≤ j ≤ k̄). (3)

Note that sink sm
i has more weight than sn

i , if m > n. Also, wm
i = wm

j for any two regions i and j.

After sensors move towards sinks (according to their weights), some sinks will have sensors, while

some do not. In order to capture the presence of a sensor in each sink among the multiple regions (after

sensors move), we define the following function.

φj
i =







1, if sink sj
i has a sensor,

0, otherwise.
(4)

There is a constraint for the function φ. If φj
i = 1, then φm

i = 1 for all m > j. We are in effect saying

here that if sink sj
i in region i has a sensor, then each sink sm

i in region i with larger weights (i.e., m > j)

should have a sensor. The function φ captures whether a sink contains a sensor. We define a new metric
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here called Score as follows,

Score =
1

S
(

S
∑

i=1

k̄
∑

j=1

φj
i × wj

i ). (5)

The Score function is the summation of weights of those sinks (for all regions) that contain a sensor

in them. Clearly, the Score is larger when there are more sinks containing a sensor. The Score function

also considers the weight of a sink. As such, in the event that a sensor can move to more than one

sink, the Score is larger, when the sensor moves to the sink with the largest weight. Therefore during

sensor movements, when we attempt to maximize the Score, we are in effect ensuring that as many sinks

as possible contain a sensor, while also ensuring that larger weight sinks always have higher priority

compared to smaller weight sinks. We now have the following Theorem.

Theorem 1: A sequence of sensor movements that maximizes Score will minimize the variance V ar

and vice versa. (Please see Appendix for proof.)

From the above theorem, we can see that our original non-linear variance objective can be translated

to a linear objective. In this paper, we propose three algorithms for our deployment problem, following

the above methodology. In our algorithms, we create sinks for each region depending on the number of

sensors needed. Each sink has a weight associated with it, such that when sensors move, sinks with larger

weights have higher priority compared to sinks with smaller weights. The goal of our algorithms is to

maximize Score, which according to Theorem 1 minimizes the variance V ar.

The second objective of our problem is minimizing total number of sensor movement hops. We achieve

this goal by treating sensor movement hops as costs, and minimizing such costs in our algorithms. When

there are multiple sinks in other regions with same weights, our algorithms will ensure that sensors move

to sinks in those regions that are closer in terms of distance to be traversed. Clearly, larger weight sinks

are still given priority compared to smaller weight sinks. However, with such movements, the resulting

number of overall sensor movement hops is minimized, along with maximizing Score. If a sensor in a

region does not need to move to another region we treat the sensor as virtually moving to a sink in the

same region. Such a movement incurs 0 cost.
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IV. THE OPTIMAL MAXIMUM FLOW BASED CENTRALIZED ALGORITHM

Our first algorithm is the Optimal Maximum Flow based (OMF) centralized algorithm. In the OMF

algorithm, the sensor network at initial deployment is translated as a graph structure. The algorithm then

determines the minimum cost maximum weighted flow in the graph. The corresponding flow plan in the

graph is translated as a movement plan for the sensors in the network.

A. Description of the Algorithm

In the following, we describe our OMF algorithm from the perspective of a Base-station executing the

algorithm. An alternate approach to execute the OMF algorithm is presented in Section VI-A.

Algorithm 1 Pseudocode of the OMF algorithm
1: Collect the information on the number of sensors in each region in the sensor network.
2: Construct a graph GV (VV , EV ) using the above region information, desired number of sensors per region k̄ and the sensor mobility

capacity H . GV models the sensor network at initial deployment time.
3: Determine the minimum cost maximum weighted flow from source regions to weighted sinks in GV .
4: Determine a movement plan for the sensors in the sensor network based on the above flow plan in GV .
5: Forward the movement plan to sensors in the network.

1) Steps in Algorithm Execution: Algorithm 1 shows the sequence of steps in the OMF algorithm. In

Step 1, each sensor in the network identifies which region it resides in. Sensors then forward information

on the number of sensors in their region towards the Base-station. For routing packets towards Base-

station, protocols like [17], [18], [9], [19] can be used, where the protocols route packets towards intended

destinations in the network (Base-station in our case) using shortest paths. The Base-station thus obtains

information on the number of sensors in all regions in Step 1. As pointed out before, for determining

which region a sensor resides in, sensors can be provisioned with GPS devices or methods proposed in

[16] can be used where location of sensors is determined by using sensors themselves as landmarks. Also,

we assume the network is connected without partitions. The issue of partitions is discussed later.

In Step 2, the Base-station constructs a virtual graph (GV ), whose vertices and edges model the regions

and sensor movement ability between regions respectively at initial deployment. In Step 3, the Base-station

determines the maximum weighted flow to the sinks in GV (that maximizes equation 5) with minimum

cost. In Step 4, the flow plan in the GV corresponding to the minimum cost maximum weighted flow

is translated as a movement plan for the sensors. In Step 5, the Base-station forwards the movement
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plan (which sensors should move and where) to the sensors in the network. We subsequently prove that

this movement plan minimizes the variance, and overall number of sensor movement hops in the sensor

network. Each of Steps 2, 3, 4 and 5 in our OMF algorithm is discussed in detail below.

2) Constructing the Virtual Graph GV : We now discuss Step 2, that involves the construction of the

virtual graph denoted by GV (VV , EV ). Before we discuss GV , we introduce the notation of reachability

between regions. For any region i in the sensor network, we denote its reachable regions as those regions

to which a sensor from region i can move to. Obviously, the reachable regions depend on the maximum

movement hops H . We first assume that the regions to which a sensor can move to, are regions in its

adjacent left, right, top and bottom directions only. Thus, if H = 1 in Figure 1, then the reachable regions

for region 1 are regions 2 and 5. If H = 2, the reachable regions are regions 2, 3, 5, 6 and 9.

The construction of GV involves 1) The establishing of vertices and edges for each region in the sensor

network and creation of sinks for each region, 2) The establishing of reachability relationship between

the regions, 3) Adding weights to sinks following our discussions in Section III and 4) Adding costs to

edges to capture sensor movements across regions. The objective of this construction is to ensure that GV

models the sensor network, identifies sources, sinks, and reachability relationship among regions. Figure

3 (a) shows an instance on initial deployment for a 2 × 2 network with 4 regions and 12 sensors, and

where k̄ = 3 and H = 1. Its corresponding virtual graph GV is shown in Figure 3 (b). The numbers

inside the circles in Figure 3 (a) denotes the number of sensors in the corresponding region in the sensor

network. In the following, we describe the virtual graph construction process in detail. Let us first describe

the establishment of vertices and edges assignment in GV for one arbitrary region in the sensor network.

