Network Decoupling for Secure Communications in
Wireless Sensor Networks

Wenjun Gu, Xiaole Bai, Sriram Chellappan and Dong Xuan
Department of Computer Science and Engineering
The Ohio-State University, Columbus, Ohio 43210-1277
Email: {gu, baixia, chellapp, xuan}@cse.ohio-state.edu

Abstract— Secure communications are highly demanded by
many wireless sensor network (WSN) applications. The random
key pre-distribution (RK P) scheme has become well accepted
to achieve secure communications in WSNs. However, due to its
randomness in key distribution and strong constraint in key path
construction, the RK P scheme can only be applied in highly
dense networks, which are not always feasible in practice. In
this paper, we propose a methodology called rnetwork decoupling
to solve this problem. With this methodology, a wireless sensor
network is decoupled into a logical key-sharing network and
a physical neighborhood network, which significantly releases
the constraint in key path construction of RKP scheme. We
design a secure neighbor establishment protocol (called RK P-
DE) as well as a set of link and path dependency elimination
rules in decoupled wireless sensor networks. Our analytical and
simulation data demonstrate the performance enhancement of
our solution and its applicability in non-highly dense wireless
sensor networks.

I. INTRODUCTION

Wireless Sensor Networks (WSNs) are gaining wide ac-
ceptance today. A host of new applications are being realized
that involve many tiny wireless sensors performing sensing and
communication tasks. Many of these applications are in hostile
environments, and their success is contingent on preventing the
WSNs information from being accessible to external malicious
attackers. In this paper, we address the issue of providing
secure communications in WSNs.

Motivation: A host of key distribution techniques have
been proposed to achieve secure communications in traditional
wired networks and wireless ad hoc networks. However, they
cannot be applied in WSNs due to the unique characteristics of
WSNss like network scale, ease of node capture, physical con-
straints in energy and memory, etc. For instance, the traditional
public key cryptography [1], [2] is too energy consuming to be
carried out by energy constrained sensors. The key distribution
center based scheme [3] is centralized and not scalable when
network size increases. Other techniques like using a single
master key for all communication or establishing unique pair-
wise keys between each pair of nodes are either too vulnerable
under attack or may require too much memory, which are all
unsuitable in WSNs.

In order to address the above concerns, the seminal scheme
based on Random Key Pre-distribution (RK P in short) was
first proposed in [4]. Each sensor is initially pre-distributed
with a small number of k distinct keys randomly chosen from

a larger key pool of K keys. Two nodes within communi-
cation range of each other (called physical neighbors) can
directly establish a pair-wise key between them if they share
at least one pre-distributed key. Alternatively, two sensors
can establish a pair-wise key indirectly through a key path
traversing through other sensors, with the constraint that any
two physically neighboring sensors on this path share at least
one pre-distributed key. For the rest of the paper, physical
neighbors that have established a pair-wire key are called
secure neighbors. The RK P scheme is widely accepted in
WSNs due to its simplicity, low overhead, scalability and
energy efficiency. As such, it has served as a foundation for a
host of key management protocols in WSNs that aim towards
improving the probability of pair-wise key establishment,
enhancing the resilience to node capture, or decreasing storage
overhead [5], [6], [7], [8], [9], etc.

However, all the RK P based schemes have an inherent
limitation. The performance of RKP is satisfactory only
in highly dense sensor networks, where the average number
of physical neighbors per node (i.e., average physical node
degree) >= 20 [4], [5], [6]. As we know, such a high density
is not always feasible in practice. In fact, due to the ran-
domness in key distribution and strong constraint in key path
construction, it often happens that many physical neighbors
cannot become secure neighbors, i.e. the secure node degree
is very low, in non-highly dense networks. Consequently, they
will have low secure connectivity and are very likely to be
partitioned. Fig. 1 illustrates this. The original network is
shown in Fig. 1 (a). There is an edge between two nodes if
they are physical neighbors. The average physical node degree
is set as 9.71. The corresponding secure network generated by
RKP is shown in Fig. 1 (b) where an edge exists between
two nodes if they are secure neighbors. The average secure
node degree in Fig. 1 (b) is only 4.06. It is much smaller
compared to the average physical node degree. As can be seen,
the network in Fig. 1 (b) is partitioned into many connected
components. Two nodes cannot communicate securely if they
reside in different connected components. The RK P based
schemes when applied to non-highly dense networks have poor
performance.

Our Contributions: In this paper, we aim to solve the
above problem. Our contributions are three-fold.

o Network Decoupling: We propose a methodology called

network decoupling for secure communications in wire-

1000

80014
600
4008,

200

0 200 400 800 800 1000

(a) Original Network

Fig. 1.

(b) Network with RKP

860 0 260 460 j 660 860
(c) Network with RKP-DE

Average secure node degree comparison between RK P and RK P-DE when at most one proxy is used on each key path. Our RK P-DE achieves

40% improvement in average secure node degree. The network is of size 1000m * 1000m, where 200 nodes are deployed uniformly at random. All nodes
have a communication range of 133m and the average physical node degree is 9.71. We set K = 10000 and k£ = 50.

less sensor networks. In random key pre-distributed
sensor networks, there exist two types of relationships
between any two nodes. One is logical (sharing pre-
distributed keys), and the other is physical (within com-
munication range). In network decoupling, we decouple
these two relationships in the sensor networks. As such,
for any two nodes connected logically, we can indepen-
dently find a path for them physically and vice versa. The
flexibility offered by decoupling greatly enables finding
more logical and physical paths, thereby enhancing the
chances of pair-wise key establishment between physical
neighbors in the network.

e Protocol Design: Based on network decoupling method-
ology, we design a new protocol for secure neighbor
establishment between physical neighbors in the decou-
pled network. We call our protocol as the RKP-DE
protocol, where logical key paths are constructed based
on key sharing information. Then, corresponding physical
key paths are constructed based on node neighborhood
information in our protocol.

e Dependency Elimination: Our third contribution is
proposing novel dependency elimination rules in our
protocol to detect and eliminate key dependencies at
link and path level without compromising existing re-
silience. In key establishment, when multiple key paths
are constructed, there is a possibility of some links (or
paths) being dependent on other links (or paths). Such
dependencies introduce unnecessary overhead in terms of
communication and computation. We point out that such
dependencies exist in all existing RK P based protocols,
where multiple key paths are used [5], [6], [9]. Our
dependency elimination rules can be applied to them to
minimize their overhead as well.

