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Abstract—Recently, considerable research has been performed
in cryptography and security to optimize the area, power, timing,
and energy needed for the point multiplication operations over bi-
nary elliptic curves. In this paper, we propose an efficient imple-
mentation of point multiplication on Koblitz curves targeting ex-
tremely-constrained, secure applications. We utilize the Gaussian
normal basis (GNB) representation of field elements over GF(2™)
and employ an efficient bit-level GNB multiplier. One advantage
of this GNB multiplier is that we are able to reduce the hardware
complexity through sharing the addition/accumulation with other
field additions. We utilized the special property of normal basis
representation and squarings are implemented very efficiently by
only rewiring in hardware. We introduce a new technique for point
addition in affine coordinate which requires fewer registers. Based
on this technique, we propose an extremely small processor archi-
tecture for point multiplication. Through application-specific inte-
grated circuit (ASIC) implementations, we evaluate the area, per-
formance, and energy consumption of the proposed crypto-pro-
cessor. Utilizing two different working frequencies, it is shown that
the proposed architecture reaches better results compared to the
previous works, making it suitable for extremely-constrained, se-
cure environments.

Index Terms—Crypto-processor, Gaussian normal basis (GNB),
Koblitz curves, point multiplication, RFID, security, wireless
sensor networks.

I. INTRODUCTION

OWADAYS, Radio Frequency IDentification (RFID)

technology surrounds us in several forms. RFID typically
refers to wireless single chip, passive or active transponders
operating at frequencies from 120 kHz (low-frequency) to
10 GHz (microwave, semi-active or active tags). They are
widely used for several applications such as access control,
identification control, Smartdust (for massively distributed
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sensor networks), and other closed system security-constrained
applications. Moreover, security in wireless sensor networks
is very important because sensor nodes are often deployed in
security-constrained environments and are potentially exposed
to hostile intruders. If even one node is captured by malicious
attackers, the overall impact can be extremely harmful. These
two instances are among extremely-constrained applications
requiring efficient and low-energy implementations of security
mechanisms.

Lately, it has been suggested that symmetric key cryptog-
raphy might not be preferable for security-constrained applica-
tions in which there is a risk involved in storing symmetric keys,
e.g., on an RFID tag or a sensor node [1]. This is in addition to
the side-channel information attacks and the overheads for their
countermeasures for block ciphers [2], [3]. Moreover, until re-
cently, public key cryptography has been considered to be infea-
sible due to the high overhead it adds to the constrained devices.
For instance, passive RFID tags are not equipped with batteries
and due to this constraint, they cannot embed energy-demanding
cryptographic algorithms. Nonetheless, elliptic curve cryptog-
raphy (ECC) (as a public key cryptography scheme) has been
employed recently in several applications due to its advantages
over traditional schemes. The main advantage of ECC is that it
offers similar security levels as other approaches but it employs
smaller key sizes.

The security of ECC relies on the difficulty of solving the
elliptic curve discrete logarithm problem (ECDLP) [4]. The
main arithmetic computation of ECC is an operation denoted as
point multiplication. The performance of point multiplication
is determined by finite field arithmetic computations such as
addition, squaring, inversion, and multiplication. Binary fields
of characteristic two, i.e., GF'(2™), are the most efficient fields
for hardware implementations. Field elements can be repre-
sented using polynomial basis or normal basis with m bits.
There are several implementations of point multiplication over
binary fields in the literature targeting resource-constrained
applications. For instance, one can refer to [5]-[9] to name a
few, covering a wide variety of cases including different curve
forms, e.g., generic and Edwards, and different coordinate sys-
tems, e.g., affine, projective, and mixed. Field elements have
been represented using polynomial basis and application-spe-
cific integrated circuit (ASIC) hardware platforms have been
employed as prototype platforms in all these implementations.

In this paper, for the first time, we consider the efficient im-
plementation of point multiplication on Koblitz curves targeting
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extremely-constrained devices. We represent the field elements
using Gaussian normal basis (GNB). Bit-level multiplication
using normal basis provides cheap squarings and, comparably,
low area complexity, making it suitable for resource-constrained
environments. The main contributions of this paper can be sum-
marized as follows:

* We propose an efficient hardware architecture for point
multiplication on binary Koblitz curves. In this regard,
an efficient bit-level GNB multiplier is employed. The
proposed crypto-processor requires fewer clock cycles in
comparison with the counterparts.

* We share the addition/accumulation part of the bit-level
multiplier to perform other field additions, resulting in
lower area complexities. Moreover, employing normal
basis representation provides cheap squarings which can
be achieved by rewiring on hardware.

* We propose a new technique to compute point additions
in affine coordinates. This technique is based on applying
a recently introduced inversion algorithm [10] and it re-
quires fewer registers to store intermediate variables than
the traditional schemes.

* Finally, we synthesize the proposed architecture on the
ASIC platform using a 65-nm CMOS technology. Our
results show that the proposed efficient architecture for
point multiplication on Koblitz curves consumes less
energy compared to the previous works. The low number
of clock cycles needed for the presented approach makes
it suitable for high-throughput and energy-constrained
applications.

The organization of this paper is as follows. In Section II, we
review preliminaries of bit-level multiplication in GNB over
GF(2™). In Section III, point multiplication on Koblitz curves
using affine coordinates and our new point addition scheme
is presented. In Section IV, the architecture of the proposed
crypto-processor for point multiplication on Koblitz curves
is presented. In Section V, the efficiency of the proposed
crypto-processor is benchmarked through ASIC synthesis.
Furthermore, we compare the area and timing results with the
counterparts available in the literature. Finally, we conclude the
paper in Section VI.

