
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 22, NO. 5, MAY 2014 995

Reliable Concurrent Error Detection
Architectures for Extended Euclidean-Based

Division Over GF(2m)
Mehran Mozaffari-Kermani, Member, IEEE, Reza Azarderakhsh, Chiou-Yng Lee, Senior Member, IEEE,

and Siavash Bayat-Sarmadi, Member, IEEE

Abstract— The extended Euclidean algorithm (EEA) is an
important scheme for performing the division operation in finite
fields. Many sensitive and security-constrained applications such
as those using the elliptic curve cryptography for establishing
key agreement schemes, augmented encryption approaches, and
digital signature algorithms utilize this operation in their struc-
tures. Although much study is performed to realize the EEA
in hardware efficiently, research on its reliable implementations
needs to be done to achieve fault-immune reliable structures.
In this regard, this paper presents a new concurrent error
detection (CED) scheme to provide reliability for the aforemen-
tioned sensitive and constrained applications. Our proposed CED
architecture is a step forward toward more reliable architectures
for the EEA algorithm architectures. Through simulations and
based on the number of parity bits used, the error detection
capability of our CED architecture is derived to be 100%
for single-bit errors and close to 99% for the experimented
multiple-bit errors. In addition, we present the performance
degradations of the proposed approach, leading to low-cost and
reliable EEA architectures. The proposed reliable architectures
are also suitable for constrained and fault-sensitive embedded
applications utilizing the EEA hardware implementations.

Index Terms— Efficient fault diagnosis, error coverage (EC),
extended Euclidean algorithm (EEA), reliable and constrained
embedded systems.

I. INTRODUCTION

CURRENTLY, many sensitive and security-constrained
applications and embedded systems such as those based

on Radio Frequency IDentification technology or Near-Field
Communication require high-performance, low-power, and
energy-aware architectures for the cryptographic solutions
providing them with the level of security required. Not only do
these cryptographic hardware and embedded systems security
mechanisms need to be efficient, but they also need to be able

Manuscript received December 9, 2012; revised March 26, 2013; accepted
April 21, 2013. Date of publication June 14, 2013; date of current version
April 22, 2014.

M. Mozaffari-Kermani is with the Department of Electrical and Microelec-
tronic Engineering, Rochester Institute of Technology, Rochester, NY 14623
USA (e-mail: mozaffari@ieee.org).

R. Azarderakhsh is with the Department of Computer Engineering,
Rochester Institute of Technology, Rochester, NY 14623 USA (e-mail:
azarderakhsh@gmail.com).

C.-Y. Lee is with the Department of Computer Information and Network
Engineering, Lunghwa University of Science and Technology, Taoyuan 33306,
Taiwan (e-mail: pp010@mail.lhu.edu.tw).

S. Bayat-Sarmadi is with the Department of Computer Engineering, Sharif
University of Technology, Tehran, Iran (e-mail: bayatsr@gmail.com).

Digital Object Identifier 10.1109/TVLSI.2013.2260570

to thwart the implementation attacks taking advantage of the
side-channel information leaked.

Various research works are recently focused on achiev-
ing high-performance finite field arithmetic implementations
because of their use in many applications, e.g., the elliptic
curve cryptography (ECC) (developed independently by Miller
and Koblitz). One of the paramount advantages of the ECC
over conventional public-key schemes is that much smaller key
sizes are required to achieve the same security level [1], [2].
Several ECC implementations were reported in the literature at
the hardware level, see [3]–[6]. The ECC arithmetic operations
include multiplications and divisions over GF(2m) and GF(p)
[1], which are highly time-consuming. Thus, it is desirable to
develop efficient division architectures for GF(2m).

In finite field GF(2m), a number of schemes are mainly
applied for computing the division operation, e.g., the Fermat’s
little theorem [7], the discrete-time Wiener-Hopf equation
(DTWHE), and the extended Euclidean algorithm (EEA)
[8]–[12]. For Fermat’s little theorem approaches, the divi-
sion A/B can be represented by repeating multiply-square
algorithms such that AB−1 = AB2m−2 = A(B(B · · ·
(B(B)2)2 · · ·)2)2. This method requires m − 1 times squar-
ings and m times multiplications for implementing systolic
architecture [7]. The second method, i.e., DTWHE, finds a
multiplicative inversion in GF(2m) by solving a system of
2m − 1 linear equations with 2m − 1 unknowns over GF(2)
through Gaussian elimination. The last method, i.e., the EEA,
uses the fact that GCD(G(x), B) = 1, where B is a nonzero
element in GF(2m) and G(x) is an irreducible polynomial to
generate the field. The EEA finds R and S to satisfy RG +
SB = 1.

Although a number of very-large scale integration (VLSI)
implementations were presented for the EEA scheme, see
[8]–[11], they do not guarantee that in presence of natural
or malicious faults, the architectures are reliable and fault-
immune. In fact, both natural faults caused by defects in
the VLSI implementations and also fault attacks (a power-
ful subset of side-channel techniques that is used to break
cryptographic schemes) can compromise the reliability of the
hardware implementations of the EEA. Boneh et al. [13] first
introduced how to recover secret keys of the Rivest-Shamir-
Adleman and the discrete-logarithm-based cryptosystems.
This idea is to inject faults during computations and to use
the erroneous outputs to deduce information on the secret

1063-8210 © 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

996 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 22, NO. 5, MAY 2014

key stored in the secure component. In addition, in [14],
differential fault analysis attacks are investigated for the ECC.
We also note that in other cryptographic algorithms, natural
and malicious faults can undermine the reliability of the
implementations, see [15]–[17], for the ones on the advanced
encryption standard (AES).

For cryptographic architectures such as the AES, many
research works are carried out to achieve reliable and fault-
immune structures, see [18]–[24] (also, refer to [25] for
reliable architectures for a lightweight block cipher). In
addition, concerning the finite field arithmetic architectures
(for some finite field multiplication architectures refer to
[26]–[30]), various concurrent error detection (CED) multi-
pliers for polynomial basis and normal basis of GF(2m) are
proposed using parity codes and recomputing using shifted
operands schemes [31]–[34].