To illustrate performance improvement of our RKP-DE
protocol, in Fig. 1 (c), we show the secure network generated
by our RK P-DE protocol. The average secure node degree
in Fig. 1 (c) has now increased to 5.68, a 40% improvement
over that in Fig. 1 (b). As our analysis shows in Section IV, the

average secure node degree improvement of RK P-DE over
RKP is around 40% when one proxy is used on each key
path. With increase in average secure node degree, the quality
of secure communications naturally increases, demonstrating
the benefits of network decoupling, as also shown in our
performance evaluations in Section V.

We wish to point out that the methodology of decoupling
in itself is not new in networking. In [10], connection estab-
lishment is decoupled from QoS reservation to enhance the
efficiency of frequent short lived Internet connections. The
benefits of decoupling policy from mechanisms in Internet
routing have been demonstrated in [11]. In [12], an approach is
proposed that decouples control from data in TCP congestion
control. Another work is [13], where path naming is decoupled
from the actual path to enable better data delivery in dense
sensor networks. However, to the best of our knowledge, our
work is the first one that applies this methodology for secure
communications in wireless sensor networks.

The remaining of our paper is organized as follows. We
discuss random key pre-distribution and other related works
in Section II. The methodology of network decoupling is in-
troduced in Section III, and our secure neighbor establishment
protocol is detailed in Section IV. In Section V, we present
performance evaluations, and finally we conclude our paper in
Section VI.

II. THE RANDOM KEY PRE-DISTRIBUTION PROTOCOL IN
WIRELESS SENSOR NETWORKS

In a seminal work in [4], the idea of random key pre-
distribution (RK P) was first proposed to establish pair-wise
keys in WSNs. Before nodes are deployed randomly in the
network, each node is pre-distributed with k£ distinct keys
randomly chosen from a large key pool of size K. The set of
keys pre-distributed in node a is called the key chain of node
a, denoted by KC(a). In Fig. 2, nodes b, ¢, d and e are four
physical neighbors of node a. Each node is pre-distributed with
three keys, which are listed beside the corresponding node.
A solid line exists between two nodes if they are physical

Communiéation Range”

{k, Ky k) (b

. {kl’”kZ’
{k4’ kﬁ’,‘,‘]} L

Fig. 2. Pair-wise key establishment in RK P protocol.

neighbors (within communication range), and a dashed line
exists between two nodes if they are logical neighbors (share
at least one pre-distributed key).

After deployment, each node sends a message to its physical
neighbors, containing its node ID and the key IDs of its pre-
distributed keys. If node a shares at least one pre-distributed
key with a physical neighbor, a pair-wise key between them
can be established directly, such as nodes a and b in Fig. 2. To
do so, node a can send a randomly generated pair-wise key to
node b with the pair-wise key encrypted using their shared key
k1. If node a does not share any key with a physical neighbor,
such as node ¢, node a will attempt to establish a pair-wise
key indirectly using other nodes as proxies. Here, a key path
is attempted to be constructed comprising of one or multiple
proxies, where any two successive nodes on the key path are
physical neighbors and share at least one pre-distributed key.
The pair-wise key generated by node a is sent to its physical
neighbor on the key path, with the constraint that the pair-
wise key is encrypted/decrypted in each hop till it reaches the
destination. That is, the logical (sharing pre-distributed keys)
constraint and the physical (within communication range)
constraint are coupled together during key path construction.
In Fig. 2, node b can be the proxy between nodes a and c.
The pair-wise key between nodes a and c is first generated by
node a, then it is sent to node b encrypted by key k1. Node b
will decrypt the pair-wise key, encrypt it by key k4 and send
to node c. Finally node ¢ decrypts the pair-wise key, and uses
it to encrypt future direct communication with node a.

The standard attack model used in analyzing secure com-
munications is one where the attacker does not attempt to
disrupt network operation; rather it attempts to decipher as
much information as possible from sensor communications
[4], [5], [7]. As such, the attacker will typically launch two
types of attacks: link monitor attack and node capture attack.
In the link monitor attack, the attacker monitors and records
all the wireless communications in the network immediately
after node deployment. In the node capture attack, the attacker
will physically capture a certain number of sensors after node
deployment. Once a node is captured, its pre-distributed keys
are disclosed to the attacker. Combining the pre-distributed
keys disclosed and the messages recorded, the attacker will
be able to infer the pair-wise keys between some neighboring

nodes, even if the nodes themselves are not captured. The
pair-wise keys inferred by the attacker are compromised, as
is the corresponding secure communications between those
neighboring nodes.

To evaluate the performance of RK P protocol, two types
of metrics are considered. The first is connectivity, which
includes local connectivity and global connectivity. Local
connectivity is defined as the probability that two physically
neighboring nodes are able to establish a pair-wise key in
between. Global connectivity is defined as either the proba-
bility that the whole secure network (an example is shown
in Fig. 1 (b) or (c)) is connected, or the percent of nodes in
the largest connected component of the secure network. The
other performance metric is resilience, which is defined as
the probability that a pair-wise key between two nodes is not
compromised given that those two nodes are not captured. The
overall goal clearly is to make connectivity and resilience as
high as possible.