II. PRELIMINARIES

A. Gaussian Normal Basis

It has been shown that there exists a normal basis for the
binary extension field GF(2™) for all positive integers m. A
normal basis is constructed by finding a normal element 3 €
GF(2™), where 4 is a root of an irreducible polynomial of
degree m. Then, the set N = {8,42,---,42" '} is a basis
for GF(2™) and its elements are linearly independent. In this
case, A € GF(2™) can be represented as A = 37" 1 a;67,
where a; € GF(2). Let p = mT + 1 be a prime number and
ged(mT'/k,m) = 1, where k is the multiplicative order of 2
modulo p. Then, the normal basis N = {8,82,---,8*" '}
over GF(2™) is called the Gaussian normal basis (GNB) of type
T,T > 1[11]. GNB is attractive mainly because it provides ef-
ficient computations for multiplication.
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For an element, say, A = (ag, a1, -, @m-1) € GF(Z?"?,
squaring (power of two) can be written as A2 = 37 - a; g2,
where 32" = . Hence, squaring is a linear opera-
tion and it can be obtained by a right cyclic shift as
A? = (am_1,00,01, " @m_2). Similar to the polynomial
basis, addition can be obtained by a bit-wise XOR operation of
two elements A and B as A + B = 3.7 Ha; © b;)5? .

B. Multiplication Using GNB

The first bit-level normal basis multiplier was invented by
Massey and Omura in [13]. It is a bit-level parallel-in serial-out
(BL-PISO) multiplier in which all the coordinates of both input
operands should be present throughout the multiplication op-
eration. Bit-level serial-in parallel-out (BL-SIPO) multipliers
were studied for normal basis and two different structures were
proposed, namely, Least Significant Bit (LSB) first and Most
Significant Bit (MSB) first structures by Beth and Gollmann in
[12]. The BL-SIPO normal basis multipliers are advantageous
for applications where one of the input operands is available in
a bit-serial fashion. A parallel-in parallel-out (PIPO) version of
this multiplier was presented in [14].

In what follows, we present the preliminaries
for bit-level GNB  multiplication over GF(2™).
Let A = (ag.a1, - ,0m_1) = Z;’gl a;/% and
B = (bo,b1,,bm-1) = 175" b;8% be two field elements

in GF(2™). Then, C € GF(2™) will be their product, i.e.,
C = (ey 1, 6m-1) = AB :ZZ'LBI Z;T;Bl uibjﬂzl"'y.

For GNB, the product of A € G#(2™), given in bit-serial
fashion, and B € G'F(2'™) given in parallel can be written as
[15]:

C:( o (((lm—l@P(Y)) >>1+(1/m72®/)(y>>1)> >14-- )
>1+a0pY >m-1), (1)

where p(Y) = (y1,90(1,Y), $0(2,Y), -+, 80(m —1,Y)) and
s0(i,Y) = 311 yrGij) € {0.1},1 < i < m — 1. Note that
R is an (m — 1) x T multiplication matrix with the (4, j)-th
element as R(4,7),0 < R(4,7) <m—1,1 <i < m—1,
and 1 < 3 < T. Each row of the matrix R contains 7" inte-
gers in [0, m — 1]. The architecture for the bit-level MSB-first
SIPO GNB multiplication is depicted in Fig. 1(a). As one can
see, every bit of operand B is available, while operand A should
be available in serial with the MSB first. In this multiplier struc-
ture, registers (Y) and (%) are initializedto Y = (B > 1) =
(bin—1.b0,b1, -+ . bp—2) and0 = (0,0, - - -, 0), respectively. In
the first clock cycle, the register (Z) contains Z(1) = a1 ©
p(B > 1). Then, the registers (Y} and (7} should be cyclically
shifted to the right. Thus, after the m-th clock cycle, the register
(Z) contains the coordinates of C, i.e., Z(m) = C. The imple-
mentation of p(Y) € GF(2™) is performed by a p module for
type T' GNB as depicted in Fig. 1(b) which is a binary tree of
XOR gates.

The structure of BL-SIPO GNB multiplier can be easily
modified for a BL-PIPO architecture. In this case, both
operands A and B should be available throughout the multi-
plication process. The multiplication matrix R is symmetric
as R(m —4,7) = R(i,j) +imodm,1 < i < (m—1/2),
1 < § < T.Therefore, one canreduce its size to ((m—1/2)xT)
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TABLE I
COMPARISON AMONG BIT-LEVEL MULTIPLIERS FOR TYPE I' GNB OVER GF'(2™) WITH2m — 1 < Cx < T'm — T+ 1. C'y DENOTES THE COMPLEXITY
OF NORMAL BASIS AND IT IS MEASURED BY THE NUMBER OF ENTRIES OF MULTIPLICATION MATRIX R. FOR MORE DETAILS ABOUT ITS VALUES, ONE CAN
REFER TO [16] AND [17]

[ Bit-level Multipliers | # AND | # XOR [ #FFs | Critical path delay [ Input | Output |
MO [13] Cn Cy—1 2m T4 + [logy, Cn | T'x parallel serial
IMO [18] m Cy—1 2m T4 + ([logy T'] 4 [logy, m|)T'x | parallel serial
BG [12] m Cn 2m Ta+ (14 [logy T|)Tx serial parallel
GG [14] m < m 3m Ta+ (14 [logy (T + 1)])Tx parallel | parallel
RH [19] mi <M=l T 3m | Ta+ (14 [logo(T +1)])Tx | parallel | parallel
AR1[20], [21] m < w 3m Ta+ (14 [logy T)Tx parallel | parallel

aya,...a, ,
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Fig. 1. (a) The architecture of MSB-first bit-level normal basis multiplier with
parallel output [12] (b) The architecture of P module for type T GNB.

and hence reduce the area complexity of the p module and
consequently the entire multiplier.