Without loss of generality, consider region i with initially ni sensors. For this region, we create a vertex

called as the base vertex of region i (denoted by vb
i ) in GV . We create vertex vout

i to keep track of the

number of sensors that can move out from region i. We then create k̄ sink vertices for region i (due to

deployment requirement of k̄ sensors per region). The sink vertices for region i are denoted by vs1
i , vs2

i ,

vs3
i , . . . , vsk̄

i . We also create vertex vin
i as a proxy for the k̄ sink vertices.

The next step is adding edges between vertices for this region. An edge of capacity ni is added from

vb
i to vout

i . This means that up to ni sensors can move from region i. Since vin
i is a proxy for the sink
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vertices, the capacity from vout
i to vin

i is also ni. From vin
i , an edge is added to each of the vertices vs1

i ,

vs2
i , vs3

i , . . . , vsk̄
i with capacity 1. Since the deployment requirement is k̄ sensors per region, we allow up

to one sensor to move to each sink (for k̄ such sinks). All other regions are treated similarly in GV . For

example, for region 1 in GV in Figure 3 (b), we create six vertices corresponding to the base vertex (vb
1),

in vertex (vin
1 ), out vertex (vout

1 ) and k̄ = 3 sink vertices (vs1
1, vs2

1 and vs3
1). Edges between the vertices,

and their capacities for region 1 are also shown. All other regions are treated similarly.
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Fig. 3. An instance of the initial network deployment (a) and the corresponding virtual graph GV (b).

The second step is establishing reachability relationship among the regions into GV . Let us consider

two arbitrary regions i and j that are reachable from each other. In GV , edges are added from vout
i to

vin
j , with edge capacity ni, which is the number of sensors in region i. This is to allow up to ni sensors

to move from region i to region j. Correspondingly, edges are added from vout
j to vin

i , with capacity nj .

For example in Figure 3 (b), there is an edge from vout
1 to vin

2 with capacity n1 = 4, and an edge from

vout
2 to vin

1 with capacity n2 = 2 since regions 1 and 2 are reachable from each other.

The next steps are weight assignment to sinks, and cost assignment to edges. Consider region i again.

For sinks vs1
i , vs2

i , vs3
i , . . . , vsk̄

i in region i, we denote their weights as w1
i , w2

i , w3
i , . . . , wk̄

i . Following

from the discussions in Section III, the values for the weights are 1, 3, 5, . . . , 2k̄ − 1 respectively. Since

k̄ = 3 in the example in Figure 3, we have weights 1, 3 and 5 for the sinks (shown along side the sink

vertices). Note that, wm
i is larger than wj

i , if m > j. We now discuss costs for edges between regions in

GV in order to capture number of sensor movements. If a sensor moves from its region to its adjacent
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region, then it denotes one hop made by the sensor. Let us consider two regions i and j in the sensor

network that are reachable from each other. Let the distance between them in terms of number of hops

be di,j. That is, di,j denotes the minimum number of hops required for a sensor in region i to move to

region j (or vice versa). For instance, in Figure 1 (a), d1,3 = d3,1 = 1. Obviously di,j ≤ H , if regions i

and j are reachable from each other. To incorporate this in GV , between any two reachable regions i and

j, the costs of edges from vout
i to vin

j , and the costs of edges from vout
j to vin

i are assigned as di,j. Apart

from the above, the only remaining edges in GV are the ones from vb
i to vout

i , from vout
i to vin

i , and from

vin
i to vs1

i , vs2
i , vs3

i , . . . , vsk̄
i (for all regions i). These edges denote internal movements within a region,

and the cost for these edges is set as 0. The costs of edges in GV are not shown in Figure 3.

At this point, Step 2 of our OMF algorithm is completed. The Base-station has constructed GV that

models the sensor network at initial deployment. Before proceeding to Step 3, we define a flow plan

Z in GV and a metric W . Z is the sequence of flows (in GV ) that meets the following condition;

W =
∑S

i=1

∑k̄
j=1 (f j

i ∗ wj
i ) is maximized, where f j

i is the subflow to sink vsj
i in flow plan Z. We call

Z as a maximum weighted flow plan in GV . If the cost of Z is minimized, Z is called as a minimum

cost maximum weighted flow plan. With sinks in GV having weights associated with them, a maximum

weighted flow plan must maximize the number of sink vertices that receive a flow, and prioritize flows to

larger weight sinks first compared to smaller weight sinks in GV . Since the capacity of the edge from vin
i

to vsj
i in GV is 1, f j

i meets the constraint of function φ defined in (4). Since GV is a translation of the

sensor network, the flow plan Z in GV can be translated as a corresponding movement plan for sensors in

the sensor network (exactly how this is done is discussed in Section IV-A.4). From the definition of Score

in (5) and W above, the corresponding sensor movement plan maximizes the Score with minimum cost,

which in turn minimizes V ar (from Theorem 1) with minimum cost. To summarize, with the construction

of GV in place, the variance/movement minimization problem now becomes one, where the weighted flow

to sinks in GV is to be maximized with minimum cost.

3) Computing the Minimum Cost Maximum Weighted Flow in the Virtual Graph GV : We now proceed

to Step 3 in the OMF algorithm, where determine the minimum cost maximum weighted flow in GV . In

the following, we present our algorithm to determine the minimum cost maximum weighted flow in GV .
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Our approach to maximize the weighted flow is to translate larger weight sink vertices, as lower cost sink

edges. Thus, prioritizing flows to large weight sinks now becomes prioritizing flows through lower cost

edges. This is the crux of our algorithm described below.