The RK P protocol [4] has received wide acceptance in
WSNs due to its simplicity, low overhead, scalability and
energy efficiency. It has served as a foundation for many
other works based on random key pre-distribution, aiming
to improve performance or lower overhead [5], [6], [7], [8],
etc. In [5], the performance of the basic RK P protocol is
enhanced by constructing multiple key paths using proxies for
pair-wise key establishment between physically neighboring
nodes. With multiple key paths, as long as at least one key path
is uncompromised, the pair-wise key is secure. Similarly, [6]
uses multiple two hop key paths to enhance resilience further
under a slightly weaker attack model. We point out that in both
works, a very high network density (average physical node
degree between 20 and 250) is assumed to achieve satisfactory
performance.

Several other works orthogonally improve the basic RK P
protocol by extending the key structure, exploiting certain
network properties to enhance performance, or decreasing
overhead. In [7] and [8], the authors independently extend
the basic RK P protocol by pre-distributing key structures
(either polynomials or vectors) instead of keys to establish
pair-wise keys. When the number of captured nodes is small,
this protocol has much better resilience compared to the basic
protocol. Other works like [14], [15], [16] use power control,
channel diversity or network hierarchy to enhance performance
under assumptions on sensor hardware, network topology
etc. Recently, some works have used deployment knowledge
to achieve comparable performance with fewer number of
keys pre-distributed [17], [18], [19]. These works rely on the
assumption that positions of neighboring nodes in the network
are partially known a priori, helping in decreasing the number
of keys pre-distributed to achieve comparable performance.
We point out that our methodology of network decoupling is
orthogonal to all the works above, and can complement them
to achieve further performance improvement and overhead
reduction.

III. NETWORK DECOUPLING IN RANDOM KEY
PRE-DISTRIBUTED SENSOR NETWORKS

A. Network Decoupling

In random key pre-distributed sensor networks, there exist
two types of relationships between any two nodes. One is
logical (sharing pre-distributed keys), and the other is phys-
ical (within communication range). We can separate these
two types of relationships by decoupling a random key pre-
distributed sensor network into two graphs: a logical one
and a physical one. Two nodes in the logical graph have an
edge between them if they share at least one pre-distributed
key. Similarly two nodes in the physical graph have an edge
between them if they are within communication range of each
other. In the example of Fig. 3 (a), node a shares a key with
node b. Consequently, nodes a and b will have an edge between
them in the logical graph. Besides, node a is within the
communication range of the other four nodes. Consequently
in the physical graph, there will be an edge from node a to the
other four nodes. For the example in Fig. 3 (a), its decoupled
logical and physical graphs are shown in Fig. 3 (b) and (c)
respectively. Detailed description on how nodes construct these
graphs is presented in Section IV.

In random key pre-distributed sensor networks, we define
secure communication as the communication between two
nodes where all messages transmitted (possibly via multi-
hops) are encrypted. Now we will show how network decou-
pling helps achieve secure communication. There are two cases
possible, where two nodes in the network can communicate
securely. The first case is where the two communicating nodes
share a pre-distributed key (i.e., they are directly connected in
the logical graph) and the nodes are also connected (via one or
multiple hops) in the physical graph. In this case, the source
node can encrypt the messages using the shared pre-distributed
keys, and each intermediate node in the physical graph can
simply forward the messages towards the destination, which
will decrypt the messages using the shared pre-distributed
keys. The second case is one where the two communicating
nodes do not share a pre-distributed key (i.e., they are not
directly connected in the logical graph), but are connected in-
directly in the logical graph, and the two nodes for each logical
hop are connected (directly or indirectly) in the physical graph.
In this case, encryption occurs at each intermediate node in
the logical graph, while each intermediate node in the physical
graph simply forwards the messages.

We point out that in order to apply decoupling, each sensor
needs to know both the key sharing and node neighborhood
information among its physical neighbors. Note that it will
incur significant communication overhead to obtain such in-
formation on a global scale. Hence our network decoupling
is a purely localized behavior, where each node obtains local
information and constructs its local logical and physical graphs
in a distributed way.

B. Analysis

In this section, we will demonstrate the benefit of network
decoupling quantitatively by analysis. Specifically, we will

{ku k4a’k5}

decouple

(b) Logical graph

>

(c) Physical graph

(a) Sample sensor network

Fig. 3. Decouple a sensor network into a logical graph and a physical graph.

derive the probability for the case where two physically
neighboring nodes are able to communicate securely. As a
matter of fact, this probability is also the probability that two
physically neighboring nodes are able to establish a pair-wise
key via secure communication. Due to space limitations, we
only present the analysis for the case where at most one proxy
is used on a key path. Interested readers are referred to [20]
for the analysis in general case.

For two physically neighboring nodes to communicate se-
curely, there exist three possible situations: (/) The two nodes
share pre-distributed keys (directly connected in the logical
graph), such as nodes a and b in Fig. 3 (a). Clearly, they
can achieve secure communication directly. We denote the
probability that this situation happens as P;. (2) The two nodes
do not share pre-distributed key (not directly connected in the
logical graph), but they have a common physical neighbor
that shares pre-distributed keys with both of them. In Fig.
3 (a), nodes a and ¢ do not share pre-distributed key, but
have a common physical neighbor node b that shares one
pre-distributed key with both of them. Secure communication
between nodes a and ¢ can now be achieved via the help of
node b acting as a proxy. We denote the probability that this
situation happens as P». (3) The two nodes do not share pre-
distributed key (not directly connected in the logical graph),
and they cannot find a proxy satisfying the second situation
above. But there exists a proxy that shares pre-distributed keys
with both of those two nodes, and is a physical neighbor of
only one of them. In Fig. 3 (a), nodes a and d do not share
pre-distributed key, but node b shares one pre-distributed key
with both of them, and node b is a physical neighbor of only
node a. Secure communication between nodes a and d can be
achieved via the help of node b acting as a proxy. We denote
the probability that this situation happens as Ps.