We compare the time and area complexities of the bit-level
normal basis multipliers in Table I, where area complexities in
terms of gate count and time complexities in the form of crit-
ical path delay are depicted. As one can see, the PIPO architec-
ture requires smaller area in comparison with the counterparts.
MO [13] and IMO [18] are two multipliers with parallel-input
and serial-output architectures as the results of multiplication
are available in serial in each clock cycle. It should be noted
that for real applications, e.g., in point multiplication of ECC,
one needs to store the products in a register to start the next
finite field operation in the computation of point addition and
doubling (for point multiplication). Therefore, for real applica-
tions, these multipliers also require three registers. BG[12] has a
serial-input parallel-output architecture and similar to the other
architectures, for real applications, one needs to have both input
operands stored in a register (shift register) during the multi-
plication process and, hence, it requires three registers as well.
However, it should be noted that if one employs bit-level or
digit-level hybrid multipliers, it is possible to utilize the results
from serial-out architecture as the input to the serial-in archi-
tecture. For more information, one can refer to [15] and [22].

In this paper, we employ the BL-PIPO architecture of [20] and
[21].

III. POINT MULTIPLICATION ON KOBLITZ CURVES

Let E(GF(2™)) be the group of points on an elliptic curve
over a binary extension field GF'(2™); i.e., the points (z,y)
that satisfy the elliptic curve equation together with a special
point called the point at infinity. The group operation (x3, y3) =
(21,y1) + (w2,y=2) is called point addition. If 2y = 2 and
Y1 = Y2, point addition is called point doubling. The Frobenius
map for points in E(GF(2™)) can be defined as a map ¢ :
E(GF(2™)) — E(GF(2™)), (z,y) — (22, y?). The squaring
over GF(2") using GNB is a rewiring operation in hardware
which implies that the Frobenius map can be carried out with no
cost [23]. Koblitz [24] showed that the cheap Frobenius map can
be used instead of point doublings if the binary curve is defined
by the equation

v+ oy =23+ ar? +1, 2)

where @ € {0,1} and z,y € GF(2™). For clarity, we de-
note the group of points on a Koblitz curve by Ex (GF(2™)).
One can show that $?(P) — ju¢(P) + 2P = 0 for every P €
Ex(GF(2™)). Let T be the complex root of P(T) = T%— T+
2 which is the characteristic polynomial of the Frobenius endo-
morphism. Then, if one represents the scalar & in 7-adic non-ad-
jacent form (rNAF), i.e, k = 'L k7 for k; € {0,1,—1}
and k;k;11 = 0, then, point multiplication can be computed as
kP = Zf;é k;¢*(P) [23]. For efficient computation of TNAF
conversion, one can refer to [25]-[28]. In normal basis, when
P = (x,y) is known, ¢*(P) can be computed by i-fold right
cyclic shifts of  and y, ie., ¢"(P) = (22 ,y*) = (@ >
i, > 1). The faster computation of ¢(P) = (z > 1,y >
1) in normal basis results in a faster point multiplication of
Q =kP = Z?:Ol k;¢*(P) than the traditional methods [29].
In Algorithm 1, the point multiplication algorithm is presented,
having & represented in TNAF [23].

Algorithm 1 Point multiplication on Koblitz curves using
affine “Frobenius-and-add-or-subtract” algorithm [23]

Inputs: A point P = (x,y) € Ex(GF(2™)) on curve and an
integer k, k = Zf;é ki7" for k; € {0,+1}

Output: () = kP

1: initialize
i: ifk;_1 = 1 then Q — (z,y)
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ii: ifk;_; = —1then @ — (z,2 +y)
2: for i from [ — 2 downto 0 do
Q — Q) = (@2 )
if £; # O then
Q—Q+ kP
end if
end for

3: return )

In Step 2 of Algorithm 1, one needs to perform point addi-
tion for every non-zero bit of the scalar k£ given in TNAF. The
point addition on Koblitz curves can be performed in different
coordinates including affine, projective, and mixed coordinates.
Note that it is possible to define point operations on Koblitz
curves with more than three different coordinates (e.g., affine,
standard projective, Jacobian projective, Lopez-Dahab, and dif-
ferent mixes of them) but we consider only three alternatives in
this paper.

In affine coordinates, point addition (z3,y3) = (%1,%1) +
(x,y) is computed as follows (P = (x, ) is the base point):

y1+y
A= 3
1.:1+:E’ 3)
zs =M+ +z1+2+a, 4
ys = A(z3 + )+ 73 + ¥ (%)

In Table II, the costs of the combined point addition and dou-
bling (only point addition for Koblitz curves) are given for bi-
nary generic, binary Edwards, and binary Koblitz curves. As one
can see, addition in affine coordinates costs 1/ +2M +15+9A,
where I, M, S, and A are the costs of inversion, multiplication,
squaring, and addition, respectively. Inversion can be efficiently
computed using Fermat’s Little Theorem (e.g., Itoh-Tsujii (IT)
[30]) or Extended Euclidean Algorithm.

A. Selection of the Coordinate System

For our resource-constrained targets, we focus on minimizing
the area as much as possible. Projective coordinates, where a
point is represented with three coordinates (z,y, z), are com-
monly used for improving the speed of point multiplications be-
cause they allow trading expensive inversions to cheaper mul-
tiplications. On the other hand, traditional affine coordinates,
where a point is represented with two coordinates (i, y), require
simpler control structure and fewer registers to store the points
and temporary variables and, as a result, lead to simpler and
smaller (but, of course, slower) implementations.