In this paper, we propose a new multiple parity scheme
to realize the CED EEA division architectures. The proposed
parity scheme is denoted as dual parity prediction, detecting
the errors in the division results. Our simulation results for five
different number of parity bits and different number of both
stuck-at-zero and -one injections show close to 100% error
coverage for the proposed fault diagnosis approaches while
reaching acceptable hardware, time, and efficiency overheads.
We note that almost all of the occurring errors caused by nat-
ural faults are detected using the proposed methods. Although
the proposed approaches may not result in a complete solution
to the problem of intentionally injected faults, the high error
coverage achieved would most likely make these attacks more
difficult. We also note that the architecture of the CED systolic
array inversion presented in [35] uses a single parity prediction
scheme for fault diagnosis that results in suboptimal error cov-
erage for multiple fault injections. Our proposed architecture
can reach the error coverage (EC) of close to 100% for multi-
ple injected faults. In addition, our proposed architecture can
be tailored based on the reliability objectives and the overhead
to be tolerated, i.e., multiple parity prediction signatures can be
potentially utilized. With the available resources and the reli-
ability goals to achieve, one can utilize the proposed architec-
tures to have more reliable hardware architectures of the EEA
divisions.

The organization of this paper is as follows. In Section II,
mathematical background related to the polynomial basis
division algorithm and parity codes are presented. Section III
presents the proposed parity prediction schemes. In Section IV,
the proposed CED architectures are presented. Simulation-
based experiments for deriving the error coverage are pre-
sented in Section V. In addition, in this section, the complexity
analysis and the overhead benchmark are presented. Finally,
we conclude in Section VI.

II. MATHEMATICAL BACKGROUND

This section briefly introduces the basic concepts of poly-
nomial basis division algorithm and single parity code.

A. Polynomial Basis Division Algorithm

Finite fields of order 2m are denoted as binary fields (also
referred to as characteristic-two finite fields). One way to con-

struct GF(2m) is to use a polynomial basis representation. The
elements of GF(2m) are the binary polynomials (polynomials
whose coefficients are in the field {0, 1}) of degree at most
m −1, e.g., A = a0 +a1x +· · ·+am−1xm−1, with coefficients
in GF(2). We note that an irreducible binary polynomial of
degree m is also chosen and used for arithmetic operations.
Addition of field elements is performed with coefficient arith-
metic performed modulo 2. Multiplication of field elements is
performed modulo the reduction polynomial.

Let A and B be two elements in GF(2m), G(x) be the
irreducible polynomial to construct the finite field GF(2m),
and C be the result of the division A/B mod G(x). In other
words, let us have

A = a0 + a1x + · · · + am−1xm−1

B = b0 + b1x + · · · + bm−1xm−1

C = c0 + c1x + · · · + cm−1xm−1

G(x) = g0 + g1x + · · · + gm−1xm−1 + xm

where the coefficients of each polynomial is in GF(2). To
compute the division A/B mod G(x), we have the followings:

1) if R and S are both even, then GCD(R, S) = xGCD
(R/x, S/x);

2) if R is even and S is odd, then GCD(R, S) = GCD
(R/x, S);

3) if R and S are odd, then GCD(R, S)=GCD(R + S/x ,S).

Considering the above facts, let R(i), S(i), U (i), V (i) be
the i th recursive computational results of four polynomials
R, S, U, V , respectively

R(i) = ri,m xm + ri,m−1xm−1 + · · · + ri,1x + ri,0

S(i) = si,m xm + si,m−1xm−1 + · · · + si,1x + si,0

U (i) = ui,m−1xm−1 + ui,m−2xm−2 + · · · + ui,1x + ui,0

V (i) = vi,m−1xm−1 + vi,m−2xm−2 + · · · + vi,1x + vi,0.

In the initial step, assume that R = B, S = G(x), U = A,
V = 0, and β = −1. Then, the division algorithm is performed
through Algorithm 1.

In this algorithm, (U/x)G refers to (U/x) modG(x).
Observing the division in Algorithm 1, two pairs (R, S) and
(U, V) in each recursive operation are controlled by two values
β and r0 to determine simple exchange and shift operations.
Basically, each recursive operation in Algorithm 1 is satisfied
by si,0 = 1. Therefore, from Steps 4, 7, and 10, the polynomial
R(i) can be obtained as follows:

R(i) = (R(i−1) + r0S(i−1))

x

= 1

x
[(ri−1,0 + ri−1,1x + · · · + ri−1,m xm)

+ r0(si−1,0 + si−1,1x + · · · + si−1,m xm)]

= (ri−1,1 + r0si−1,1) + (ri−1,2 + r0si−1,2)x

+ · · · + (ri−1,m + r0si−1,m)x (m−1)

= ri,0 + ri,1x + · · · + ri,m xm (1)

MOZAFFARI-KERMANI et al.: RELIABLE CONCURRENT ERROR DETECTION ARCHITECTURES 997

Fig. 1. Architectures for (a) sequential division and (b) its control unit.

where

ri,m = 0

ri, j = ri−1, j+1 + r0si−1, j+1, for 0 ≤ j ≤ m − 1

r0 = ri−1,0.

As the field GF(2m) is generated by the irreducible polynomial
G(x) with g0 = 1, we have the following:

x−1 = g1 + · · · + gm−1xm−2 + xm−1.

Thus, the polynomial U (i) is computed as follows:

U (i) = (U (i−1) + r0V (i−1))

x
mod G(x)

= ui,0 + ui,1x + · · · + ui,m−1x (m−1) (2)

where

ui, j = ui−1, j+1 + r0vi−1, j+1 + g j+1(ui−1,0 + r0vi−1,0)

u0 = g1(ui−1,0 + r0vi−1,0).