Let us define coupled network as the network in which
the logical constraint and the physical constraint are always
satisfied simultaneously for each hop on a secure commu-
nication path. Therefore two nodes in a coupled network
can achieve secure communication if and only if either of
the first two situations happens. In the third situation, secure
communication is not possible in a coupled network. On the
other hand, in a decoupled network, secure communication is
possible if any of the three situations happens. We denote the
probability that two nodes can achieve secure communication

using at most one proxy on each key path in coupled and
decoupled network by Peoupre and Pgecoupie Iespectively.
Since the above three situations are disjoint, the expressions
of Peoupte and Pyecouple are simply given by,

Pcouple =P + P27 (1)
Pdecouple:P1+P2+P3- 2)

Clearly, Pyecoupte > Peoupie- This demonstrates that network
decoupling enhances the chance for two neighboring nodes to
communicate securely. In the following, we will derive the
expressions for Py, P, and Ps.

Recall that P; is the probability that two nodes share at
least one pre-distributed key. It is given by,

A () ()

If D, denotes the average physical node degree, the average
number of nodes in the overlapped communication ranges
of two physically neighboring nodes is 0.5865D), [5]. The
probability that n; nodes in the overlapped communication
ranges of both nodes share pre-distributed keys with one of
those two nodes is (0‘5?15[)1’) (Py)™ (1 — P,)0-5865Dp—n1 The
probability that at least one of the above m; nodes shares
pre-distributed keys with the other node is 1 — (1 — Py)™.
Therefore, P> is given by,

0.5865D),

P=(-P) Y (<0.58:15Dp) (P)™
ni=1
(1 _ P1)0.5865Dp—n1 . (1 _ (1 _ Pl)nl)) 4)

For two physically neighboring nodes, the average number
of nodes in the communication range of one node but out-
side the communication range of the other node is 2(D, —
0.5865D,) = 0.8270D,. Similarly, Ps is given by,

8P (0.8270D,
ni

Pa=(1-P)-(1-P)- >
ni=1
(P)™ (1= R)OS20Pe ™ (1= (1= P)™)). (5
We point out that Ppoypre and Pyecoupte (in (1) and (2)) are
also the probabilities that two physically neighboring nodes are
able to establish a pair-wise key between them (via one proxy
at most) in a coupled and decoupled network respectively. The
derivations of them will be used later in the analysis in Section

IVv.

IV. SECURE NEIGHBOR ESTABLISHMENT PROTOCOL IN
DECOUPLED NETWORKS

A. Overview

In this section, we discuss the design of our new protocol for
establishing secure neighbors in decoupled random key pre-
distributed sensor networks. We call our protocol as RK P-
DE protocol. The protocol has four major components in its
execution: 1) constructing local logical and physical graphs in

the decoupled network for each node, 2) establishing multiple
physical key paths between physically neighboring nodes, 3)
eliminating dependencies among the multiple key paths, and
4) establishing pair-wise keys between physically neighboring
nodes. The RK P-DFE protocol is distributed in its execution
like the traditional RK P protocol. Similar to the model in
the traditional scheme in [4], the network model we consider
is one where a set of n sensors are deployed randomly. Each
sensor is pre-distributed with & distinct keys randomly chosen
from a key pool of size K.

The major differences between our RKP-DE protocol
and the traditional RK P protocol are due to the first three
components. In the traditional RK P protocol, key paths are
established in a network where the physical and logical graphs
are coupled. On the other hand in our RKP-DE protocol,
the physical and logical graphs are separated/decoupled. The
first component of our RKP-DE protocol is each node
constructing these two local graphs decoupled from each other.
The local logical graph is constructed based on key sharing
information and the local physical graph is constructed based
on node neighborhood information, following the methodol-
ogy of network decoupling discussed earlier in Section III. The
second component in our RK P-DE protocol is to establish
logical key paths between two physically neighboring nodes
based on the logical graph, and for these logical key paths,
corresponding physical key paths are established based on the
physical graph. The decoupling feature enables more key paths
(both logical and physical) to be constructed when compared
to the traditional RK P protocol. Note that when multiple key
paths (each with multiple links/hops) are constructed, there is
a possibility of some links (or paths) being dependent on other
links (or paths). Such dependencies introduce unnecessary
overhead in terms of communication and computation. The
third component in our RKP-DE protocol proposes novel
dependency elimination rules to detect and eliminate such
dependencies without compromising the existing resilience.
Each component in our RK P-DFE protocol is described in
detail below.

B. Local Graphs Construction

After node deployment, each node obtains the key sharing
and node neighborhood information within its communication
range by local communication with its physical neighbors.
We assume that from local communication, each node can
determine whether any two of its physical neighbors are
physical neighbors or not. This can be easily done by ex-
changing neighbor information during initial communication.
With this information, each node constructs a local logical
graph (G;) and a local physical graph (G,). In the local
logical graph, two nodes are connected if they share at least
one pre-distributed key, while in the local physical graph,
two nodes are connected if they are within communication
range of each other. Note that our protocol needs only local
information exchange and is purely distributed. In this paper,
we assume each node obtains the local information within its
communication range (one-hop). Information across multiple

hops can be obtained by further information exchange, but will
incur more communication overhead.

C. Key Paths Construction

Algorithm 1 shows the pseudocode of key paths construc-
tion executed by each node in the network. In Algorithm
1, u denotes an arbitrary node, while G;(u) and Gp(u) are
its local logical and physical graphs respectively. Initially the
logical key path tree of node u (T,) is empty. The key paths
construction is executed in two steps as shown in Algorithm
1. First, T}, is constructed by node u based on its local logical
graph Gj(u) (lines 1 to 7). This logical key path tree Ty,
contains all the logical key paths between u and all its secure
neighbors. Then, node u constructs corresponding physical key
paths based on both T, and its local physical graph G (u)
(lines 8 to 13). The dependency checking in line 3 and 11
will be discussed in the next subsection.

