592 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 32, NO. 3, MARCH 2024

Efficient Error Detection Schemes for ECSM Window Method
Benchmarked on FPGAs
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Abstract— Elliptic curve scalar multiplication (ECSM) stands as a
crucial subblock in elliptic curve cryptography (ECC), which represents
the most widely used prequantum public key cryptography. Hardware
constructions of cryptographic systems utilizing ECSM have been subject
to permanent or transient errors. In cryptographic systems, it is impor-
tant to validate the correctness of the underlying computation performed
on hardware or software to identify such errors. In this article, we present
new fault detection schemes in window method scalar multiplication,
which, to the best of our knowledge, has not been previously investigated.
Our approach involves introducing refined algorithms and implementa-
tions that can effectively counter both permanent and transient errors.
We assess this by simulating a fault model, ensuring that the evaluations
conducted reflect the obtained results. As a result, we achieve a signifi-
cantly extensive coverage of errors. Finally, we benchmark our proposed
error detection scheme on ARMvVS8 and field-programmable gate array
(FPGA) to demonstrate the implementation and resource overhead. On
Cortex-A72 processors, we maintain a clock cycle overhead of under 3%.
In addition, when implementing our error detection method on different
FPGAs, including Zynq Ultrascale+, Artix-7, and Kintex Ultrascale+,
we achieve comparable throughput while introducing a mere 2% increase
in area compared with the original hardware implementations.

Index Terms— Fault detection, field-programmable gate array
(FPGA), reliability, window method.

I. INTRODUCTION

In 1985, Miller [1] and Koblitz [2] each independently introduced
the application of elliptic curves in the field of cryptography. Elliptic
curve cryptography (ECC) has garnered significant attention among
public key cryptographic algorithms due to its shorter key sizes. To
ensure efficient modular reduction, the National Institute of Standards
and Technology (NIST) has suggested using Solinas prime as the
modulus for short Weierstrass curves. It is noted that, researchers
in [3] have raised concerns about potential backdoors in the NIST
curves and have put forward Curve25519 and Curve448, which were
developed by Hamburg [4], [5], as a viable alternative variants. Shor’s
[6] algorithm indicates that quantum computing has the potential to
break the majority of current cryptographic systems. The emergence
of quantum computers has raised concerns about the security of
ECC, and it is expected to be eventually replaced with postquantum
cryptography (PQC). Despite the need for transitioning to PQC due
to potential quantum threats, ECC remains widely used for several
reasons. Efficient algorithms have been introduced for the elliptic
curve scalar multiplication (ECSM) operation, such as the binary
method, double-and-add-always, Montgomery ladder, and window
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method [7]. To resist side channel attacks, it is essential to design
the scalar multiplication algorithm to be regular, ensuring that its
operation flow remains independent of the input scalar.

A. Related Works

A number of prior studies focus on the implementations and
fault detection in various arithmetic aspects of both classical and
PQC, encompassing ECSM, among others [8], [9], [10], [11], [12],
[13], [14]. While fault detection procedures have been explored for
cryptosystems, there has been limited research focusing on fault
detection at the algorithm level of ECC.

Dominguez-Oviedo and Hasan [15] and Dominguez-Oviedo [16]
addressed this gap by presenting fault detection schemes at the
algorithm level for scalar multiplication on general curves. Their
research introduced error detection schemes for the double-and-add-
always and Montgomery ladder ECSM algorithm for nonsupersingu-
lar elliptic curves. It was found that the overhead of error detection
algorithm on double-and-add-always is about 27% for projective
coordinates and less than 1% for affine coordinates. Nevertheless,
unlike prior studies, the process of selecting coordinates has not
significantly influenced our proposed error detection approach for
window method multiplication. In other words, such adoptions to
other coordinates can also be performed.

B. Major Contributions

To the best of our knowledge, no prior research has explored fault
detection in the context of window method scalar multiplication. The
potential also exists for our error detection method to be utilized in
the t-nonadjacent form (NAF) conversion of the scalar within Koblitz
curves, in cases where the window method ECSM is applied.

1) We have proposed an algorithm level fault detection scheme on
window method ECSM. Our proposed fault detection algorithm
has been mathematically proven to determine the extent of error
coverage it provides. As such, we have simulated error injection
on our proposed approach. According to the simulation results,
our proposed scheme demonstrates the ability to detect a wide
range of fault variants with a high level of error coverage.