From two Steps 5 and 11, we can use the two’s complement
representation to count the value β, through

⌈
log2(m + 1)

⌉+1
bits to control the GF(2m) division. It is noted that

ctrl = βMSB�r0 (note that βMSB is the most significant bit of
β), the value β in each recursive division operation is given
by the following relation:

β =
{

β − 1, if ctrl = 0

(−β) − 1 = (β + 1) − 1 = β, if ctrl = 1.
(3)

Therefore, based on the computation of two polynomials S and
V in two Steps 4 and 7 of Algorithm 1, we can obtain the
followings:

S = ctrl � R + ctrl � S = MUX(R, S, ctrl) (4)

V = ctrl � U + ctrl � V = MUX(U, V , ctrl). (5)

Based on the above, Fig. 1 shows the sequential division
architecture and its detailed architecture for control unit. We
note that in the initial step, R = B, S = G(x), U = A, V = 0,
β = −1. Applying Algorithm 1, the division has the latency
of 2m − 1 clock cycles.

B. Single Parity Code (SPC)

In coding theory, (m + 1, m) SPC [36] includes m-bit
message and one-bit parity. Assume that U = u0 + u1x +
· · · + um−1xm−1 is an m-bit message, the codeword C using
the SPC representation is then constructed as C = PU + xU ,
where PU is the parity of U defined as follows:

PU = u0 + u1 + · · · + um−1 mod 2. (6)

We use P and P̂ for the actual and predicted parities, respec-
tively. Let the message U correspond to the field element,
then, we have the following:

1) if g∈ GF(2), then P̂gU = g PU ;
2) if A and B are two elements in GF(2m), then P̂A+B =

PA + PB ;
3) assuming the irreducible polynomial G(x) = g0 +g1x +

· · ·+g(m−1)x (m−1)+xm is used to generate the finite field
GF(2m). Then, we can obtain P̂x A mod G(x)= PA+am−1,
with A = a0 + a1x + · · · + am−1xm−1.

As stated above, the SPC is capable of detecting odd number
of errors in the codewords. Note that applying SPC, CED
multipliers over GF(2m) are presented in [32]–[34].

998 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 22, NO. 5, MAY 2014

III. PROPOSED THREE-TYPE PARITY

PREDICTION SCHEMES

The division algorithm implementations presented in the
previous section can be used in high-performance applications.
Nevertheless, these architectures are not able to detect the
errors occurring in their hardware implementations to achieve
error-free division results. To realize reliable architectures and
as a step-forward toward thwarting fault analysis attacks in
the cryptographic implementations using this algorithm, in this
section, we propose three-type parity prediction schemes for
implementing error detection division architectures.

A. Definition of Parity Prediction Representation

Let us denote the i th recursive division result as C =
c0 + c1x + · · · + cm−1xm−1 and let us select the value n
as n = �m/k�. Then, C can be represented as an n × k
matrix whose elements are the coefficients of the i th recursive
division except for n − �m/k� elements which are zero
(the coefficient vector is zero-padded). In other words, j th
coefficients of the polynomial for m < j < nk are zero.
Each parity bit is the sum of k-term coefficients. Therefore, the
proposed CED structure is called n-multiple parity prediction
scheme. For n = 1, the proposed CED scheme is called
single parity prediction scheme. For the sake of regularity
and complying with the general scheme, the coefficients can
be also arranged by an n × n array structure, where n =⌈√

m
⌉

. According to (6), we define three parity types, i.e.,
row parity P(0)

C = (P(0)
C0

, P(0)
C1

, . . . , P(0)
Cn−1

), column parity

P(1)
C = (P(1)

C0
, P(1)

C1
, . . . , P(1)

Cn−1
), and cross parity P(2)

C =
(P(2)

C0
, P(2)

C1
, . . . , P(2)

Cn−1
). Each of these parity bits is defined

as follows:

P(0)
C j

=
n−1∑

l=0

c jn+l , 0 ≤ j ≤ n − 1 (7)

P(1)
C j

=
n−1∑

l=0

cnl+ j , 0 ≤ j ≤ n − 1 (8)

P(2)
C j

=
n− j−1∑

l=0

c(n+1)l+ j +
n−1∑

l=n− j

c(n+1)l+ j−n, 0 ≤ j ≤ n − 1.

(9)

For clarity, we use the following example to illustrate the
derivations for our presented three parities.

Example 1: Let C = ∑8
i=0 ci x i , then, it can be arranged

in the following 3 × 3 array:

C =
⎛

⎝
c0 c1 c2
c3 c4 c5
c6 c7 c8

⎞

⎠ .

According to (7)–(9), we can obtain three parities, such that
the row parity P(0)

C = (c0+c1+c2, c3+c4+c5, c6+c7+c8), the
column parity P(1)

C = (c0+c3+c6, c1+c4+c7, c2+c5+c8), and
the cross parity P(2)

C = (c0 +c4 +c8, c1 +c5 +c6, c2 +c3 +c7).
For the i th iteration result C(i) = c0 + c1x + · · · +

cm−1xm−1, according to Algorithm 1 and denoting C(i−1)

as the i − 1th iteration, we have C(i) = C(i−1)/x mod

G(x). Considering the irreducible polynomial G(x), it is
straightforward to obtain C(i) = ci−1,0 +· · ·+ci−1,m−1xm−2+
ci−1,0(g1 + · · · + gm−1xm−2 + xm−1). Let us denote ci−1,0 +
· · · + ci−1,m−1xm−2 + ci−1,0xm−1 as C , then, we have C =
C(i−1)/x mod (xm + 1).