Logical key path tree construction: The protocol constructs
logical key path tree (lines 1 to 7) using a variant of the
standard depth-first-search algorithm, in which a node could be
chosen multiple times (on different paths). Here N (u) denotes
the set of physical neighbors of node u. Fig. 4 shows the
resultant logical key path tree for node a in the example of
Fig. 3 (b). By executing the algorithm just once on its local
logical graph in Fig. 3 (b), node a is able to obtain all logical
key paths to all its neighbors. Taking node e as an example,
node a obtains two logical key paths between node a and node
e, that are < a,b,c,e > and < a,b,d, e >.

Physical key paths construction: After obtaining the logical
key path tree (T),), node u begins to construct physical key
paths for its neighbors (lines 8 to 13). For each physical
neighbor v, node u first obtains a set of logical key paths
between u and v (Ty,) from T;,. Out of all such key paths in
Ty, some of them will be eliminated based on dependency
checking (as discussed in the next subsection). The set of paths
that pass the dependency checking is denoted as 7T',,,. Finally,
for all logical key paths in T}, corresponding physical key
paths (T;,) are obtained. In Fig. 3 (b), the logical key path
< a,b,d,e > contains a logical hop < b,d > between two
non-neighboring nodes. From Fig. 3 (c), we see that a physical
path < b, a,d > can replace the above logical hop. Therefore,
for logical key path < a,b,d, e >, its corresponding physical
key path is < a, b, a,d, e >, in which each hop is between two
physically neighboring nodes. Message encryption/decryption
occurs for each logical hop, while message transmission occurs
for each physical hop. Here, we select the physical path with
fewest hops to replace a logical hop between non-neighboring
nodes. Other policies can be chosen if energy consumption,
load balancing, etc. are to be considered.

D. Dependency Elimination

We now discuss elimination of link and path dependencies
in steps 3 and 11 of Algorithm 1. Generally, if more key
paths are used, resilience is enhanced. This is because when
multiple key paths exist between two nodes, the attacker needs
to compromise all key paths in order to compromise the

Algorithm 1 Pseudocode of Key Paths Construction

1: Log_Key_Path_Tree_Construct(u,G(u),T%)
2: for eachv € N(u)
3. if Link_Dependency_Checking(v,u,T,) ==
PASS, then

Insert(u,v,T,);

Log_Key_Path_Tree_Construct(v, Gi(u), Ty);

end if
: end for

A

o0

: Phy_Key_Paths_Construct(u,G ,(w),Ty,)

9: for eachv € N(u)

10: obtain the set of all logical key paths between
u and v (Tyy) from Ty;

11: T}, = Path_Dependency_Checking(Tyy);

12: obtain the corresponding set of physical key
paths T, from T, ;

13: end for

14: Insert(u,v,T,)
150 Insert node v into T, as a child of node u.

@

)
© D
© ©
D ©

Fig. 4. Logical Key Path Tree of Node a

pair-wise key established between them. However, this is not
always true. Existing links (or paths) may have dependencies
among them such that the compromise of some links (or paths)
automatically leads to the compromise of other dependent
links (or paths). Clearly, the presence of such dependency
does not enhance resilience. They only increase overhead
in terms of both storage and energy consumption (due to
communication and computation). In this subsection, we pro-
pose two novel dependency elimination rules to decrease such
overheads without affecting the resilience of the pair-wise keys
established.

1) Link Dependency Elimination: We illustrate link depen-
dency with an example in Fig. 5. Node a obtains a logical key
path < a,---,¢,d,---,e, f,---,b > to its physical neighbor
node b. If we denote K (4, j) as the set of shared pre-distributed
keys used to encrypt the messages on the logical hop < 4,7 >
in a logical key path, there exists a link dependency between
the hops < ¢,d > and < e, f > in that K(c,d) C K(e, f).
Since both nodes ¢ and f share keys k1 and k2, there must exist
another shorter logical key path < a,---,¢, f,---,b >, which

Fig. 5. Link Dependency Example

{ky, ko, Ky}

{ky, ks, ks {ky, ks, k)

{k2’ k49 k7}

Fig. 6. Path Dependency Example

has better resilience than the original one. This is because
the compromise of any logical hop between nodes d and e
will compromise the original key path definitely, while it is
possible that the shorter key path is not compromised. On
the other hand, the compromise of the shorter key path will
definitely compromise the original key path!. Also, using a
shorter key path will save overhead. We formally define link
dependency as follows.

Link Dependency: Given two logical hops < 41,77 > and
< i2,j2 > in a logical key path, there exists link dependency
between these two hops if either K (i1,j1) C K(i2,j2) or
K (i2,j2) C K(i1,J1)-

Our link dependency elimination rule is that once such a
link dependency is detected on a logical key path, the protocol
will eliminate that logical key path In the above example,
the logical key path < a,---,¢,d,---,e, f,---,b > will be
eliminated since a shorter key path< a,---,c, f, -+, b > with
better resilience exists. The pseudocode of link dependency
checking is given in Algorithm 2 (lines 1 to 7). In Algorithm
2, root denotes the root node of the logical key path tree
T, Path(u,root) denotes the set of nodes on the logical key
path from u to root, and v.parent denotes the parent node
of node v on the tree T'. As we can see in Algorithm 2, link
dependency will be checked to output a PASS or FAIL,
which is returned in line 3 of Algorithm 1.

2) Path Dependency Elimination: Apart from link depen-
dency, another type of dependency called path dependency
may exist. In Fig. 6, there are two logical key paths between
nodes a and b. However, we can see that the compromise
of the key path < a,c,b > (disclosure of keys (ki, k2) or
(k4)) always leads to the compromise of the other key path
< a,d,b >, but not vice versa. Therefore, given that key path
< a,c,b > exists, the other key path < a,d,b > becomes
redundant in terms of resilience, and also incurs overhead.

'We formally prove that the shorter key path improves resilience over the
original one in [20].