2) We have implemented our proposed fault detection scheme on
ARMVS and field-programmable gate array (FPGA) architec-
tures to assess its viability. For less constrained usage models,
we selected Cortex-A72 from ARMvS8 family, which is used
in Raspberry Pi 4. Our results show that we can achieve very
high error coverage while adding only 3% more clock cycles on
software. Furthermore, our error detection technique is executed
on different FPGAs, including Zynq Ultrascale+, Artix-7, and
Kintex Ultrascale+, delivering comparable throughput with a
mere 2% rise in area as opposed to the initial method.

II. PRELIMINARIES
A. Window Method

Given the availability of additional memory, the window method
significantly improves the efficiency of scalar multiplication by
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Algorithm 1 Window Method Scalar Multiplication

Input: P(point), k(scalar), w(window length)
Output: kP

1: precomp = empty_array, current_point = P
2: result = initial_point, counter = 0

3: kpirs = binary(k)

4: for _ in range(2“):

5: precomp.append(current_point)

6: current_point = point_add(P,current_point)

7: for bit in kp;s:

8: counter += 1;

9: window += bit;

10: if len(window) = w or counter = len(kp;;s):

11: value = int(window, 2) // change window value
from binary to decimal

12: for _ in range(len(window)):

13: result = point_double(result)

14: if value != 0:

15: result = point_add(result,precomp(value]-1)
16: clear window

17: return result

utilizing a table of precomputed points. Window algorithms share
similarities with binary algorithms, but they differ in that each
iteration of the former concentrates on a window of w scalar bits,
rather than processing individual bits. In other words, each loop
iteration handles a digit of the scalar represented in radix 2®. The
window method, which is described in Algorithm 1, involves two
stages. The first stage is the precomputation, which is a one-time
process, and the second stage is the window method arithmetic.

[II. ERROR DETECTION IN WINDOW METHOD ECSM

In this section, we introduce the proposed error detection scheme in
window-based scalar multiplication. The process involves coherency
check (CC) validation, which examines the intermediate or final
output to ensure it adheres to a valid pattern in any given algorithm.
Essentially, such validation is capable of confirming the specific
relationship between intermediate variables and the output of any
routine.

Our error detection approach, which is described in Algorithm 2,
involves modifying Algorithm 1 to validate the occurrence of various
patterns within a window of a specific length. For a window length
of w, there will be 2% different patterns in the binary form of a
scalar. In our proposed error detection scheme, we keep track of the
count for each pattern both before and during the ECSM operation.
The function known as pattern_counter, outlined in Algorithm 3 and
utilized in line 9 of Algorithm 2, is responsible for computing the
occurrences of scalar patterns with respect to length of window, w,
before commencing the primary operation of window method scalar
multiplication. In line 19 of Algorithm 2, the occurrences of scalar
patterns are computed once again and stored in post_pattern_counter.
At the conclusion of Algorithm 2, if there is a disparity between the
values of pre_pattern_counter and post_pattern_counter, it indicates
the occurrence of at least one error during the ECSM operation. This
coherency checking process takes place at line 21 of Algorithm 2.

IV. SIMULATIONS AND MATHEMATICAL ANALYSIS

Within this section, we introduce the employed fault model and
subsequently conduct a mathematical analysis and derive proofs for

Algorithm 2 Proposed Error Detection Scheme in Window Method
Scalar Multiplication

Input: P k,w

Output: kP

1: precomp = empty_array, current_point = P
2 : result = initial_point, counter = 0

3: pre_pattern_counter = empty_dictionary

4 : post_pattern_counter = empty_dictionary
5: kyits = binary(k)
6
7
8
9

: for _ in range(2*):
pre_comp.append(current_point)
current_point = point_add(P,current_point)

: pre_pattern_counter = pattern_counter(kp;ts, w)

10: for bit in ky;s,:

11: counter += 1;

12: window += bit;

13: if len(window) = w or counter = len(kp;;s):

14: value = int(window, 2) // change window value
from binary to decimal

15: for _ in range(len(window)):

16: result = point_double(result)

17: if value != 0:

18: result = point_add(result, precomp[value]-
1)