Next, we show that the speed difference between affine and
mixed coordinates is not so radical that it would advocate mixed
coordinates instead of affine for resource-constrained imple-
mentations. An inversion in GF(21%) requires at least I =
9M 4 1625 with all known algorithms based on Fermat’s Little
Theorem. Because we are using a bit-level multiplier and each
squaring requires one clock cycle, we have 1625 = M. Con-
sequently, a point addition (or subtraction) requires I + 2M =
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TABLE II
COST OF POINT OPERATIONS ON BINARY GENERIC CURVES (BGCS) [31],
BINARY EDWARDS CURVES (BECS) [32], AND BINARY KOBLITZ CURVES
(BKCs) [33] OVER GE'(2™)

[ Curve | Coordinate | PA and PD |

Affine 21 +4M + 25 + 9A

BGC Projective 8M +5S +9A
Mixed 6M + 55+ 9A
Affine 21 +3M +35S+T7A

BEC Projective IM +4S +T7A
Mixed 6M 4+ 45+ TA
Affine 11 +2M + 1S +9A

BKC! [ Projective 13M + 45 + 94
Mixed 8M + 55+ 9A

1. Cost of point addition only.

12M in affine coordinates and 8 M in mixed coordinates. With
mixed coordinates, the result point needs to be converted to
affine coordinates in the end of a point multiplication which
requires I + 2M ~ 12M. Consequently, the cost of Algo-
rithm 1 can be estimated as (H (k) — 1) x 12M =~ 640M for
affine coordinates and (H (k) — 1) x 8M + 12M =~ 439M
for mixed coordinates, where H (k) = 1 /3. We conclude that
this reduction of less than one-third in the expected latency is
not significant enough to support using mixed coordinates in re-
source-constrained implementations because it would come at
the expense of increased number of registers and more complex
control structure. Hence, we use affine coordinates in our im-
plementation.

Further analysis about the advantages of using affine coordi-
nates instead of mixed coordinates in the case of our processor
is given in Section IV-A after describing the algorithms and the
architecture.

B. Multiplicative Inverse and Point Addition Algorithm

As shown above, the bulk of point addition in affine coordi-
nates is spent in computing the inversion. Similarly as in many
other hardware implementations (see, e.g., [34]), we chose
to compute inversions via exponentiations based on Fermat’s
Little Theorem because it leads to a simpler and smaller imple-
mentation compared to Extended Euclidean Algorithm when a
multiplier and a squarer are already available.

The IT scheme [30] requires 162 squarings and 9 multiplica-
tions in GF'(21%%). The recently introduced Dimitrov-Jirvinen
(DJ) algorithm [10] requires the same amount of multiplica-
tions and squarings but allows using fewer registers in the im-
plementation compared to the IT scheme. The DJ algorithms
are based on finding double or triple base representations for
m — 1 and they require, on average, fewer multiplications
[10]. There are also several other recent proposals that im-
prove inversion computations [35]-[37]. They focus mainly on
fast computation of successive squarings which increases area
requirements and makes them impractical for extremely con-
strained applications. To the best of our knowledge, the DJ al-
gorithm computes an inversion in GF'(219%) with the smallest
possible number of multiplications, squarings, and temporary
variables.

In the case of GF(2!63), the IT inversion algorithm is
based on the following decomposition for the exponent
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2(1 42+ ...+ 2™ 2) of the exponentiation A1 = A2" 2 =
A201424..4277%) [30]:

14+24224 . 42161
=(142)x (1+22x (1+22) x (1+2%) x (14+2%) x (1+219)
X (1+22x (14+22)x (1+2°)). (6

The DJ algorithm, on the other hand, is based on the following
decomposition [10]:

TH2422 4. #2100 = (1424 2%) x (1+2% +2%)

x(1+22 428 x (1427 + 2% x (1+2%). (V)
Both of the above decompositions require the same number of
multiplications (additions in the above formulae) and squarings,
but the latter saves one temporary variable [10].

This saving originates from the fact that (6) requires one long-
time variable whereas (7) does not [10]. When one implements
the operations that are required by a term of the form (1 4 2"),
one needs two variables 7; and 7o = T?" = Ty > n and
computes Ty < 17 x Ts. For (6), a third variable, 7}, is needed
for storing a value while, for example, 1+ 232(1 +232)(1+26)
is computed. However, for (7), such a long-time variable is not
needed as it comprises only terms of the form (1 + 2" 4 227)
which can be computed with only 73 and 7% using the following
sequence of operations: 7o «— T4 > n, Ty « T1 x Ty, Ty «—
T > n,and 17 «— 11 x 1.

We employed the DJ algorithm in computing point addition
in affine coordinates using (3)—(5) and the resulted algorithm is
shown in Algorithm 2. We managed to reduce the number of
registers (to store intermediate results) to only two, i.e., 71 and
T5. If we had used the IT algorithm, we would have needed three
registers (11, Ts, and T%).

Algorithm 2 Affine point addition on Koblitz curves using DJ
inversion scheme [10], [23]

Inputs: P = (z,y) and P = (z1,y1) € Ex(GF(2™))
Output: P = P+ P

LTy — oz +x

2: Compute: inversion using the DJ scheme over G F'(2163)
21T — Ty > 1,
23:T) — Ty x T,
2.5: Ty — Ty x T,
27: Ty — Ty x T,
2.9: T — Ty x Ty,
211: T T x Ty,
213: Ty — Ty x Ty,
2.15: Ty — Ty x T,
217: Ty — Ty x T,
219:T0 — Ty x To.

22:T T > 1,
24: T —To > 1,
26:1% —T1 > 3,
2.8: Ty — T > 3,
2.10: Ty «—T1 > 9,
212:T5 «—T5 > 9,
214:T5 11 > 27,
2.16: T T > 27,
2.18: T 171 > 81,
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3T =y +y

4.7 «— Ty x Ty

5: Compute: 3
50T «T1 > 1
52T 1+ 15
53ux1 — 21+ 15
54a1 «— 21+
5521 — a1+ 1

6: Compute: y;
61715 «— x1+=x
62T «— Ty xT5
63y — 11+ 21
6.4y — 1 +y

7: return (z1, 1)

IV. ARCHITECTURE OF POINT MULTIPLICATION PROCESSOR

In this section, we explain the proposed architecture for point
multiplication on Koblitz curves. The architecture of the pro-
posed crypto-processor is illustrated in Fig. 2. The architecture
is composed of three main components: field arithmetic unit
(FAU), register file, and control unit. Our target is to implement
point multiplication on a Koblitz curve over the smallest NIST
field GF(216%) with as small area as possible. FAU performs
finite field multiplication, squaring, and addition in GNB over
GF(2'%3). As shown in Fig. 2, we selected a BL-PIPO GNB
multiplier as discussed in Section II. It employs a p’ module for
which the number of XOR gates inside it is about half of the p
module. The J block is composed of 77 AND gates which per-
form AND operation for two m-bit inputs. Beyond that, we aim
to minimize the number of registers and the area of other func-
tions.