Algorithm 2 Pseudocode of Dependency Checking

1: Link_Dependency_Checking(v,u,T")

2: if 3 node w € Path(u,root), s.t. K(v,v.parent) C
K (w,w.parent), then

3. return FAIL;

4: else if 3 node w € Path(u,root), s.t. K (w,w.parent)
C K (v,v.parent), then

5. return FAIL;

6: else return PASS,;

7: end if

8: Path_Dependency_Checking(7’,,)

9: T{w = Tuv;

10: while 3 paths p and ¢ € T,
OR ¢ is weaker than p, do

1. if p is weaker than ¢, then

s.t. p is weaker than ¢

12: =T, \p;

13: else 1f q is weaker than p, then
14: =T/, \¢

15: end 1f

16: end while
17: return T}, ;

Denoting the set of logical hops on a logical key path p as
Ly, and denote the set of shared pre-distributed keys used on
a logical hop h as K (h), path dependency is formally defined
as follows.

Path Dependency: Given two logical key paths p and g,
there exists path dependency between p and q if either of the
following two conditions is satisfied. (1) V logical hop h €
Ly, 3 a logical hop h' (W' € Lp), st. K(h') C K(h);
(2) VY logical hop h € Ly, 3 a logical hop h' (h' €
L,), st. K(h') C K(h).

If the first condition of path dependency is satisfied, we call
path p weaker than path q. Similarly, path ¢ is weaker than
path p if the second condition is satisfied. Our path depen-
dency elimination rule is that after detecting path dependency
between two logical key paths, our protocol will eliminate
the weaker one. In the above example, the logical key path
< a,d,b > will be eliminated. In case two paths satisfy
both conditions in the path dependency, we can eliminate one
of them based on certain policies (e.g., the path with more
physical hops). The pseudocode of path dependency checking
is given in Algorithm 2 (lines 8 to 17).

E. Pair-wise Key Establishment

Once the physical key paths are constructed after
dependency elimination, each sensor will generate distinct
key shares at random, and send each key share on each
physical key path for each secure neighbor. The messages
are transmitted at each physical hop, while they are
decrypted/encrypted at each logical hop. Take the logical key
path < a,b,d > in Fig. 3 (b) as an example. Its corresponding
physical key path is < a,b,a,d >. We assume a key share
kS$" is transmitted on this key path. We denote {M }j, as the

message M encrypted with key k. The key share transmission
is executed as follows:
a—bi{<a><ad> <k >k,
boa: <d>{<a><d> <k >h.,
amd:i{<a><d> <k >h..

In the message that node a sends to node b, < a > denotes
the source node, and < a,d > denotes the remaining physical
key path. In the message that b sends to a, the < d > without
encryption denotes the remaining physical key path since a
cannot decrypt the message using key ks.

Similarly, node a can transmit another random key share
k,(lz) on another logical key path < a,b,c,e,d > to node d.
Node d may also construct other key paths 2, and transmit
its key shares to node a. Finally, nodes a and d can compute
a common pair-wise key via some simple operation such as
bit-wise XOR operation, based on all the key shares they both
generated.

F. Analysis

In this section, we will derive the expression for the average
secure node degree in both RK P protocol and RKP-DE
protocol, denoted by DEKF and DEKP-DE regpectively. Due
to space limitations, we only present the derivation for the
case where one proxy is used on each key path. Interested
readers are referred to [20] for the general case analysis where
arbitrary number of proxies are used on each key path. In
Section III, we derived expressions for Peoypre and Pyecouple
in (1) and (2) respectively, which denote the probability that
two physically neighboring nodes are able to construct a key
path in RK P-DFE protocol and RK P protocol with at most

one proxy respectively. With this, we can derive DEEF and
DRKP-DE 44
s >

DfKP — Dp . Pcouplea ©)
D?KP—DE — Dp . Pdecouple’)

where recall that D), denotes the average physical node degree.

The improvement of DEXKP—=DE gyer DRKFP denoted by IM,

is then given by,

DRKP-DE _ DRKP _ P ‘ ®
P+ P

Recall that P;, P, and P; in (3), (4) and (5) respectively
are functions of key pool size K, key chain size k£ and
average physical node degree D,. Under different values of
D,,, we compute the values of DEEP DEKP-DE ap(the
improvement IM in Table I (KX = 10000, £ = 50). We can
see that network decoupling improves the average secure node
degree under all situations. The improvement in average secure
node degree helps to enhance the performance of random
key pre-distribution in terms of connectivity and resilience,
which will be demonstrated using simulations in the following
section.

IM =

DRKP
8

2Not shown in Fig. 3 (b)

TABLE I

IMPROVEMENT OF DEEP=DE qygp pRKP {yNDER DIFFERENT Dy
D, 5 10 15 20 25
DFKP 71,66 | 426 | 759 | 11.52 | 15.8
DEEP=DE 1527 1 6.16 | 10.96 | 16.22 | 21.68
IM 37% | 45% | 44% | 41% | 36%

V. PERFORMANCE EVALUATION

In this section, we report experimental data to demonstrate
the performance of our RK P-DE protocol compared to the
traditional RK P protocol under various network and attack
parameters. The metrics we study are connectivity (local
connectivity and global connectivity) and resilience. We also
study the overhead of our RK P-DE protocol compared to
the traditional RK P protocol in terms of communication and
computation.

A. Simulation Environment

The sensor network is a square region of size 1000m *
1000m, in which 1000 sensors are deployed uniformly at
random. The communication range r is the same for all sensors
and is chosen based on the desired average physical node
degree D), (ignore the boundary effect). Each node is aware
of the key sharing and node neighborhood information within
its communication range. The following are the default values
for the parameters unless otherwise specified: average physical
node degree D, = 10, key pool size K = 10000, key chain
size k = 50. The attack model is one where the attacker can
monitor all links in the network, and can capture up to z nodes.
By default, x = 50. Each simulation is run 100 times with
different random seeds, and the data presented is the average
over 100 runs. In both RK P protocol and RK P-D E protocol,
each node tries to establish a pair-wise key with each of its
physical neighbors using multiple key paths based solely on
its local information.