Proposition 1: Let the i − 1th recursive division result be
denoted by C (for the sake of brevity) and be arranged by an
n × n array structure, where n = ⌈√

m
⌉

. Based on (7)–(9),
let us define three parity polynomials P(0)

C , P(1)
C , and P(2)

C
as P(i)

C0
+ P(i)

C1
x + · · · + P(i)

Cn−1
xn−1, 0 ≤ i ≤ 2, respectively

(for simplicity, we use similar notations for parity vectors and
polynomials). Then, three predicted parities of C are formed
by the following:

P̂(0)

C
= P(0)

C + W (−1) + W (10)

P̂(1)

C
= x−1 P(1)

C mod (xn + 1) (11)

P̂ (2)

C
= x−1 P(2)

C mod (xn + 1) + W
(1) + W (12)

where

W = w0 + w1x + · · · + wn−1xn−1 (13)

wi = cni , for 0 ≤ i ≤ n − 1

W (i) = xi W mod (xn + 1) (14)

W = wn−1 + wn−2x + · · · + w0xn−1. (15)
Proof: We present the proof for row parity, noting that

the results for column and cross parities can be very similarly
obtained. Considering the parity polynomials, the row parity
P̂(0)

C
is derived as follows:

P̂(0)

C
= (c0 + cn + P(0)

C0
) + (cn + c2n + P(0)

C1
)x

+ · · · + (c(n−1)n + c0 + P(0)
Cn−1

)xn−1

= P(0)
C0

+ P(0)
C1

x + · · · + P(0)
Cn−1

xn−1

+cn + c2nx + · · · + c0xn−1

+c0 + cn x + · · · + c(n−1)nxn−1

= P(0)
C + W (−1) + W.

In the following, based on the three parity presentations in
(7)–(9), we derive a novel parity prediction scheme that is
used in the presented fault-immune architectures.

B. Parity Prediction for C(i) = C(i−1)/x mod G(x)

For computing the parity prediction for C(i) = C(i−1)/x
mod G(x) operation, the column-based type parity prediction
is presented as follows (those for row and cross parities are
obtained in a similar manner).

Predicted Column Parity P̂(1)

C (i) : Two column parity poly-
nomials for G and C(i) are represented by

P(1)
G = P(1)

G0
+ P(1)

G1
x + · · · + P(1)

Gn−1
xn−1 (16)

P(1)

C (i) = P(1)

C (i)
0

+ P(1)

C (i)
1

x + · · · + P(1)

C (i)
n−1

xn−1 (17)

MOZAFFARI-KERMANI et al.: RELIABLE CONCURRENT ERROR DETECTION ARCHITECTURES 999

Fig. 2. Proposed error detection architecture for the EEA over GF(2m) using the column parity prediction scheme.

where

P(1)
G j

=
n−1∑

l=0

gl×n+ j+1 for 0 ≤ j ≤ n − 1

P(1)
C j

=
n−1∑

l=0

ci,l×n+ j for 0 ≤ j ≤ n − 1.

Then, the predicted column parity of C(i) is represented by
the following:

P̂ (1)

C (i) = P(1)

C
+ ci−1,0 P(1)

G
. (18)

Similarly, based on Proposition 1 (see the result for column
parity) and (18), and considering n = ⌈√

m
⌉

, for computing
the predicted parity P̂(1)

C
in a recursive manner, we have the

following:

P̂(1)

C
= x−1 P̂(1)

C (i−1) mod (xn + 1). (19)

Thus, the predicted column parity P̂(1)

C (i) is obtained as follows:

P̂(1)

C (i) = x−1 P̂(1)

C (i−1)mod (xn + 1) + ci−1,0 P(1)

G
. (20)

C. Parity Prediction for MUX(U (i−1), V (i−1), ctrl)

Note V (i) = MUX(U (i−1), V (i−1), ctrl) represents V (i) =
U (i−1) � ctrl + V (i−1) � ctrl. That is, the value of V depends
on the binary value of ctrl. Assume that PU (i−1) and PV (i−1)

are the parities of U (i−1) and V (i−1), respectively. Then, the
parity prediction of V (i) is performed as follows:

P̂V (i) = PU (i−1) � ctrl + PV (i−1) � ctrl

= MUX(PU (i−1) , PV (i−1) , ctrl). (21)

IV. PROPOSED CED DIVISION ARCHITECTURE

In the previous section, we presented parity prediction
derivations for individual modules in our proposed scheme.
According to the division architecture in Fig. 1, this section
presents the proposed CED division architecture for the
column-based scheme, those for row and cross parities are
presented subsequently through a remark.

Based on Section II-A, let us denote R(i),S(i),U (i), and V (i)

as the i th iterative results. In addition, in Algorithm 1, we
have si−1,0 = 1 and r0 = ri−1,0 for each iterative operation.
Assume that two predicted column parities P̂(1)

R(i−1) and P̂(1)

S(i−1)

are pre-calculated. Based on (1), the predicted column parity
P̂(1)

R(i) using (20) can be obtained as follows:

P̂(1)

R(i) = (P̂(1)

R(i−1) + r0 P̂(1)

S(i−1))

x
mod (xn + 1)

+(ri−1,0 + r0si−1,0)P(1)

G
.

According to (4), the predicted column parity P̂(1)

S(i) using (21)
can be obtained by the following:

P̂(1)

S(i) = MUX(P̂(1)

R(i−1) , P̂(1)

S(i−1) , ctrl). (22)

In addition, two predicted column parities P̂(1)

U (i) and P̂(1)

V (i) are
computed as follows:

P̂(1)

U (i) = (P̂(1)

U (i−1) + r0 P̂(1)

V (i−1))

x
mod (xn + 1)

+(ui−1,0 + r0v i−1,0)P(1)

G
(23)

P̂(1)

V (i) = MUX(P̂(1)

U (i−1) , P̂(1)

V (i−1) , ctrl). (24)

1000 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 22, NO. 5, MAY 2014

Fig. 3. Column parity prediction architectures.

For clarity, we use the column parity prediction scheme
to illustrate our proposed CED EEA division architecture as
shown in Fig. 2. In Fig. 2, the Actual Column Parity-RS
module computes two actual column parities P(1)

R and P(1)
S . In

addition, that of UV computes two actual column parities P(1)
U

and P(1)
V . The Predicted Column Parity-RS module computes

two predicted column parities P̂(1)
R and P̂(1)

S , respectively,
as shown in Fig. 3. Additionally, the two predicted column
parities P̂(1)

U and P̂(1)
V are obtained as shown in this figure.