Algorithm 2 Pseudocode for computing the minimum cost maximum weighted flow in GV

1: Input: GV (VV , EV ), H , S and k̄
2: Output: Graph Gm

V (V̄ , Ē) and Minimum Cost Maximum Weighted Flow Plan Z in GV

3: |EV | = No. of Edges in GV , |VV | = No. of Vertices in GV

4: |Ē| = |EV | + S × (k̄ + 1)
5: |V̄ | = |VV | + 2
6: Add vertices Sv

source and Sv
sink to GV to create graph Gm

V

7: for each region i do
8: for j from 1 to k̄ do
9: Add edge from sink vs

j

i to Sv
sink

10: Assign corresponding edge capacity as 1
11: Assign corresponding edge cost as −(2j − 1) × H × |Ē|
12: end for
13: Add edge from Sv

source to vb
i

14: Assign corresponding edge capacity as ∞
15: Assign corresponding edge cost as 0
16: end for
17: Determine the maximum flow value |Z̄| from Sv

source to Sv
sink in Gm

V

18: Determine the minimum cost flow plan Z (for flow value |Z̄|) from Sv
source to Sv

sink in Gm
V

Algorithm 2 is the pseudocode to determine the minimum cost maximum weighted flow in the virtual

graph GV . The input is GV (VV , EV ), H , number of regions S and k̄. We first create a new graph from

GV called Gm
V (V̄ , Ē) as follows. We first create two new vertices called Super Source and Super Sink,

denoted by Sv
source and Sv

sink respectively. Edges are added from each sink vertex to Sv
sink, with capacity

1 to allow only one sensor to move from each sink towards Sv
sink. The cost of the edges from sinks vs1

i ,

vs2
i , vs3

i , . . . , vsk̄
i to Sv

sink (for all regions i) are set as −H × |Ē|, −3 × H × |Ē|, −5 × H × |Ē|, . . . ,

−(2k̄ − 1) × H × |Ē| respectively, where |Ē| is defined in Algorithm 2 2. Finally, edges are added from

Sv
source to all base vertices (i.e., vb

i for all i), with capacity ∞ to allow any amount of flow from Sv
source.

The costs for these edges are set as 0, since the flow through such edges are not actual sensor movements.

At this point (Step 16 in Algorithm 2), Gm
V has been constructed. Determining the flow plan to maximize

weighted flow to sinks with minimum cost in Gm
V is a two-step process (Steps 17 and 18 in Algorithm

2). The Base-station will first determine the maximum flow value (|Z̄|) from Sv
source to Sv

sink in Gm
V . The

maximum flow value |Z̄| indicates the maximum number of sinks that can get a sensor in Gm
V . However,

this only indicates the maximum number of sinks. The determination of the maximum flow value does

not consider the fact that sinks have different weights and larger weight sinks need to be accorded higher

2The interpretation of |Ē| is discussed subsequently.
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priority. Our objective however, is to determine the flow plan Z (the actual flow among the edges) in Gm
V

such that weighted flow to sinks is maximized with minimum cost. We do this in Step 18 by determining

the minimum cost flow plan Z (for maximum flow value |Z̄|) in Gm
V , discussed further below.

We know that when executing the minimum cost flow algorithm on any graph, flow is prioritized

through edges with lower cost. By setting the edge costs from sinks to Sv
sink as the negative of weights of

the corresponding sink, we will achieve our objective of prioritizing flow to sinks with larger weights in

determining the minimum cost flow to Sv
sink. There is one issue we have to resolve during cost assignment.

Recall that sensor movements between reachable regions are considered as costs in Gm
V . Clearly, these

costs will affect the minimum cost flow plan when determining flows to sinks with minimum cost in

Gm
V . To prevent this from happening, the costs from sinks to Sv

sink is assigned as the negative of the sink

weights multiplied by a large constant (namely, H ×|Ē|). This constant is large enough to ensure that the

flow plan (Z) to maximize weighted flow in Gm
V is not affected by the costs between reachable regions,

while still minimizing costs between reachable regions (that denote sensor movements). Before discussing

how to translate this flow plan Z into a sensor movement plan, we state the following theorem showing

the relationship between Gm
V and GV .

Theorem 2: The flow plan corresponding to the minimum cost maximum flow in Gm
V is the flow plan

corresponding to the minimum cost maximum weighted flow in GV (Please see Appendix for proof).

4) Determining the optimal movement plan from the virtual graph GV : Once the minimum cost

maximum weighted flow to each sink in GV (and the corresponding flow plan in all edges in GV ) is

obtained, we proceed to Step 4 in Algorithm 1. In Step 4, we translate the flow plan from Step 3 into actual

sensor movements as follows. Let ZV denote the flow plan (a set of flows) corresponding to the minimum

cost maximum weighted flow algorithm in GV , where the capacity of each flow is 1. Each flow zV (vb
i , vsx

j )

∈ ZV is a flow from vb
i to vsx

j in GV . The flow zV (vb
i , vsx

j ) is of the form 〈vb
i , v

out
i , vin

j , vsx
j 〉. Thus, for

the flow plan ZV , we can map it to a corresponding movement plan ZS (set of movement sequences for

sensors) in the sensor network. That is for each zV (vb
i , vsx

j ) (∈ ZV ) of the form 〈vb
i , v

out
i , vin

j , vsx
j 〉, the

corresponding zS(i, j) (∈ ZS) is of the form 〈i, j〉. Physically, this means that one sensor should move

from region i to region j. The sensor movement plan ZS (consisting of the set of all such zS , obtained
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from zV ) is our output. This movement plan that indicates which sensors should move and where to, is

forwarded by the Base-station to the sensors in the network.

B. Optimality of our OMF Algorithm

Before discussing optimality, we first introduce the concept of feasible flows and movement sequences.

We call a flow zV (vb
i , vsx

j ) of the form 〈vb
i , v

out
i , vin

j , vsx
j , 〉 feasible in GV if there exists positive edge

capacities from vertices vb
i to vout

i , vout
i to vin

j , vin
j to vsx

j . We call a movement sequence zS(i, j) of the

form 〈i, j〉 feasible in the sensor network if there is at least one mobile sensor in region i that can move

to region j. We have the following lemma for a flow in GV and a sensor movement sequence.

Lemma 1: A flow zV (vb
i , vsx

j ) in GV is feasible if and only if the corresponding movement sequence

zS(i, j) is feasible in the sensor network (Please see Appendix for Proof).

We obtain the following corollary from Lemma 1.

Corollary 1: For a feasible flow plan Z̄V (set of all zV ) in GV , a corresponding feasible sensor

movement sequence plan Z̄S (set of all zS) can be found in the sensor network and vice versa (For

proof please refer to [20]).

The following Theorem shows that the movement plan obtained by our OMF algorithm optimizes both

variance and the number of sensor movement hops.

Theorem 3: Let ZV
opt be the minimum cost maximum weighted flow plan in GV . Its corresponding

movement plan ZS
opt will minimize variance and the number of sensor movement hops in the sensor

network (Please see Appendix for Proof).