B. Sensitivity of Connectivity to D,

1) Local Connectivity: In Fig. 7, we study the sensitivity
of local connectivity to average physical node degree D,,.
We observe that the local connectivity in RK P-D E protocol
is consistently higher than that in the RK P protocol. The
improvement is in fact more significant (about 35% improve-
ment) for non-highly dense networks where D, < 20. In
RK P protocol, the consideration of both physical and logical
constraints in key path construction limits the number of
key paths between physical neighbors, especially when the
network is not dense. However, the relaxation/decoupling of
the constraints as a result of network decoupling enables the
availability of many more key paths greatly enhancing local
connectivity.

2) Global Connectivity: The definition of global connectiv-
ity here is the percent of nodes in the largest connected compo-
nent of the secure network (an example is shown in Fig. 1 (b)
or (c)). In Fig. 8, we observe that the global connectivity of our

1 _/./.’.. 1 0.9
. [
2 08
£ os // 2 / /
2 5 0.8
3 / / 2 06 8
5" 3 //
o / © 04 3
3 s / / T 07
0 04 &]
- ——RKP G 02 —-RKP [=
-8~ RKP-DE V —#RKP-DE —=RKP-DE
0.2 : : : : 0 - T T 0.6
5 10 15 20 25 5 10 15 20 25 5 10 15 20 25
Average Physical Node Degree (D,)) Average Physical Node Degree (D) Average Physical Node Degree (D)
Fig. 7. Sensitivity of local connectivity to D, Fig. 8. Sensitivity of global connectivity to Dy, Fig. 9. Sensitivity of resilience to Dy
| | ///’—/' :
:.é 08 £ / / 07 4‘/.
g 8 o6 8 /
i e 5 %” 05 X
o O g4 $ W
3 2
S o4 o 03
~-RKP O 02 RP [- RKP (x=50) - RKP-DE (x=50)
=~ RKP-DE / = RKP-DE = RKP (x=100) ~e—RKP-DE (x=100)
0.2 . : : T 0 T 0.1 .
40 50 60 70 80 40 50 60 70 80 4 50 60 70 80
Key Chain Size (k) Key Chain Size (k) Key Chain Size (k)
Fig. 10. Sensitivity of local connectivity to k Fig. 11. Sensitivity of global connectivity to k Fig. 12. Sensitivity of resilience to k and x

RK P-DE protocol is higher than that of the RK P protocol
in all situations. The improvement is especially significant in
non-highly dense networks (up to 200% improvement). This
improvement is a result of the phase transition phenomenon
in random graphs [21]. According to this phenomenon, the
largest connected component in a random graph with n nodes
jumps from ©(logn) to ©(n) when the average node degree
reaches beyond a certain threshold. With network decoupling
in our RK P-DE protocol, such a jump in global connectivity
occurs when Dj, is around 10 compared to the RK P protocol
when D, is around 15. Another observation is that the global
connectivity when D, = 10 in our RKP-DE protocol is
similar to the global connectivity when D, = 20 in the RK P
protocol. This demonstrates that we can obtain similar levels
of global connectivity with much fewer nodes compared to the
number of nodes needed in the RK P protocol.

C. Sensitivity of Resilience to D,

In Fig. 9, we study the sensitivity of resilience to D,. We
see that the resilience is higher in our RK P-DE protocol
compared to that of the traditional RK P protocol in general.
The improvement is consistent except when the network is
very sparse (D, = 5). Network decoupling not only increases
the number of key paths between physically neighboring
nodes, but also decreases the number of logical hops of
many key paths, both of which help enhance the resilience.
When network becomes very sparse, only a single key path
can be constructed for most situations, thus the improvement
diminishes.

D. Sensitivity of Connectivity and Resilience to k and x

In Fig. 10, 11 and 12, we study the sensitivity of connec-
tivity and resilience to k and z. In Fig. 10 and 11, we see
similar pattern in sensitivity of connectivity to k as that to
D,,. This is because the increase in k enhances the probability
that two nodes share pre-distributed keys, which makes the
local logical graph more dense. This can also be achieved
by increasing D, as well. Overall, our RKP-DE protocol
achieves better performance than that of RK P protocol, and
the performance improvement is especially significant in non-
highly dense network. On the other hand, given the same
performance requirement, our RK P-DE protocol can save
storage overhead (k) up to around 30% compared with the
RK P protocol. For example, given k = 80 in the RK P proto-
col, our RK P-DFE protocol can achieve similar performance
with &k around (or smaller than) 60.

In Fig. 12, we study the sensitivity of resilience to key chain
size k under different values for number of captured nodes
. We observe that the resilience of our RK P-DE protocol
is better than that of the RK P protocol for all cases. The
improvement is especially more pronounced for larger z (i.e.,
stronger attacks), which further demonstrates the effectiveness
of our RKP-DFE protocol. The value of z does not impact
connectivity, so we do not show the sensitivity of connectivity
to x.

E. Overhead

An important ancillary factor judging the performance of
our protocol is the incurred overhead. The storage overhead
(k) in our RK P-DFE protocol is less than that of the RK P
protocol under similar performance, as discussed above. Here

we focus our discussion on communication and computation
overhead.

1) Communication Overhead: In our protocol, each sensor
establishes pair-wise keys with D secure neighbors on av-
erage. In order to establish a pair-wise key with each secure
neighbor, the sensor needs to send a messages on each key
path. If we denote the average number of key paths between a
pair of sensors as n,, and denote the average number of hops
of a physical key path as h,, the average number of messages
a sensor sends/forwards is W In practice, sensors may
not need to use all the key paths available if the resilience
requirement can be met with a few short physical key paths.
Therefore, the values for n, and h, will be relatively small.
Overall, the communication overhead in our protocol is similar
to that of the traditional RK P protocol.