Algorithm 2 needs altogether six variables (x1, %1, , ¥, 11,
and 7%) which in turn lead to six m-bit registers! in the pro-
cessor. If we had used the decomposition of the IT algorithm,
(6), instead of the decomposition of the DJ algorithm, (7), then
we would have needed seven 1m-bit registers because 73 would
have been needed as discussed in Section III-B. In addition to
these, the scalar & requires a register. We are using the Frobe-
nius-and-add-or-subtract algorithm with 7TNAF because it of-
fers significantly faster performance with negligible increase
in the complexity of implementation. The maximum length of
TNAF is m + o = 164 bits [27] and k; € {—1,0,1} which
imply that a 2(m + 1) = 328-bit register is needed for k. In
[38], Joye and Tymen observed that the fact that a nonzero is al-
ways followed by a zero allows devising an encoding requiring
only 7 + 1 bits. We use their left-to-right encoding for TNAF
[38] (10 — 10,10 — 11,0 — 0) and, consequently, need only
a 164-bit register for k.

!In some applications, the base point P is fixed and .- and ¢ can be hardwired.
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The field multiplier includes three m:-bit registers X, Y, and
Z . Multiplications in Algorithm 2 are always of the form 77 X
T»; hence, we can reuse the registers for 73 and 75 as registers
for the operands of multiplications and effectively save the area
of two 163-bit registers.

We embed functionalities required for other field operations
into the multiplier data path by adding two multiplexers (s1 and
s2). This increases the critical path of the multiplier only by a
delay of a 2-input multiplexer. Based on the architecture of the
proposed crypto-processor for point multiplication on Koblitz
curves, the field operations are computed as follows:

» Addition C — A+ B: First, A is loaded to Z by selecting
A with sg and setting s; = 1 and s2 = 0. Second, B is
selected with s and the addition is computed by setting
s1 = 1 and s2 = 2 which results in Z = A + B. Finally,
Z is stored into C'. Thus, addition takes three clock cycles.
If B = 1, then the second operand is not needed and the
latency is two clock cycles.

* Squaring C' +— A > 1:First, A isloaded to Z by selecting
A with sz and setting s; = 1 and s = 0. Second, the first
operand of the adder is set to zero by selecting 1 = 2 and
the second operand is selected by setting s5 = 3. Now, Z
includes 0 + Z2 = A2, Finally, Z is stored into C'. Thus,
squaring takes three clock cycles.

* Squaring 77 » « 112 > 1: Several times Algorithm 2
requires 73 or 75 to be squared and stored to itself. In these
cases, we can utilize the squarers attached to 77 and 7> and
avoid going through 2. Each of these squarings takes one
clock cycle.

e Multiplication 77 < 77 x T%: The multiplexers are set to
s1 = 0, so = 3 (except so = 0 for the first clock cycle),
and s, = s, = 0. This is continued for 163 clock cycles
after which 7 includes Ty x T5. Finally, 7 is stored into
T4 . Thus, multiplication takes 164 clock cycles.

* Certain consecutive operations: When 7 already in-
cludes the operand for the next operation or the result
of an operation is not needed after the next operation,
loads and saves from and to the registers can be avoided,
respectively. It is also possible to combine two operations
into a single operation in certain cases. For instance, we
need only six clock cycles to compute the lines 5.1-5.5
of Algorithm 2: T3 is in Z, then, Z «— T1 + (Z > 1),
J — o+ 4,0 —ax+ 4,1 — 4,70 — x1+1,
and z; «— Z. Straightforward application of the above
descriptions would give 14 clock cycles.

If the selection for the unity element (s = 1) was moved to
the other multiplexer (s1), we would save one clock cycle per
point addition but this would increase the critical path by an-
other 2-input multiplexer and, therefore, we opted to use the
setup of Fig. 2.

The controller executes point addition, point subtraction,
and Frobenius map routines according to Algorithm 1. The
first point addition (the initialization) is carried out simply by
transferring (x,y) or (z,x + y) into (x1,¥1). The routines
implemented in the controller are collected in Fig. 3.

The controller takes in two most significant bits (MSB) of the
register k. Joye-Tymen encodings are parsed so that the MSB
determines whether a digit is zero or nonzero. If the digit is
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nonzero, the second MSB determines its sign (0 is positive and
1 is negative). After a digit has been processed, the register &
is shifted to the left once or twice for zero and nonzero digits,
respectively. After a nonzero, an additional Frobenius map is
computed.

The architecture computes point additions and point subtrac-
tions in 11M + 192 = 1985 and 11M + 194 = 1987 clock
cycles, respectively. A Frobenius map ¢(()) takes 5 clock cy-
cles. We map y; first because it is already in 4 when the pre-
vious point addition ends. Similarly, we have x; in Z when the
next point addition starts. The initialization takes 4 clock cycles.
Consequently, point multiplication takes, on average, approxi-
mately 106,700 clock cycles, assuming that H (k) =2 m/3, and
point additions and point subtractions divide evenly.

A. Comparison of Coordinate Systems

In Section III-A, it was estimated that mixed coordinates
would give an improvement of about one-third in latency with
the expense of increased area. In order to shed more light on
this issue, we derived an algorithm for point addition using
mixed coordinates. This algorithm and derivations of the
number of registers and latencies are provided in the Appendix.
Point multiplication would take, on average, approximately
76,100 clock cycles using mixed coordinates which is a 29%
improvement over the variant with affine coordinates. The
area improvement is significant despite the fact that the al-
gorithm utilizes similar resource sharing that was used for
affine coordinates: the number of registers increases with two
163-bit registers which is a 33% increase (or a 50% increase if
P = (z,y) is hardwired). Also, the complexity of the control
unit grows significantly compared to the simple logic used
for affine coordinates. As will be shown in Section V-A, the
register file and the control unit require about half of the area
of the processor and, consequently, it is essential to keep them
small. Hence, the selection of affine coordinates is justified.