The equality checker module performs ER = PR + P̂R , ES =
PS + P̂S , EU = PU + P̂U , and EV = PV + P̂V operations.
Hence, we are able to use four indicators to detect division
computation errors. We note that after parity predictions, the
CED division architecture requires one extra clock cycle to
compute the error checking indicators (ER , ES , EU , EV).
The proposed CED architecture detects the occurrences of
permanent or transient errors in the division architecture if
any of four indicators becomes nonzero.

Remark 1: One can obtain the row parity prediction results
through the following formulae, the proof of which is not
presented for the sake of brevity

P̂ (0)

R(i) = P̂(0)

R(i−1) + r0 P̂(0)

S(i−1) + W (−1)
RS + W (0)

RS (25)

P̂ (0)

U (i) = P̂(0)

U (i−1) + r0 P̂(0)

V (i−1)

+(ui−1,0 + r0v i−1,0)P(0)

G
+ W (−1)

UV + W (0)
UV

P̂(0)

S(i) = MUX(P̂(0)

R(i−1) , P̂(0)

S(i−1) , ctrl)

P̂(0)

V (i) = MUX(P̂(0)

U (i−1) , P̂(0)

V (i−1) , ctrl)

where

WRS =
n−1∑

i=0

(ri−1,ni + si−1,ni)xi

WUV =
n−1∑

i=0

(ui−1,ni + vi−1,ni)xi .

In addition, one can obtain the cross parity prediction results
as follows:

P̂(2)

R(i) = P̂(2)

R(i−1) + r0 P̂(2)

S(i−1) + W
(−1)
RS + W

(0)
RS (26)

P̂(2)

U (i) = P̂(2)

U (i−1) + r0 P̂(2)

V (i−1)

+(ui−1,0 + r0v i−1,0)P(2)

G
+ W

(−1)
UV + W

(0)
UV

P̂(2)

S(i) = MUX(P̂(2)

R(i−1) , P̂(2)

S(i−1) , ctrl)

P̂(2)

V (i) = MUX(P̂(2)

U (i−1) , P̂(2)

V (i−1) , ctrl)

where

W RS =
n−1∑

i=0

(ri−1,ni + si−1,ni)xn−i−1

W UV =
n−1∑

i=0

(ui−1,ni + vi−1,ni)xn−i−1.

V. ERROR SIMULATIONS AND OVERHEAD BENCHMARK

Here, we present the results of our error simulations to
benchmark the effectiveness of the proposed approaches.
In addition, time and hardware overheads of the presented
schemes are presented.

A. Error Detection Capability

In error control coding theory, multiple parity prediction
with n-bit parity, for instance, for implementing the CED
multiplier over GF(2m) [37], has the error coverage of

EC (%) = 100 ×
(

2m+n − 2m

2m+n

)
% = 100 ×

(
1 − 1

2n

)
%.

MOZAFFARI-KERMANI et al.: RELIABLE CONCURRENT ERROR DETECTION ARCHITECTURES 1001

TABLE I

ERROR DETECTION CAPABILITY OF OUR PROPOSED CED DIVISION ARCHITECTURE FOR STUCK-AT-1 (STUCK-AT-0) FAULT MODELS

Number of
Type

Parity bits

errors 1 3 5 7 9

Four (multiple)

Injected 9949 (7188) 9958 (7220) 9958 (7182) 9946 (7117) 9957 (7258)

Detected 8869 (6029) 9671 (6850) 9794 (6970) 9844 (6980) 9880 (7179)

EC (%) 89.14 (83.88) 97.11 (94.88) 98.35 (97.05) 98.97 (98.08) 99.22 (98.91)

Three (multiple)
Injected 9835 (6239) 9802 (6259) 9787 (6198) 9815 (6222) 9788 (6241)

Detected 8668 (5335) 9420 (5970) 9590 (6028) 9667 (6108) 9666 (6157)

EC (%) 88.13 (85.51) 96.1 (95.38) 97.98 (97.26) 98.49 (98.17) 98.75 (98.65)

Two (multiple)

Injected 9242 (4830) 9227 (4812) 9235 (4922) 9264 (4838) 9244 (4870)

Detected 7808 (4220) 8817 (4595) 8975 (4806) 9075 (4766) 9104 (4817)

EC (%) 84.48 (87.37) 95.55 (95.49) 97.18 (97.64) 97.95 (98.51) 98.48 (98.91)

One (single)

Injected 7331 (2872) 7317 (2781) 7269 (2768) 9296 (2800) 7322 (2777)

Detected 7331 (2872) 7317 (2781) 7269 (2768) 9296 (2800) 7322 (2777)

EC (%) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100)

To evaluate the error detection capability of our proposed CED
division architecture, we use MATLAB to simulate the EEA
division over GF(2163). We select the field-defining polyno-
mial from the National Institute of Standards and Technology
recommended polynomials for Elliptic Curve Digital Signature
Algorithm as x163 + x7 + x6 + x3 + 1. Let us consider the
CED architecture using column parity prediction in Fig. 2.
Then, in the initial step, we consider four fault injection cases
to inject faults for four registers (R, S, U, V) using 10 000
random inputs. We select five parity-bit types to obtain the
error detection capability of our proposed architecture. Table I
shows our results based on our fault models. As seen in this
table, the proposed CED architecture can reach 100% error
coverage for single stuck-at-1 (stuck-at-0) fault models. As
the number of injected faults goes beyond three, the proposed
CED architecture with seven parity bits can achieve about 99%
error coverage. Note that the results of our experiments are for
both transient and permanent faults that can potentially cover
both natural faults and malicious fault analysis. In addition,
the location and number of injections are randomly chosen.

Based on the structure of Fig. 2, our proposed CED archi-
tecture uses dual multiple parity prediction scheme. In this
regard, we have the following: 1) given our proposed CED
architecture, it is shown that all the single-bit errors in the
CED divider architecture can be detected and 2) from the
error simulation results, it is derived that the error detection
capability is more than 97% if the selected parity length is at
least five bits (using dual multiple parity scheme). We obtain
very close to 100% error coverage by increasing the number of
parity bits as shown through the simulation results in Table I,
according to reliability objectives and in case of overhead
tolerance.