We now discuss time complexity of the OMF algorithm. There are three phases in our algorithm in

determining the optimal movement plan. The first is construction of GV (VV , EV ) and Gm
V (V̄ , Ē), the

second is determining the maximum flow in Gm
V , and the third is determining the minimum cost flow in

Gm
V . The time complexity is dominated by determining the maximum flow and minimum cost flow in Gm

V .

Our implementations of the maximum flow algorithm is the Edmonds-Karp algorithm [21], and minimum

cost flow algorithm is the one in [22]. The resulting time complexity is O(max (|V̄ ||Ē|2, |V̄ |2|Ē|log|V̄ |)).

Here |V̄ | and |Ē| denote the number of vertices and edges in Gm
V , and are given by, |V̄ | = O(k̄(dQ

R
e2)),

and |Ē| = O(k̄H2(dQ
R
e2)), in which Q is the sensor network size and R is the region size.
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V. THE SIMPLE PEAK-PIT BASED DISTRIBUTED ALGORITHM

In the above, we presented a centralized and optimal OMF algorithm to our deployment using our

weight-based methodology. We now present the Simple Peak-Pit (SPP) based algorithm to our deployment

problem, that is local, light-weight and purely distributed. In the SPP algorithm, regions request sensors

from adjacent regions, with weights attached to each request. As before, requests with larger weights are

given higher priority when compared to requests with smaller weights, while simultaneously preferring

shorter movement hops to satisfy requests. We first discuss some important notations used in the algorithm

description. Regions in the network are classified into three types: pits, peaks and forwarders. A pit

is a region whose number of sensors is less than k̄ and not more than any of its neighboring regions. A

peak is a region whose number of sensors is larger than any of its neighboring regions. All other regions

are forwarders. We define an over-k̄ forwarder as a forwarder with more than k̄ sensors, and denote

the richest neighbor of a region as a neighbor with the largest number of sensors.

In the SPP algorithm, a pit i will request k̄ − ni sensors in its request (REQ). The pit i will assign

different weights to each of the k̄−ni requested sensors as, wj
i = 1, 3, 5, . . . , 2j−1, where 1 ≤ j ≤ (k̄−ni)

(as before). Here, we let only pits send REQs, so that non-pit regions will not compete with pits during

requests to ensure that more deficient regions will be given priority. A REQ generated will be forwarded

towards progressively richest neighbors to increase likelihood of REQs arriving at over-k̄ forwarders

or peaks on shorter paths. Recipients receiving REQs will sort all the requested sensors in the REQs

by weights and serve those with larger weights first. Ties are broken by fulfilling requests with shorter

paths first. We call the neighbors chosen for the next hop as tried neighbors.

Algorithm 3 shows the pseudocode of our SPP algorithm. It is executed by each region i independently

and is event driven. Using inter-region communications, a region leader will be elected for co-ordination.

Each leader obtains the number of sensors in its region, and its four adjacent neighboring regions. The

region leader of each pit will send an REQ to its richest neighbor, requesting number of sensors needed.

If multiple richest neighbors exist, ties are broken randomly. If some regions have no sensors, they can

be assisted by neighboring leaders in sending our requests. We discuss this issue in further detail later.

Due to limited mobility, when requests are sent out, it is important that path feasibility should be
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Algorithm 3 Pseudocode of the SPP algorithm run by region i
1: Region leader selection
2: while TRUE do
3: switch type of event
4: case region i becomes a pit:
5: send REQ to richest untried neighbor;
6: case receive REQ:
7: put REQ into Queue(i);
8: if region i is an over-k̄ forwarder, then
9: select REQs in Queue(i) to serve by

weights and path lengths;
10: send ACKs, move sensors and/or forward

REQs accordingly;
11: else if region i is a peak, then
12: select REQs in Queue(i) to serve by

weights and path lengths;
13: send ACKs, move sensors and/or send

FAILs accordingly;
14: else
15: forward REQ to richest neighbor;
16: case receive ACK for pit j:
17: forward ACK to j if i 6= j;
18: case receive FAIL for pit j:
19: resend REQ to richest untried neighbor;
20: case detect hole neighboring region j:
21: if region i can provide sensor, then
22: move a sensor to j after random delay;
23: end switch
24: end while

maintained during the selection of next hop forwarder. This means there should exist at least one

mobile sensor on any continuous H hop segment of the path a REQ traverses. Otherwise, mobile sensors

on the other side of the segment will not be able to move back to the requesting pit due to limited

mobility. In case there is not enough mobile sensors in a certain segment with H hops on the path, the

requested number of sensors in the REQ message should be adjusted since we can never move enough

sensors back on the path. All the intermediate forwarders will reserve enough number of mobile sensors

to guarantee the feasibility of the path.

When REQs are forwarded to over-k̄ forwarders or peaks, some of them may or may not get served.

Considering that the REQ with largest weight requested sensor may not always come first, the over-k̄

forwarder or peak will put the REQs into its queue and serve them in periodic intervals of time. When

serving multiple requested sensors with the same weights, those with shorter paths will be served first. An

over-k̄ forwarder will send ACKs back to the pits whose REQs contains sensors that will be served,

and forward the REQs if not all sensors can be served. Those forwarded REQs will be updated if part

of the requested sensors are served eventually. A peak will send ACKs back to the pits whose REQs

contains sensors that will be served, and send FAILs back to pits if not all requests can be served 3.

Sensors will start moving after ACKs are sent, following the reserved paths of the corresponding REQs.

3We do not let recipients of requests choose shortest return paths as such paths may be blocked due to mobility limitations.
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After receiving the ACK(s) and mobile sensor(s), each pit will inform its neighbors its new sensor

number, and REQs are generated if need be. After a pit or forwarder receives a FAIL, it will release

the reserved path and resend REQs to its richest untried neighbor and so on. The algorithm terminates

when each pit has either obtained at-least k̄ sensors, or expiration of movement capability of the sensors,

or if a certain number of requests have been tried without success by requesting sensors 4.

It may happen some regions have no sensors in them (i.e., holes) after initial deployment. A hole can be

filled by one of its neighbors with extra mobile sensors, after coordination by other non-empty neighbors.

In case a hole cannot be filled directly due to none of its neighbors being able to provide an extra sensor,

one of its neighbors can become its proxy region via the same mechanism discussed above. In the extreme

case when all of a hole’s neighbors are empty, the hole may be filled by sensors, or have a proxy region

leader later when some of its neighbors get sensors during the SPP algorithm execution

VI. DISCUSSIONS

In the above, we presented an optimal centralized OMF, and a distributed SPP algorithm for our

deployment problem. We now discuss execution of our algorithms, extensions to non-uniform scenarios,

the issues of arbitrary sensor movement directions and network partitions.