V. ASIC IMPLEMENTATION

The results of ASIC implementations for the proposed and
previous works are presented in this section. In what follows,
first, we present the results for our work. This includes the area
complexity, timing, power, and energy consumptions on ASIC.
Then, we compare the obtained results with previous counter-
parts.

A. Implementation Results

We have used the STM 65-nm CMOS standard technology
and CORE65LPSVT standard cell library [39] for our results.
This library has been optimized for low-power applications.
VHDL has been used as the design entry to the Synopsys De-
sign Compiler [40]. In addition, using the area of a NAND gate
in the utilized STM 65-nm CMOS library which is 2.08 pm?
[39], we have provided the gate equivalent (GE) so that area
comparisons among different technologies are meaningful. We
note that although similar to the previous works presented in
[3]-[5], and [7], we have not fabricated a chip on silicon, our
detailed results are intended for benchmarking the metrics for
the previous and proposed research works. Wire load models
are generally used in the synthesis process for estimating the
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Fig. 2. The architecture of the proposed crypto-processor for point multiplication on Koblitz curves which includes (a) field arithmetic unit (FAU), (b) register

file, and (c) control unit.

net delays during pre-layout in a design cycle. These data are
based on statistics from physical layout parasitics. The accurate
analysis of interconnect delay is derived through physical de-
sign; yet, the presented results using these models are estimates
of the interconnect delays (acceptable but not exactly the real
delay figures), taking into account the estimated hardwiring de-
lays. We would like to point out that these models are pre-char-
acterized equations, attempting to estimate (predict) gates’ ca-
pacitive loads (based on fan-out and the overall design area).
As discussed in the previous section and seen in Table III,
106,700 cycles are needed for our proposed architecture with
the area of 11,571 GE. From this total area, the FAU has the area
of 5,328 GE and the rest is for the register file and the control
unit. If the coordinates of the base point are hardwired, the area
is 10,299 GE. The critical-path delay is determined by the path
from the register 77 to the register Z which are the input and
output of the BL-PIPO multiplier. The critical-path delay of the
multiplier is stated in Table [ which is T4 +(1+[log, T )T'x ex-
cluding the delay of registers. Sharing add/accumulation com-
ponents only adds a multiplexer (the mux with S7) to the crit-
ical-path. The critical-path delay of the proposed architecture

is 0.54 ns. We note that the achieved frequency is 1.85 GHz
without over-constraining the architecture.

While this frequency is very high, for power derivation pur-
poses, similar to [8] and taking RFID tags as reference, we set
the frequency to 106 kHz which is 1/128 of 13.56 MHz. We
also provide our results for the frequency of 13.56 MHz which
is normally the frequency used for RFID applications (carrier
signal used by the ISO-18000-3-1 RFID standard). Although
the power consumptions differ significantly for these two fre-
quencies, the energies are very close, i.e., 0.65 pJ and 0.61 pu.J,
respectively.

B. Comparison

In what follows, we present the ASIC results and compar-
isons with the previous works. There are many recent papers
including [41]-[46] that study FPGA-based implementations of
Koblitz curves for high-speed applications but it is impossible
to compare our results with the results of those papers because
both the applications and the implementation platforms are dif-
ferent. We are also not aware of any implementations of Koblitz
curves for constrained applications (either ASIC or FPGA) and,
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Initialization 3 T+ Z
1: Z <z 4 Z+—Z>1
2: xr1 7Z 5: Ty 7
3: if k;_1 = —1 then 6: Z+ T xTs
Z+—Z+y 7: T+ Z
else 8 Th+To>»1
Z vy 9: Z <+ Ty xT,
4. gy« Z 10 Th«+ Z
11: Z«+Z>3
Frobenius map, ¢(z1,y1) 122 To+ Z
1: Z+Z>1 130 Z<+ T xT
2. oy« Z 14 T+ Z
3: Z +— 21 15: To <+ T>>3
4 Z+Z>1 16: Z <+ T xTs
5: T — Z 17. Th«+ Z
18: Z«+Z>9
Point addition / subtraction 190 T+ Z
1: Z+—Z+zx 200 Z+Ti xTs
2. Z+Z>1 21: Th«+ Z

22: To+ T2 >9 40: Z <+ Ty xTy
23: Z<+TixTe 41: Ty« Z
2 T« Z 42: Z+(Z>D+T
25: Z <« Z>27 43; Z <« Z+m:
260 T+ 7 4. Z <+ Z+=x
27 Z <+ Ti xT» 45: 11+ Z
28: Th«+ Z 46: Z <+ x1+1
29: To T > 27 47 11+ Z
300 Z«+TixTe 48: Z«+—Z+zx
31: Th«+ Z 49: Th +— Z
32 Z+«+ Z>81 50 Z<+ Ty xTs
33: T+ Z 51 Z+ Z+ux
34:. Z<+TixT» 52 Z«+Z+y
35: T+ 7 53: if subtraction then
36: Z<+uy1 Z+—Z+zx
37 Z+Z+y 54: y1+ Z
38: if subtraction then
Z+—Z+z
39: T« Z

Fig. 3. Routines used for computing point additions, point subtractions, Frobenius maps, and the initialization. Each line takes one clock cycle, except multipli-
cations ( X ) take m = 163 clock cycles and rotations (>3 ) take e clock cycles. Point addition/subtraction routine was derived from Algorithm 2.

TABLE III
COMPARISON OF DIFFERENT POINT BIT-LEVEL MULTIPLICATIONS OVER GF'(2%%) oN ASIC
Tech. # of clock Area Freq.! Time Power Energy?