B. Time and Hardware Overheads

In this subsection, we present the time and hardware
overheads of the proposed error detection scheme (including
equality checkers) for the EEA division. The time and area
complexity benchmark of the three predicted parity schemes
shows that two parity prediction schemes, i.e., row parity

scheme and cross parity scheme, have the same time and area
overheads. The column parity prediction approach, however,
saves 6n XOR gates compared with the row/cross parity
prediction schemes. The time overhead of the column parity
prediction scheme is also less by (2m − 1)TA compared with
those for the row/cross parity schemes. Therefore, the column
parity prediction scheme has lower time and area overheads
as compared with the row/cross parity prediction schemes.

For comparing the time and area overheads, we use the
NanGate standard-cell library1 [38]. We use the typical corner
(Vdd = 1.10 V and Tj = 25 °C) and the drive strength of
one for all the utilized primitives in this subsection (implying
similar input transition and load capacitance for the primi-
tives). Based on these, as seen in Table II, we have presented
the time and area overheads for the proposed CED division
architecture over GF(2163) using the parity prediction schemes
for eight parity bits and also the time and area overheads for
various number of parity bits. As shown in this table and for
eight parity bits, without parity prediction scheme, we have
the area of 6330 μm2 and the critical path delay of 71.5 ns
and with parity prediction for the column-based approach,
these are 7611 μm2 and 71.74 ns, respectively. Therefore,
the area and the time overheads of 20.24% and 0.33% are
achieved as seen in this table for the column-based approach.
In addition, as shown in Table II and for 8 parity bits, these
are 7688 μm2 and 78.20 ns for the row/cross parity-based
architecture. Therefore, the area and time overheads of 21.45%
and 9.37% for row/cross-based parity schemes are achieved.

As shown in Table II, we have also presented the overhead
results for seven different parity bits, i.e., for 2, 4, 6, 8, 10,
12, and 14 parity bits. These correspond to the area overheads
of 17.72% to 25.18% for row/cross parity-based scheme and
17.42% to 23.07% for the column-based scheme. In other
words, increasing the number of parity bits increases the area
overheads at the gain of higher error coverage. As seen in

1The library was generated using NanGate’s Library Creator and the
45-nm FreePDK Base Kit from North Carolina State University (NCSU) and
characterization was done using the Predictive Technology Model (PTM) from
Arizona State University (ASU) [38].

1002 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 22, NO. 5, MAY 2014

TABLE II

TIME AND AREA OVERHEADS FOR THE PROPOSED CED DIVISION ARCHITECTURE OVER GF(2163)

USING THE PRESENTED PARITY PREDICTION SCHEMES

(a) Overheads for the presented CED division architecture using 8 parity bits.
Divider Area Delay Overhead(%)

architecture (μm2) (ns) Area Time

Without parity
prediction scheme

6330 71.50 – –

With row/cross parity
prediction scheme

7688 78.20 21.45 9.37

With column parity
prediction scheme

7611 71.74 20.24 0.33

(b) Area and time overheads for various number of parity bits.
Scheme # Parity bits 2 4 6 8 10 12 14

Row/cross parity
Area overhead (%) 17.72 18.96 20.21 21.45 22.70 23.94 25.18
Time overhead (%) 9.53 9.48 9.42 9.37 9.37 9.37 9.37

Column parity
Area overhead (%) 17.42 18.36 19.30 20.24 21.18 22.12 23.07
Time overhead (%) 0.44 0.39 0.33 0.33 0.33 0.27 0.27

this table, the time overheads for these parity bits are at most
9.53% (for the row/cross-based scheme) and 0.44% for the
column-based approach. The area and time overheads shown in
Table II can be used to get insight about the effectiveness of the
proposed scheme. For instance, for column-based (row/cross-
based) scheme and for eight parity bits, we reach the area
and time overheads of 20.24% (21.45%) and 0.33% (9.37%),
respectively. However, the results presented in [34] with CED
for multiplications reaches more than 40% and 20% area
and time overheads, respectively, for the same number of
parity bits (this is observation and not comparison, as the
architectures are different). Note that based on the reliability
constraints and the available resources, one can choose the
schemes presented in this paper with the benchmarks pre-
sented in this section to have more reliable EEA hardware
architectures.

VI. CONCLUSION

In this paper, we presented three parity prediction schemes
to make the EEA division algorithm more reliable. The
proposed CED division architecture was formed by dual
multiple parity prediction approaches. In this regard, it was
shown that the column parity prediction scheme had lower
time and space overheads compared with the row/cross parity
prediction schemes. Through our simulations, it was shown
that the CED division architecture using dual multiple parity
prediction scheme was capable of reaching close to 100%
error coverage for single and multiple stuck-at faults. This
made the architectures for the EEA division scheme more
reliable while keeping their high performance characteristics
by having acceptable time×area overheads. One may choose
the proposed fault-immune architectures to reach the reliabil-
ity objectives needed, depending on the resources available
and the performance and efficiency to reach for sensitive
applications such as those utilizing the ECC architectures for
providing various security mechanisms such as establishing
key agreement schemes, augmented encryption approaches,
and digital signature algorithms.

ACKNOWLEDGMENT

The authors would like to thank the reviewers for their
constructive comments.

REFERENCES

[1] I. Blake, G. Seroussi, and N. Smart, Elliptic Curves in Cryptography.
New York, NY, USA: Cambridge Univ. Press, 1999.

[2] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital
signatures and public-key cryptosystems,” Commun. ACM, vol. 21, no. 2,
pp. 120–126, 1978.

[3] G. Orlando and C. Paar, “A high-performance reconfigurable elliptic
curve processor for GF(2m),” in Proc. Workshop Cryptograph. Hardw.
Embedded Syst., 2000, pp. 31–43.