A. Executing our Algorithms

The algorithms we proposed above can be executed in more than one way. We first discuss a semi-

distributed version of the the OMF algorithm, called the Domain-based OMF (D-OMF) algorithm. Here

the sensor network is divided into multiple domains, and each domain contains multiple regions. We let

each domain obtain region information (number of sensors) only in their domain. The movement plan

for variance minimization in each domain is independently determined with this information (without

exchanging information with other domains) using the OMF algorithm. The Base-station can do this for

each domain, or a special sensor in each domain can do so. Note that the D-OMF algorithm being semi-

distributed has lower messaging and computational complexity than OMF algorithm. But, optimality is

compromised since the D-OMF algorithm achieves local optima in each domain and cannot guarantee

4The number of unsuccessful requests per sensor is application decided.



22

global optima. Note that this trade-off depends on the domain size, uniformity of initial deployment

and sensor mobility capacity. Conducting an analytical comparison of performance of D-OMF and OMF

algorithms is too difficult if not impossible. We study this using extensive simulations in Section VII.

Furthermore, we point out that our proposed algorithms can also be combinedly executed. A simple

instance is one where the OMF algorithm is executed first to optimize deployment, and at later stages the

distributed algorithms can be executed to repair deployment under faults, failures etc.

B. Extensions to Non-Uniform Scenarios

1) Non-Uniformity at Sensor Side: We have so far assumed that all sensors are homogeneous in their

mobility capacity. In many scenarios, due to deployment costs, faults in sensors etc., it may happen that

only a subset of the deployed sensors is mobile. Our solutions can be extended in such scenarios. The

weight assignment rule is still the same. In the OMF algorithm, we have to modify reachability information

in GV . For example, say only one sensor in region 2 in Figure 3 is mobile. Then the edges from region

2 to its reachable regions 1 and 4 (i.e., from vout
2 to vin

1 , and from vout
2 to vin

4 ) each have capacity one.

This allows upto only one sensor to move out from region 2. Other construction rules remain the same.

The resulting solution is still optimal. The SPP algorithm needs no changes. Only, fewer paths will be

feasible now due to not all sensors being mobile.

2) Non-Uniformity at Deployment Area Side: In our discussions above, we focused on uniform de-

ployment areas, where k̄ is the same for all regions. However, in many situations the deployment area

can be non-uniform. Examples are certain sensitive zones that need to be sensed to a higher degree,

which means k̄ is more in such zones that others; certain hostile zones like lakes, fires etc. that can

destroy sensors, which means k̄ = 0 for such zones etc. For addressing such requirements, our weight

assignment rule is still the same as in equation (3). However, the number of sinks created per region and

their corresponding weights will be different depending on the desired k̄ per region in the OMF algorithm.

In the SPP algorithm, the number of requests generated and their weights are modified accordingly. The

rest of our solutions is still the same.
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C. Arbitrary Sensor Movement Directions and Network Partitions

In Section II, we assumed that sensors can move only to regions in its adjacent left, right, top and

bottom directions only. We now discuss the case of arbitrary sensor movement directions. For OMF and

D-OMF algorithms, only virtual graph (GV ) construction changes. In GV , we now have to add new edges

(with corresponding costs and capacities) from a region to all newly reachable regions corresponding

to arbitrary movement directions. In SPP algorithm, there are now more neighbor choices to forward a

request, and extra feasible paths can be reserved while sensors move to satisfy requests.

In Section II, we assumed that the sensor network is not partitioned. In some situations it may happen

that sensors in one part of the network may not be able to communicate with sensors in another part.

In such cases, we have to repair such partitions, while still being constrained by mobility distance. In

the approach proposed by Wu and Wang [5], empty holes are filled by placing a seed from a non-empty

region to a hole. We can apply the algorithms in [5] to repair partitions in our case. However, we are

still constrained by the mobility in sensors. Addressing the issue of repairing network partitions optimally

using limited mobile sensors is a part of our on-going work.

VII. PERFORMANCE EVALUATIONS

In this section, we report our experimental data to study the performance of our OMF, D-OMF and SPP

algorithms under various sensor and network parameters. We also simulate the well known VORonoi-based

Virtual Force (VOR) algorithm proposed in [4] and compare its performance with our algorithms.

A. Performance Metrics and Evaluation Environment

1) Performance Metrics: We have three major performance metrics in this paper. The first is the

Variance Improvement (denoted by VI) at final deployment after sensors have finished movements. It is

defined as V I = (V arin−V arout

V arin
) × 100, where, V arin is the variance at initial deployment and V arout is

the variance at final deployment. Our second metric is the number of sensor Movement Hops per percent

variance improvement (denoted by MH). It is defined as MH = M
V I

, where M denotes the total number

of sensor movement hops. The reason we define MH as a ratio is because, it is more fair to compare

number of hops per improvement in variance, than just the number of hops.
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Our third metric is the messaging overhead incurred by our algorithms, which is defined as the Packet

Number per region (denoted by PN). Denoting P as the total number of packets (or messages) sent,

and denoting S as the number of regions, we have PN = P
S

. Physically speaking, V I captures the

improvement in deployment as a result of our algorithms, while MH and PN reflect the overhead in

terms of sensor movement hops and messaging overhead. The packet number for our OMF algorithm is

calculated based on a simple protocol. After initial deployment, an elected region-head in each region

sends a packet to Base-station (located in the center of the network) with information on the number of

sensors in its region. The packets are forwarded along shortest paths through other regions towards the

Base-station. After the Base-station receives all packets and determines a movement plan, it sends one

packet to each region in the reverse path, informing regions of its movement plan. A similar protocol is

assumed for the D-OMF algorithm, where the regions in each domain will forward packets to a special

sensor in the domain, which executes the algorithm and forwards a movement plan to each region in the

domain. Note that, there can be other versions of the above protocols, like direct relaying of messages,

row-wise (or column wise) message delivery etc.