Work Curve (nm) Mult. cycles Coord. (GE) (kHz) (ms) (LW) ()

[9] BEC 130 Bit-serial 219,148 Mixed 11,720 400 547.87 73 3.98 (1.30)

[7] BGC 130 Bit-serial 275,816 Mixed 12,506 1,130 244.08 36.6 8.94 (2.93)
[6]° BGC 130 Bit-serial 353,710 Mixed 82143 500 707.42 < 30 < 21.22 (< 6.96)

[5] BGC 350 Bit-serial 376,864 Affine 16,207 13,560 27.90 - -

[8] BGC 180 Bit-serial 296,299 Affine 13,250 106 2,792 8.57 23.92 (3.26)
. s 11,571 106 1,006.6 0.66 0.65 (1.06)

This work [ BKC 65 Bit-serial 106,700 Affine [10,209]4 13360 =37 = 061 (1.00)

1. The frequency used for power derivations (not the maximum achievable frequency).

2. Energy for one point multiplication. The numbers in parentheses are estimations of the normalized energies, considering 65-nm as the base.
3. The synthesis results do not include RAM. For a typical synthesis, the total area is reported to be roughly 12 kGE.

4. This is the area considering the hardwired coordinates of the base point in Fig. 2(b).

hence, we compare our processor only to compact ASIC imple-
mentations using binary general or Edwards curves.

In Table III, we have included the performance metrics of the
previous work: the standard cell library and technology used,
the number of clock cycles for point multiplications, the co-
ordinates, i.e., mixed or affine, the frequency used for power
derivations, the total time needed for computations, and the
power/energy consumptions (considering parasitics and node
transitions).

In [9], using a 0.13 pm technology and mixed coordinates,
the implementation results have been derived (see first row in
Table III for digit-size of one). In total, as seen in this table,
219,148 clock cycles are needed and the area in terms of GE
is 11,720. For the frequency of 400 kHz, the dynamic power
and energy for performing one point multiplication are 7.3 uW
and 3.98 uJ, respectively. In [7], the squaring operations use
the same logic as the multiplication and, hence, each squaring
requires m clock cycles. Also, the multiplication and addition
operations share the XOR array. In this work, the results were
derived using a 0.13 pm technology and mixed coordinates (see
second row in Table III). As seen in the table, for the Type 1
architecture in [7] (which is the minimal version and has the
least gate area and the most number of cycles), the total area
(GEs) is 12,506. Moreover, for the frequency of 1,130 kHz, the
dynamic power and the energy for one multiplication are 36.6
#W and 8.94 uJ, respectively.

It is noted that in [6], the conversion from projective co-
ordinates to affine coordinates is not considered in the com-
putation of the point multiplication. Also, squaring is consid-
ered as a special case of multiplication in order to minimize
the area. Therefore, the number of clock cycles is computed as
(I —1) x (13(M 4+ 3) + 12)). In [6], 353,710 clock cycles and
8,214 GE are obtained using a 0.13 pm technology and mixed
coordinates. Moreover, for the frequency of 500 kHz, dynamic
power and energy of less than 30 4W and 21.22 y.J are reported,
respectively. In [5], using a 0.35 technology, with 376,864 clock
cycles and area of 16,207 GE, the total time needed for the point
multiplication is 27.90 ms with a frequency of 13,560 kHz. Fi-
nally, in [8] (0.18 wum technology), the operation is done in
296,299 clock cycles and the area is 13,250 GE. Moreover, with
the utilized frequency of 106 kHz, the power and energy are 8.57
#W and 23.92 uJ, respectively.

Comparing energies among different technologies is neces-
sary when previous works are considered. Yet, exact compar-
ison is not possible when technologies are different (this could
be the reason that in previous works this comparison through
power conversions among technologies is not performed).
One can roughly estimate and compare the energy equivalents
among different works. For this purpose, according to [47], if
we consider full voltage scaling, the energy conversion ratio of
53 (from smaller to larger technologies) is obtained. However,
if constant voltage is considered, the energy conversion ratio of
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s is derived, where s is the scaling factor [47]. We consider the
average energy conversion ratio of these two, i.e., (s + s%)/2.
We would like to emphasize that this conversion is only a
rough estimate and does not intend to exactly benchmark the
energy variations among different technologies. Based on these
conversions, the energy consumption of the proposed approach
is significantly lower than the counterparts (the closest is the
architecture presented in [9] which is 30% more energy-de-
manding; refer to the estimated normalized energies shown in
parentheses in the energy column of the table). This is mainly
because of the much lower number of clock cycles needed for
our scheme (at least half of the other schemes in Table III).

In addition to voltage scaling, one needs to note that fre-
quency scaling might be considered when different technolo-
gies are compared. In this regard, if power consumption is of
concern, higher frequencies lead to higher power consumptions
(linear relation) in a typical technology or when technologies are
changed (in the latter case, the effects of other factors such as
voltage or switching factors need to be taken into account). Nev-
ertheless, concerning energy consumption, frequency scaling
does not necessarily affect the battery usage or energy drainage
due to the independence of energy consumption from the oper-
ating frequency. For instance, in higher frequencies, power con-
sumption is higher but the total energy consumption is intact as
the time needed for realizing a specific operation is shortened.

Based on the above observations, the proposed architecture
for point multiplication on Koblitz curves is suitable for energy-
constrained and efficient applications.

VI. CONCLUSIONS

In this paper, we have proposed an efficient implementation
of point multiplication on Koblitz curves for extremely-con-
strained applications such as RFIDs and sensor networks. We
have represented the field elements by GNB over GF(2™) and
used bit-level multiplications. One main advantage of these
multipliers is their cheap squarings in hardware and providing
low area complexity suitable for resource-constrained and se-
cure environments. Through sharing the addition/accumulation
part of the bit-level multiplier to perform other field additions,
lower area complexities have been achieved. We have also pro-
posed a new technique for computing point addition in affine
coordinate. This approach needs fewer registers for storing the
intermediate variables compared to the traditional schemes.
Comparing the results of our ASIC implementation using a
65-nm CMOS library to the previously presented works shows
that our work has lower energy consumption and requires less
than half of the clock cycles to compute point multiplications.
Consequently, the proposed efficient implementation of point
multiplication on Koblitz curves is suitable for extremely-con-
strained environments.