[4] A. Royo, J. Morán, and J. C. López, “Design and implementation of
a coprocessor for cryptography applications,” in Proc. Eur. Design Test
Conf. Proc., 1997, pp. 213–217.

[5] J. Adikari, V. S. Dimitrov, and R. J. Cintra, “A new algorithm for double
scalar multiplication over Koblitz curves,” in Proc. IEEE Int. Symp.
Circuits Syst., May 2011, pp. 709–712.

[6] R. Farashahi and M. Joye, “Efficient arithmetic on Hessian curves,”
in Proc. Int. Conf. Pract. Theory Public Key Cryptography, 2010,
pp. 243–260.

[7] S.-W. Wei, “VLSI architectures for computing exponentiations, multi-
plicative inverses, and divisions in GF(2m),” IEEE Trans. Circuits Syst.
I, Reg. Papers, vol. 44, no. 10, pp. 847–855, Oct. 1997.

[8] J. H. Guo and C. L. Wang, “Systolic array implementation of Euclid’s
algorithm for inversion and division in GF(2m),” IEEE Trans. Comput.,
vol. 47, no. 10, pp. 1161–1167, Oct. 1998.

[9] C. H. Wu, C. M. Wu, M. D. Shieh, and Y. T. Hwang, “High-speed,
low-complexity systolic designs of novel iterative division algorithms in
GF(2m),” IEEE Trans. Comput., vol. 53, no. 3, pp. 375–380, Mar. 2004.

[10] J. H. Guo and C. L. Wang, “Hardware-efficient systolic architecture for
inversion and division in GF(2m),” IEE Comput. Digit. Tech., vol. 145,
no. 4, pp. 272–278, Jul. 1998.

[11] N. Takagi, “A VLSI algorithm for modular division based on the binary
GCD algorithm,” IEICE Trans. Fundam. Electron., Commun. Comput.
Sci., vol. E81-A, no. 5, pp. 724–728, May 1998.

[12] K. Kobayashi and N. Takagi, “Fast hardware algorithm for division in
GF(2m) based on the extended Euclid’s algorithm with parallelization of
modular reductions,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 56,
no. 8, pp. 644–648, Aug. 2009.

[13] D. Boneh, R. DeMillo, and R. Lipton, “On the importance of checking
cryptographic protocols for faults,” in Proc. Eurocrypt, 1997, pp. 37–51.

[14] I. Biehl, B. Meyer, and V. Muller, “Differential fault attacks on elliptic
curve cryptosystems,” in Proc. 20th Annu. Int. Cryptol. Conf., 2000,
pp. 131–146.

MOZAFFARI-KERMANI et al.: RELIABLE CONCURRENT ERROR DETECTION ARCHITECTURES 1003

[15] J. Blomer and J. P. Seifert, “Fault based cryptanalysis of the advanced
encryption standard (AES),” in Proc. Financial Cryptography, Jan. 2003,
pp. 162–181.

[16] J. Blomer and V. Krummel, “Fault based collision attacks on AES,” in
Proc. Int. Workshop Fault Diagnosis Tolerance Cryptography, Oct. 2006,
pp. 106–120.

[17] J. Takahashi, T. Fukunaga, and K. Yamakoshi, “DFA mechanism on the
AES key schedule,” in Proc. Int. Workshop Fault Diagnosis Tolerance
Cryptography, Sep. 2007, pp. 62–72.

[18] C. H. Yen and B .F. Wu, “Simple error detection methods for hardware
implementation of advanced encryption standard,” IEEE Trans. Comput.,
vol. 55, no. 6, pp. 720–731, Jun. 2006.

[19] T. G. Malkin, F. X. Standaert, and M. Yung, “A comparative cost/security
analysis of fault attack countermeasures,” in Proc. Int. Workshop Fault
Diagnosis Tolerance Cryptography, Oct. 2006, pp. 159–172.

[20] G. Di Natale, M. Doulcier, M. L. Flottes, and B. Rouzeyre, “A reliable
architecture for parallel implementations of the advanced encryption
standard,” J. Electron. Test., Theory Appl., vol. 25, no. 4, pp. 269–278,
Aug. 2009.

[21] M. Mozaffari-Kermani and A. Reyhani-Masoleh, “Concurrent structure-
independent fault detection schemes for the advanced encryption stan-
dard,” IEEE Trans. Comput., vol. 59, no. 5, pp. 608–622, May 2010.

[22] M. Mozaffari-Kermani and A. Reyhani-Masoleh, “A lightweight high-
performance fault detection scheme for the advanced encryption standard
using composite fields,” IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 19, no. 1, pp. 85–91, Jan. 2011.

[23] A. Satoh, T. Sugawara, N. Homma, and T. Aoki, “High-performance
concurrent error detection scheme for AES hardware,” in Proc.
Int. Workshop Cryptograph. Hardw. Embedded Syst., Aug. 2008,
pp. 100–112.

[24] P. Maistri and R. Leveugle, “Double-data-rate computation as a counter-
measure against fault analysis,” IEEE Trans. Comput., vol. 57, no. 11,
pp. 1528–1539, Nov. 2008.

[25] M. Mozaffari-Kermani and R. Azarderakhsh, “Efficient fault diagnosis
schemes for reliable lightweight cryptographic ISO/IEC standard CLE-
FIA benchmarked on ASIC and FPGA,” IEEE Trans. Ind. Electron.,
[Online]. Available: http://dx.doi.org/10.1109/TIE.2012.2228144.

[26] P. K. Meher, “Systolic and non-systolic scalable modular designs of
finite field multipliers for reed-solomon codec,” IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol. 17, no. 6, pp. 747–757, Jun. 2009.

[27] P. K. Meher, “Systolic and super-systolic multipliers for finite field
GF(2m) based on irreducible trinomials,” IEEE Trans. Circuits Syst.
I, Reg. Papers, vol. 55, no. 4, pp. 1031–1040, May 2008.