2) Evaluation Environment: We denote the number of regions in the network as n × n (represented

in the figures as simply n). Our default value is 8× 8. The default desired number of sensors per region

is k̄ = 3 and maximum number of hops a sensor can move is H = 3. By default, the number of sensors

initially deployed is n × n × k̄, and all sensors in the network are mobile by default. For the D-OMF

algorithm, we choose the domain size D as D = n
2
. Our implementations of the maximum flow algorithm

is the Edmonds-Karp algorithm [21], and minimum cost flow algorithm is the one in [22]. In the SPP

algorithm, a peak and over-k̄ forwarder will batch up the coming REQs in a time period to serve. In our

simulation, the time period is given by tu×n, in which tu is the message transmission delay between two

neighboring regions. For comparisons, we also simulate the VORonoi-based virtual force (VOR) algorithm

[4], the basic idea of which was discussed in Section I. The termination condition for the SPP algorithm

is when each pit has either obtained at-least k̄ sensors, or expiration of sensor movement capability, or if a

certain number of requests have been tried without success by requesting sensors. By default, the number

of requests per sensor without success is set as 3. For the VOR algorithm, the termination condition was
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each region obtaining at-least k̄ sensors or expiration of sensor movement capability.

We conduct our simulations on a custom simulator 5. For initial deployment, our simulator uses a

topology generator for 2D-Normal distribution [23]. A 2D-Normal distribution involves two random

variables, x and y with mean values µx and µy. The mean values corresponding to each variable can

be written as a vector u = (µx, µy)
T . Each variable will have a variance σx and σy. However, it may

happen that the variables are related to each other, in which case there will be covariances σxy and σyx with

σxy = σyx, all of which can be incorporated into a variance-covariance matrix: v =









σ2
x σ2

xy

σ2
yx σ2

y









. The

2D-Normal distribution is then given by P (z) = 1

2π
√

|v|
e[− 1

2
(z−u)T

v
−1(z−u)] where |v| is the determinant

of v. In our simulations, we set σxy = σyx = 0, which means the location at x and y axis are independent

when sensors are deployed. We let σ2 = 1/σ2
x = 1/σ2

y. Hence, when σ increases, sensors will be

more concentrated at the center, and when σ tends to 0 sensors are more uniformly distributed. For our

simulations, by default, σ = 4. All data reported here were collected across 10 iterations, and averaged 6.

B. Performance Results

1) Performance comparison of all algorithms: We first study the sensitivity of V I , MH and PN

to mobility capacity H for the OMF, D-OMF, SPP and VOR algorithms. We assume that the sensors

are initially deployed as a one time step targeted towards the center of the network. All other settings

are default. From Figure 4, we observe that the OMF algorithm (being optimal) performs best in terms

of V I . We observe that the D-OMF algorithm performs quite close to the OMF algorithm in all cases,

while the performance of the SPP and VOR algorithms are quite good for smaller values of H . Among

all algorithms, the virtual force (VOR) algorithm has the poorest performance. Since sensors in the VOR

algorithm attempt to achieve local force balance between themselves, they incur several back and forth

movements that rapidly depletes overall sensor movement capability resulting in overall poor variance

improvement. Figure 4 also shows the effects of limited mobility on V I . When H increases, V I increases

in all algorithms as increased movement ability in general helps to move sensors to needy regions farther

away. The improvement stays constant when H ≥ 4 for the OMF algorithm, and for H ≥ 3 in the other
5Code can be obtained by contacting the primary author of the paper.
6The standard deviations for all data sets are shown in the corresponding figures.
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algorithms. This demonstrates that mobility beyond a certain point does not bring in further benefits. Note

that when H ≥ 4, the OMF algorithm achieves the upper bound of 100% V I , because movement choices

can be optimally exploited by the OMF algorithm with larger H , unlike other algorithms.

Figures 4 and 5 show that when V I increases, MH also increases for the OMF, D-OMF and SPP

algorithms. In our algorithms, each sensor movement typically results in a more balanced deployment for

the network. Also, it could happen that for improvement in variance, many potentially longer paths are

found in our algorithms. Consequently, when V I increases MH also increases in our algorithms, while

staying a constant when V I stops increasing. On the other hand, we observe that the MH for the VOR

algorithm is initially a higher value, then decreases and stays constant. When H is small, V I is quite low

for the VOR algorithm, due to more stringent mobility limitations, which makes MH higher for smaller

H . As V I improves further, MH decreases for the VOR algorithm in Figure 5. Since V I stays constant

beyond H > 2, MH also stays constant. Note that when H increases, the MH in the D-OMF, SPP and

VOR algorithms are quite close to the optimal OMF algorithm (while even being smaller in some cases).

As pointed before, this is because of the improved V I that can be achieved by the OMF algorithm, by

exploiting several additional movement choices compared to the other algorithms, which increases the

number of movements, and hence MH in the OMF algorithm.

In Figure 6, we can see that PN in the OMF and D-OMF algorithms are constant, since packet

number does not depend on H for these algorithms. The messaging overhead in the VOR algorithm is the

maximum because of many local message exchanges caused by several back and forth sensor movements.

The PN in SPP algorithm takes a middle ground, since only deficient regions send out requests and that

too towards richer regions only, while responses always aim to take shorter movement paths. In both SPP



27

0

20

40

60

80

100

120

0.25 1 4 8

Deployment Concentration (�)

V
ar

ia
n

ce
 Im

p
ro

ve
m

en
t 

(V
I)

OMF D-OMF SPP

Fig. 7. Sensitivity of V I to σ

0

1

2

3

4

5

6

7

0.25 1 4 8

Deployment Concentration (�)

M
ov

em
en

t H
op

s 
(M

H
)

OMF D-OMF SPP

Fig. 8. Sensitivity of MH to σ

0

2

4

6

8

10

12

0.25 1 4 8

Deployment Concentration (�)

P
ac

ke
t N

um
be

r 
(P

N
)

OMF D-OMF SPP

Fig. 9. Sensitivity of PN to σ

and VOR algorithms, PN increases with H due to more movement choices when H increases.

Figures 7, 8 and 9 show the sensitivity of our performance metrics to σ for our algorithms. In Figure 7,

V I decreases when σ increases for the OMF and SPP algorithms. Since larger σ implies more concentrated

initial deployment, it is harder for regions near the boundary to find sensors under mobility constraints,

which decreases V I for the OMF and SPP algorithms. We also see that V I of the D-OMF and SPP

algorithm become closer to that of the OMF algorithm as σ increases. This is because, the amount of

mobility choices that the OMF algorithm can exploit is not significantly more than that of the other

algorithms, when deployment is highly concentrated.