2) Computation Overhead: The computation overhead is
dominated by two major parts in our protocol, which are
key paths construction and key shares transmission. In key
paths construction, the variant of depth-first-search algorithm
we use is lightweight, especially in non-dense network where
D, is moderate. In key shares transmission, the encryp-
tion/decryption operation adopts a lightweight symmetric al-
gorithm, and this operation occurs only on a logical hop basis.
Overall, the computation overhead is mild.

VI. FINAL REMARKS

In this paper, we proposed network decoupling to sepa-
rate the logical relationship from the physical relationship in
random key pre-distributed sensor networks. We designed a
secure neighbor establishment protocol (RK P-DFE) in decou-
pled sensor networks, and also designed a set of dependency
elimination rules for eliminating link and path level key
dependencies among the key paths. We conducted detailed
analysis as well as extensive simulations to evaluate our pro-
posed solution. Our data showed that significant performance
improvement can be achieved using our solution in non-highly
dense networks. Our future work will consist of practically
implementing our proposed solution on the existing sensor
network testbed at OSU [22].

ACKNOWLEDGMENT

We thank the anonymous reviewers for their invaluable
feedback. This work was partially supported by NSF under
grants No. ACI-0329155 and CCF-0546668.

REFERENCES

[11 W. Diffie and M. E. Hellman, “New directions in cryptography,” IEEE
Transactions on Information Theory, vol. IT-22, no. 6, pp. 644-654,
November 1976.

[2] R. L. Rivest, A. Shamir, and L. M. Adleman, “A method for obtaining
digital signatures and public-key cryptosystems,” Communications of the
ACM, vol. 21, no. 2, pp. 120-126, February 1978.

[3] B. C. Neuman and T. Tso, “Kerberos: an authentication service for
computer networks,” IEEE Communications Magazine, vol. 32, no. 9,
pp. 33-38, September 1994.

[4] L. Eschenauer and V. D. Gligor, “A key-management scheme for
distributed sensor networks,” in Proceedings of the 9th ACM Conference
on Computer and Communications Security (CCS), November 2002.

[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(171

(18]

[19]

[20]

[21]

[22]

H. Chan, A. Perrig, and D. Song, “Random key predistribution schemes
for sensor networks,” in Proceedings of IEEE Symposium on Research
in Security and Privacy, May 2003.

A. Wacker, M. Knoll, T. Heiber, and K. Rothermel, “A new approach
for establishing pairwise keys for securing wireless sensor networks,”
in Proceedings of the 3rd ACM Conference on Embedded Networked
Sensor Systems (Sensys), November 2005.

W. Du, J. Deng, Y. S. Han, and P. K. Varshney, “A pairwise key pre-
distribution scheme for wireless sensor networks,” in Proceedings of
the 10th ACM Conference on Computer and Communications Security
(CCS), October 2003.

D. Liu and P. Ning, “Establishing pairwise keys in distributed sensor
networks,” in Proceedings of the 10th ACM Conference on Computer
and Communications Security (CCS), October 2003.

S. Zhu, S. Xu, S. Setia, and S. Jajodia, “Establishing pairwise keys for
secure communication in ad hoc networks: a probabilistic approach,”
in Proceedings of the 11th IEEE International Conference on Network
Protocols (ICNP), November 2003.

D. Verma, “Decoupling qos guarantees and connection establishment
in communication networks,” in Proceedings of Workshop on Resource
Allocation Problems in Multimedia Systems (in conjunction with RTSS),
December, 1996.

A. Snoeren and B. Raghavan, “Decoupling policy from mechanism in
internet routing,” in Proceedings of the ACM SIGCOMM Workshop on
Hot Topics in Networking (HotNets-I1I), November 2003.

H. Kung and S. Wang, “Tcp trunking: Design, implementation and
performance,” in Proceedings of the 11th IEEE International Conference
on Network Protocols (ICNP), November, 1999.

D. Niculescu and B. Nath, “Trajectory based forwarding and its appli-
cations,” in Proceedings of the 9th ACM International Conference on
Mobile Computing and Networking (MOBICOM), September 2003.

J. Hwang and Y. Kim, “Revisiting random key pre-distribution schemes
for wireless sensor networks,” in Proceedings of the 2nd ACM Workshop
on Security of Ad Hoc and Sensor Networks (SASN), October 2004.
M. Miller and N. Vaidya, “Leveraging channel diversity for key estab-
lishment in wireless sensor networks,” in Proceedings of the 25th IEEE
Conference on Computer Communications (INFOCOM), April 2006.
P. Traynor, H. Choi, G. Cao, S. Zhu, and T. L. Porta, “Establishing
pair-wise keys in heterogeneous sensor networks,” in Proceedings of
the 25th IEEE Conference on Computer Communications (INFOCOM),
April 2006.

D. Huang, M. Mehta, D. Medhi, and L. Harn, “Location-aware key
management scheme for wireless sensor networks,” in Proceedings of
the 2nd ACM Workshop on Security of Ad Hoc and Sensor Networks
(SASN), October 2004.

W. Du, J. Deng, Y. Han, S. Chen, and P. Varshney, “A key management
scheme for wireless sensor networks using deployment knowledge,” in
Proceedings of the 23rd IEEE Conference on Computer Communications
(INFOCOM), March 2004.

D. Liu, P. Ning, and W. Du, “Group-based key pre-distribution in
wireless sensor networks,” in Proceedings of ACM Workshop on Wireless
Security (WiSe), September 2005.

W. Gu, X. Bai, S. Chellappan, and D. Xuan, “Network decoupling for
secure communications in wireless sensor networks,” Dept. of CSE, The
Ohio-State University, Columbus, OH, Tech. Rep. OSU-CISRC-3/06-
TR27, March 2006.

J. Spencer, The Strange Logic of Random Graphs, Algorithms and
Combinatorics 22. Springer-Verlag, 2000.

E. Ertin, A. Arora, R. Ramnath, and M. Nesterenko, “Kansei: A
testbed for sensing at scale,” in Proceedings of the 4th Symposium on
Information Processing in Sensor Networks (IPSN/SPOTS track), April
2006.