[28] J. Xie, P. K. Meher, and J. He, “Low-complexity multiplier for GF(2m)
based on all-one polynomials,” IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 21, no. 1, pp. 168–173, Jan. 2013.

[29] J. Adikari, A. Barsoum, M. A. Hasan, A. H. Namin, and C. Negre,
“Improved area-time trade-offs for field multiplication using optimal
normal bases,” IEEE Trans. Comput., vol. 62, no. 1, pp. 193–199,
Jan. 2013.

[30] C. H. Kim, C. P. Hong, and S. Kwon, “A digit-serial multiplier for
finite field GF(2m),” IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,
vol. 13, no. 4, pp. 476–483, Apr. 2005.

[31] C. Y. Lee, C. W. Chiou, and J. M. Lin, “Concurrent error detection
in polynomial basis multiplier over GF(2m),” J. Electron. Test., Theory
Appl., vol. 22, pp. 143–50, Feb. 2006.

[32] S. Fenn, M. Gossel, M. Benaissa, and D. Taylor, “On-line error detection
for bit-serial multipliers in GF(2m),” J. Electron. Test., Theory Appl., vol.
13, no. 1, pp. 29–40, 1998.

[33] C. Y. Lee, C. W. Chiou, and J. M. Lin, “Concurrent error detection in
a bit-parallel systolic multiplier for dual basis of GF(2m),” J. Electron.
Test., Theory Appl., vol. 21, pp. 539–549, Sep. 2005.

[34] S. Bayat-Sarmadi and M. Anwar Hasan, “On concurrent detection of
errors in polynomial basis multiplication,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 15, no. 4, pp. 413–426, Apr. 2007.

[35] Y.-C. Chuang and C.-W. Wu, “On-line error detection schemes for a sys-
tolic finite-field inverter,” in Proc. Asian Test Symp., 1998, pp. 301–305.

[36] S. Lin and D. J. Costello, Error Control Coding. Englewood Cliffs, NJ,
USA: Prentice-Hall, 2004.

[37] W. Chelton and M. Benaissa, “Concurrent error detection in GF(2m)
multiplication and its application in elliptic curve cryptography,” IET
Circuits, Devices Syst., vol. 2, no. 3, pp. 289–297, 2008.

[38] (2013). 45-nm FreePDK Base Kit [Online]. Available:
http://www.si2.org/openeda.si2.org/projects/nangatelib/

Mehran Mozaffari-Kermani (M’11) received the
B.Sc. degree in electrical and computer engineering
from the University of Tehran, Tehran, Iran, in
2005, and the M.E.Sc. and Ph.D. degrees from the
Department of Electrical and Computer Engineer-
ing, University of Western Ontario, London, ON,
Canada, in 2007 and 2011, respectively.

He joined the Advanced Micro Devices as a
Senior ASIC/Layout Designer, integrating sophisti-
cated security/cryptographic capabilities into a sin-
gle accelerated processing unit. In 2012, he joined

the Electrical Engineering Department, Princeton University, Princeton, NJ,
USA, as an NSERC Post-Doctoral Research Fellow. As of 2013, he has been
an Assistant Professor with the Department of Electrical and Microelectronic
Engineering at Rochester Institute of Technology, Rochester, NY, USA. His
current research interests include emerging security/privacy measures for
deeply embedded systems, cryptographic hardware systems, fault diagnosis
and tolerance in cryptographic hardware, VLSI reliability, and low-power
secure and efficient FPGA and ASIC designs.

Dr. Mozaffari-Kermani is a member of the IEEE Computer Society. He
was a recipient of the prestigious Natural Sciences and Engineering Research
Council of Canada Post-Doctoral Research Fellowship in 2011.

Reza Azarderakhsh received the B.Sc. degree in
electrical and electronic engineering in 2002, the
M.Sc. degree in computer engineering from the
Sharif University of Technology, Tehran, Iran, in
2005, and the Ph.D. degree in electrical and com-
puter engineering from the University of Western
Ontario, London, ON, Canada, in 2011.

He joined the Department of Electrical and Com-
puter Engineering, University of Western Ontario,
as a Limited Duties Instructor, in September 2011.
He has been a Post-Doctoral Fellow with the Center

for Applied Cryptographic Research and the Department of Combinatorics
and Optimization, University of Waterloo, Waterloo, ON, Canada. As of
2013, he has been an Assistant Professor with the Department of Computer
Engineering at Rochester Institute of Technology, Rochester, NY, USA. His
current research interests include finite field and its application, elliptic curve
cryptography, and pairing based cryptography.

Chiou-Yng Lee (SM’08) received the Bachelor’s
degree in medical engineering and the M.S. degree
in electronic engineering from Chung Yuan Chris-
tian University, Jhongli, Taiwan, in 1986 and 1992,
respectively, and the Ph.D. degree in electrical engi-
neering from Chang Gung University, Taiwan, in
2001.

He was a Research Associate with the Chunghwa
Telecommunication Laboratory, Taiwan, from 1988
to 2005. He joined the Department of Project Plan-
ning. He taught those related field courses with

Ching Yun University. Currently, he is a Professor with the Department
of Computer Information and Network Engineering, Lunghwa University of
Science and Technology. His current research interests include computations
in finite fields, error-control coding, signal processing, and digital transmission
system.

Dr. Lee is a senior member of the IEEE Computer Society. He is an Honor
Member of Phi Tao Phi in 2001.

Siavash Bayat-Sarmadi (M’08) received the B.Sc.
degree from the University of Tehran, Tehran, Iran,
in 2000, the M.Sc. degree from the Sharif Univer-
sity of Technology, Tehran, in 2002, and the Ph.D.
degree from the University of Waterloo, Waterloo,
ON, Canada, in 2007, all in computer engineering
(hardware).

In 2007, he joined Advanced Micro Devices, Inc.
As of 2013, he has been an Assistant Professor with
the Department of Computer Engineering at Sharif
University of Technology, Tehran, Iran. His current

research interests include computer arithmetic and architecture, cryptographic
hardware and embedded systems, and fault-tolerant computing.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