In Figure 8, we see that MH increases as σ increases for our algorithms. This is mainly because of

the reduction in V I with increasing σ. Note here that MH is lower for the SPP algorithm when σ is

small. This is because, when deployment is more uniform (smaller σ), more pits can find enough over-k̄

forwarders or peaks nearby, which causes a reduction in overall sensor movements. In Figure 9, we see

that the PN for the OMF and D-OMF algorithms decreases with σ, since the number of sensors farther

away from the center of the network decreases with increased σ. On the other hand, PN increases with σ

in the case of the SPP algorithm, since the increase in σ means that the bias increases, resulting in more

requests and responses. We also observe that when σ is less, the PN in the SPP algorithm is lower than

that of the OMF and D-OMF algorithms. This is because, more pits can find enough over− k̄forwarders

or peaks in the SPP algorithm when the deployment is more uniform, further highlighting the fact that

the distributed SPP algorithm achieves less overhead under favorable deployment conditions.

We now study the sensitivity of our performance metrics to k̄ for our algorithms. In order to compare

the sensitivity to k̄ fairly, the number of sensors initially deployed is fixed as 8 × 8 × 3 = 192 for all
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cases (all other settings are default). From Figures 10 and 11, we can see that an increase in k̄ causes

a decrease in V I and an increase in MH in our algorithms. When k̄ increases, the objective becomes

harder, which causes this trend. We can also see that the D-OMF algorithm performs quite close to the

OMF algorithm in all cases. An interesting observation here is that, when k̄ is small, the performance

of the SPP algorithm in all metrics compares quite favorably with the other algorithms. This is because,

when the deployment objective is relatively mild (less k̄), local requests and responses suffices for good

performance. Once again, the PN for the OMF and D-OMF algorithms in Figure 12 is independent of

k̄ and hence is constant. The PN of the SPP algorithm is similar to the other algorithms for less k̄, and

increases with increasing k̄ since more requests and responses are generated when k̄ increases.

In Figures 13, 14 and 15, we can see that as n increases, V I decreases and both MH and PN increase

for our algorithms. A larger n implies a larger network, which makes more regions near the boundary of

the network unable to get sensors, and thus V I decreases. Also, sensors need to travel longer distances,

which increases MH and PN .

2) Performance when only a subset of sensors are mobile: Our default case above consisted of all

sensors in the network as capable of being limitedly mobile. We now demonstrate the sensitivity of
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performance (V I) of our algorithms under different sensor mobility capacity (H) when only a subset of

sensors is mobile (as discussed in Section VI-B.1). The value of H is set as 3. All other settings are

default. In Figures 16, term Pr on the X-axis denotes the percentage of sensors that are mobile. For

instance if Pr = 0.2, then only 20% of the sensors are mobile. We observe that while V I improves with

increasing Pr, there is a threshold beyond which increase in V I is negligible in all agorithms. For the

case when H = 3 in Figure 16, the threshold is around 60%. The threshold in fact depends on H and

decreases as H increases and vice versa 7. This demonstrates that, not all sensors in the network need to

be mobile. Depending on the mobility capacity H , there is a threshold beyond which deployment quality

cannot be enhnaced significantly with more mobile sensors.

3) Convergence time of the SPP and VOR algorithms: In Figure 17, we study the sensitivity of

convergence time of the SPP and VOR algorithms to H . All other settings are default. For the SPP

algorithm, the convergence time (in terms of rounds) is obtained as follows. We denote one unit time as

the time taken by a sensor to perform local computations and send a packet to a sensor in a neighboring

region. The number of rounds is the total number of unit times spent to complete execution of the SPP

algorithm in the network. For the VOR algorithm, it is simply the number of rounds it takes for the

algorithm to terminate similar to the definition in [4]. From Figure 17, we see the convergence time

increases with H for both algorithms, since more movement choices are available with increasing H . We

also observe that the convergence time begins to saturate with increasing H , demonstrating that beyond a

certain point, increase in mobility does not help deployment much. Note that the number of rounds in the

VOR algorithm is much lower than the SPP algorithm. However, this should not be construed as better

7We do not report data for other values of H due to space limitations.
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performance by the VOR algorithm. Rather, it is due to the faster depletion of sensor mobility capacity,

and the lower V I in the VOR algorithm compared to the SPP algorithm. The sensitivity of number of

rounds to k̄, σ and n follow expected trends and are not reported here (due to space limitations).

VIII. RELATED WORK

In this paper, we addressed a sensor networks deployment problem using limited mobility sensors.

While a host of works have appeared on deployment [4], [6], [15], [5], [24], [8], [25], [26], [27], [28],

[29], [30], [31], [32], [33], in this section, we particularly discuss related work in the areas of mobility

assisted sensor networks deployment.

In [4], [6] and [15], the goal is uniform coverage of the network. This means that every point in

the network is covered by at least one sensor. The approach in [4], [6] and [15] is balancing sensor

virtual forces. Two sensors may repel or attract each other based on the distance between them. At

each iteration, sensors move to achieve a better force balance, and sensors stop moving when a force

equilibrium is reached. However, under hard mobility constraints, two sensors may not be able to achieve

force balance if the distance required to be traversed is too large. Secondly, the virtual force approach will

result in several back and forth sensor movements during force balancing, which across many iterations

will rapidly deplete mobility capacity of sensors. Another difference is that all of the above works focus

on one-coverage of the sensor network, while we are addressing a general variance minimization problem.

Another mobility assisted deployment work is [5], where the objective is load balancing sensor deployment.

In [5], the sensor network is initially divided into 2-D clusters. The problem is to ensure that starting from

an initial deployment, the number of sensors in all clusters in the sensor network be the same. Based on

efficiently scanning the clusters in two stages (row-wise and column-wise), sensors determine to which

cluster they have to move. One drawback of [5] is that the ratio of number of hops in their algorithm and

the optimal case is bounded by a factor of 2. Limited mobility sensors cannot tolerate so many unwanted

moves. Also, the problem in [5] is a special case of our general deployment problem in this paper.

Other works in this area include [24], where algorithms are proposed to let sensors relocate to new

positions in a 2-D dimensional grid based network. The relocation process is event-driven (new events,

sensor failures, faults etc.). However, such relocation is done without compromising existing functionality
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of the network. In [8], algorithms are designed to enable a sensor to move to events in the field. The

algorithms are designed to be less energy consuming and computationally mild for the sensors. Both the

above works are event-driven and also do not consider hard mobility limitations on sensors.

We have done some prior work in limited mobility deployment in [25]. There, our problem was

maximizing number of regions in the network with at least one sensor, where the sensors were can

hop only once to a fixed distance. The problem we address in this paper is minimizing variance, which

is a non-linear objective. The corresponding methodology and algorithms in this paper are different from

[25]. Also, we have a more general limited mobility model in this paper, where only the maximum sensor

movement distance is limited. This paper also proposes a distributed algorithm unlike our work in [25].