Next, we analyze and discuss two possible directions for fu-
ture research.

Implementation attacks are cryptanalytic attacks that utilize
information obtained from a physical implementation of a cryp-
tographic algorithm through a side-channel, e.g., timing [48],
power [49], or electromagnetic radiation [50] or by analyzing
results from the implementation after deliberately injected
faults [51]. They form a serious threat for cryptosystems in
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practice. Countermeasures against these attacks typically come
with significant costs in area and latency which makes their
use challenging in extremely-constrained applications. As a
consequence, the most appropriate countermeasures must be
selected based on a careful risk analysis of the application.
Because our target was to minimize the resource requirements
and to propose a general processor architecture that could be
useful in a large variety of applications (perhaps after small
modifications), our processor does not implement any specific
countermeasures. However, certain simple countermeasures
could be added with small overheads. These include, e.g.,
blinding the sign of k; by using dummy additions for point
additions (lines 37 and 52 in Fig. 3) and blinding the positions
of nonzero k; by using dummy Frobenius maps. More gener-
ally, developing and applying low-cost countermeasures for
our processor and other extremely-constrained processors is an
important topic for future research.

Elliptic curve cryptosystems (e.g., ECDSA [4]) commonly
require modular integer arithmetic in addition to elliptic curve
operations. While this requirement for two types of arithmetic
(binary field and modular integer) creates challenges for all
systems using binary curves in constrained environments, the
challenges can become greater for Koblitz curves because
conversions between integers and 7-adic representations may
be needed too. High-speed hardware architectures of these
conversions have been proposed [25], [26], [28] but none
of them is suitable for extremely constrained applications.
Even the smallest converter [26] requires too many resources
(e.g., 648 ALUTs and 683 registers on a Stratix II FPGA for
GF(21%%)). In many applications, it is possible to use cryp-
tosystems where conversions can be avoided by generating
T-adic representations at random [27] or by pre-computing and
hardwiring them. Extremely-constrained applications typically
require careful fine-tuning (e.g., by fixing certain parameters,
etc.) of the cryptosystems that are used in the application and
these aspects should be taken into account when considering
different cryptosystems for the application. Nevertheless,
techniques for computing conversions with minimal resources
and/or with resources shared with the architecture computing
point multiplications should be studied in the future.

APPENDIX

In mixed coordinates, a point is given in Lopez-Dahab coor-
dinates (1, y1, z1) and the other in affine coordinates (, y) and
the point addition (3,3, z3) = (21,11, 21) + (2, y)

Algorithm 3 Point addition in mixed coordinates with register
sharing

Inputs: P = (x,y) and P, = (x1,y1,21) € Ex(GEF(2™))
Output: Ps = (x1,41,21) = P+ P

17— 21> 1

2:T5 —y

37— T x Ty

4: Ty — iy + 1T
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57 — x

6: 15 — 21

705 «— T x Ty
8: Ty «— x1 + T
9z «—Th > 1
10: 21 — 21 + T3 (A + B?)
11: 77 «— 21
12: Ty «— T1 x Ty ()
13:27 — 21+ Trifa=1 (A+ B? 4+ a0)
14: 17 «— a1
15: 21 « 11 x T3

16: T1 — T5

(C(A+ B* + aC))

17:y1 «— T x Th (AC)
18: Ty — Ts > 1 (4%)
19:21 «— 21 + 13 (w3)
20: Ty T > 1 (23)
21: 21 «— T

22:T) — =x

23: Ty — T) x Th (D)
24T — 21+ 1o (D + z3)
25: T «— 41 + 21 (AC + 23)

26:y1 «— T1 x T ((D + Tg)(AC + 23))
27. 17Ty — x4y
28: 05 «— z1 > 1

29IT1 — T1 X T2

30:y —yn+ 11 (y3)
31: return (x1, y1,21)
is computed with the following formulae [33]:

A=y + yz%; B=x14+xzz1; C=Dzn

23 :CQ; D =xz3

z3 =A% + C(A+ B? + a0)

y3 = (D +23)(AC + 23) + (z + y)23 ®)

An algorithm can be constructed from (8) so that only two
extra variables (77 and 7%) are needed. However, register
sharing with the input registers of the multiplier requires that
all multiplications are of the from 7 x T which is not satisfied
in this algorithm. Hence, if this algorithm was implemented
instead of Algorithm 2, the register count would increase with
three 163-bit registers (two input registers and 21 ).

Algorithm 3 shows a process that requires three variables (77,
T,, and T%) but where all multiplications are of the form 77 x T

1153

which enables register sharing. Consequently, only two extra
163-bit registers (75 and z1) are needed compared to affine co-
ordinates. Achieving this requires eight register copies, e.g., on
lines 5 and 6 of Algorithm 3. Comparing Algorithms 2 and 3
reveals that using affine coordinates results in a considerably
simpler algorithm, especially, because using mixed coordinates
would also require a routine for inversion in the end of the point
multiplication (e.g., lines 1-19 in Algorithm 2). Consequently,
the size of the control unit will be significantly larger if mixed
coordinates are used instead of affine coordinates.

Using the latencies given in Section IV and the fact that a reg-
ister copy can be done in two clock cycles, we can estimate that
Algorithm 3 can be executed in 1,368 clock cycles. The exact
latency can be a few clock cycles shorter because this estimate
neglects the benefits that may be achievable for certain consec-
utive operations. The Frobenius maps should be computed in
the order y?, 22, and z? and then one Frobenius map requires
7 clock cycles. The coordinate conversion in the end requires
1,968 clock cycles. These result in a point multiplication latency
of approximately 76,100 clock cycles.
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