IX. FINAL REMARKS

In this paper, we defined a general sensor networks deployment problem under limited mobility sensors,

and proposed a set of sensor movement algorithms for it. Our on-going work addresses the issue of

repairing network partitions with limited mobility sensors. Also, we plan to study the issues of limited

mobility sensors in applications like sensor tracking systems. The challenge is how to design algorithms

that can exploit limited mobility in sensors, and algorithms for provisioning sensors in the network to

improve tracking efficiency throughout the network and some specific hot spots. Finally, we are planning

to investigate opportunities and challenges associated with mobility in more complex environments like

those where link qualities, sensing ranges, transmission ranges are non-uniform.
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APPENDIX

Proof of Theorem 1 in Section III:

Proof: Consider two arbitrary sequences of sensor movements F and G, with functions {f j
i } and

{gj
i } respectively. Assume there are mi and ni sinks in region i that have a sensor at the end of sequences

F and G respectively. Recalling the constraint of φj
i in (4), we have,

f j
i =







1, j > k̄ − mi,

0, j ≤ k̄ − mi,
(6)

gj
i =







1, j > k̄ − ni,

0, j ≤ k̄ − ni.
(7)
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The gain of Score for sequence F compared with Score for sequence G (Score(F ) − Score(G)) is

=
1

S

S
∑

i=1

k̄
∑

j=1

(f j
i ∗ wj

i ) −
1

S

S
∑

i=1

k̄
∑

j=1

(gj
i ∗ wj

i ) =
1

S

S
∑

i=1

((mi − ni) ∗ (2k̄ − mi − ni)). (8)

The loss of variance V ar of F compared with that of G (V ar(G) − V ar(F )) is

=
1

S

S
∑

i=1

(k̄ − ni)
2 − 1

S

S
∑

i=1

(k̄ − mi)
2 =

1

S

S
∑

i=1

((mi − ni) ∗ (2k̄ − mi − ni)). (9)

We can see that the amount of gain in Score for F is the same as the amount of loss in V ar. Thus,

the sequence of sensor movements that maximizes Score simultaneously minimizes V ar, and vice versa.

Proof of Theorem 2 in Section IV-A.3:

Proof: We first prove that the flow plan corresponding to the minimum cost maximum flow in Gm
V

is the flow plan corresponding to the maximum weighted flow in GV . We will prove this by contradiction.

Let the minimum cost maximum flow plan in Gm
V be Z. Suppose Z does not yield the maximum weighted

flow in GV . This means there exists a flow plan Y that has a higher weighted flow than that of Z. Let us

denote the weighted flow values of Z and Y to sinks in GV by WZ and WY respectively. We then have

WY − WZ ≥ 1. Denoting CostZ and CostY as the cost values of Z and Y in Gm
V respectively, we have,

CostZ = −WZ ∗ |Ē| ∗ H + Cost′Z (10)

CostY = −WY ∗ |Ē| ∗ H + Cost′Y (11)

in which Cost′Z and Cost′Y denote the sum of the edge costs from vout
i to vin

j for all regions i and j in Z

and Y respectively. Since Z applies minimum cost flow algorithm, we have CostZ < CostY . However,

we can also obtain,

CostZ = −WZ ∗ |Ē| ∗ H + Cost′Z ≥ −WZ ∗ |Ē| ∗ H ≥ −WY ∗ |Ē| ∗ H + |Ē| ∗ H

> −WY ∗ |Ē| ∗ H + Cost′Y = CostY ,

which is a contradiction. Therefore, flow plan Z yields the maximum weighted flow in GV . Since Z

is the plan after executing the minimum cost algorithm in Gm
V , the costs of flow among edges between

reachable regions is minimized in Gm
V . GV is made of exactly the same edges (edges between reachable
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regions). Therefore, flow plan Z corresponds to the minimum cost maximum weighted flow in GV .

Proof of Lemma 1 in Section IV-B:

Proof: We first prove if zS(i, j) is feasible, then zV (vb
i , vsx

j ) is feasible. If zS(i, j) is feasible, then

there is at least one mobile sensor in region i, and regions i and j are reachable from each other. That is,

the capacities of the edges from vb
i to vout

i , and from vout
i to vin

j are ≥ 1, and there exists an edge from

vin
j to vsx

j , whose capacity is 1 (from Section IV-A.2). Thus, zV (vb
i , vsx

j ) is feasible.

We now prove if zV (vb
i , vsx

j ) is feasible, then zS(i, j) is feasible. If zV (vb
i , vsx

j ) = 〈vb
i , v

out
i , vin

j , vsx
j 〉 is

feasible, then the capacities of the edges from vb
i to vout

i , from vout
i to vin

j and from vin
j to vsx

j are all ≥ 1.

This implies that there is a sensor in region i, and regions i and j are reachable from each other. So a

sensor can move from region i to region j. Thus zS(i, j) is feasible.

Proof of Theorem 3 in Section IV-B:

Proof: We first prove that our OMF algorithm is optimal in terms of minimizing variance. We prove

by contradiction. Consider a sensor movement plan ZS
opt that corresponds to a flow plan ZV

opt determined

by executing the minimum cost maximum weighted flow algorithm on GV . Let this movement plan be

non-optimal in terms of variance. This implies there is a better movement plan, ZS
x that can further

minimize variance in the sensor network. By Corollary 1, a corresponding flow plan ZV
x can be found in

GV . The amount of weighted flow in this plan is larger than the weighted flow achieved using plan ZV
opt,

which is a contradiction. Hence ZS
opt is the optimal movement plan for sensors that minimizes variance.

We now prove that our OMF algorithm is optimal in terms of minimizing number of sensor movement

hops. We prove by contradiction. Consider a sensor movement plan ZS
opt that corresponds to a flow plan

ZV
opt determined by executing the minimum cost maximum weighted flow algorithm on GV . Let this

movement plan be non-optimal in terms of number of sensor movement hops. This implies that there

is a better plan, ZS
x that can reduce at least one movement in the sensor network. By Corollary 1, a

corresponding flow plan ZV
x can be found in GV . The number of movement hops (or overall cost) in this

plan is less than that achieved using ZV
opt, which is a contradiction. Hence ZS

opt is the optimal movement

plan that minimizes number of sensor movement hops.