19: post_pattern_counter[value]+=1

20: clear window

21: if pre_pattern_counter != post_pattern_counter:

22: return “Error detected”

23: else:

24: return result

Algorithm 3 Pattern_Counter Function
Input: £, w
Output: pattern_counter
. pattern_counter = empty_array, counter = 0
: width_precomp = empty_array
- Kyits = binary(k)
: for (i=0; i<w; i++)
width_precompl[i] = 2°
for (i = 0; i<'22E; jt4):
win_value = 0
for(j=1; j<w;j++):
9: if(kpiss[log k-((.width)+j)] = 1):
10: win_value += width_precomp[w-j]
11: pattern_counter[win_value] += 1
12: return pattern_counter

00O N AW

each error detection scheme in relation to this fault model. Following
that, we present the simulation results obtained through Python
implementation, utilizing the proposed fault model and error detection
schemes.

A. Fault Model

The window method calculation in Algorithm 2 may experience
the occurrence of random or burst errors during its execution.
To simulate faults, we utilized the pseudo-program counter (PC)
model. According to this model, after executing each instruction,
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Algorithm 4 Fault Calculation Function
Input: £, w
Output: faulty_instructions
1: faulty_instructions = empty_array
2: max_fault = 5log k + @
3: for _ in range(error_number):
4: faulty_instructions.append(random(1,max_fault))

5: return faulty_instructions

a counter (PC) is incremented. In this particular model, we made
assumptions that each line of code is an instruction, and all instruc-
tions carry an equal workload. Consequently, if a specific instruction
within an algorithm executes more, the likelihood of encountering an
error during that particular instruction increases. Algorithm 4 outlines
our fault calculation function, which is responsible for randomly
choosing faulty instructions prior to executing Algorithm 2.

Once the fault calculation function has been executed, a check is
performed before each instruction execution. This check determines
whether the counter corresponds to a line of faulty code or not. If the
current counter is associated with a faulty instruction, it indicates
that a fault should occur, leading to a random alteration of the
output produced by that particular instruction. We assumed any fault
introduced would result in a modification of the instruction’s output.

B. Mathematical Analysis

Lines 10-13 and 16 in Algorithm 2 execute log k times, while
lines 15 and 18 execute a maximum of log k/w times, where w
represents the length of window and k is the scalar. In Algorithm 4,
line 2 computes the possible_fault_domain, which corresponds to the
maximum value of the PC counter. Our error detection scheme is
capable of identifying errors that occur in all the instructions except
for the point_double and point_add operations (corresponding to lines
16 and 18). The cause for this is that any alterations made to the
instructions, with the exception of point_double and point_add, have
a direct impact on the post_pattern_counter array. This array is later
compared with the pre_pattern_counter array at the conclusion of
Algorithm 2.

The probability of undetected fault is @« = (logk + logk/w)/
(Slog k + 2log k/w). Error detection ratio in our scheme will be
1 — &, where m is the number of faults, which will happen in
the window method scalar multiplication. It is evident that the error
detection ratio increases in scenarios with a higher number of faults.

C. Simulation Results

Using Python 3, we conducted simulations utilizing the presented
fault models and error detection methods. The simulation used million
samples, each utilizing varying w. As described in Table I, employing
a smaller window length leads to a higher error detection ratio in
cases of single fault occurrence. Moreover, as the number of faults
increases, we can achieve an approximately 100% error detection
ratio across all window lengths. Burst errors can be identified with
higher error coverage as well.

V. IMPLEMENTATION BENCHMARKS AND COMPARISON

In order to demonstrate the effectiveness and error detection
capabilities of our proposed scheme, we opted to evaluate it using
short Weierstrass curve and employed the binary form of the scalar
for the analysis. We performed an implementation benchmark with
w = 3, on the Cortex-A72 processor and various FPGAs, including
Zynq Ultrascale4-, Artix-7, and Kintex Ultrascale+ to assess the

TABLE I

ERROR DETECTION RATIOS OF OUR PROPOSED SCHEME WITH 1, 2, 4,
8, AND 16 FAULTS FOR WINDOW LENGTH (w) OF 2, 3,5, 7, AND 10
INCURRED IN THE IMPLEMENTATION OF ALGORITHM 2
BASED ON THE SIMULATION RESULTS

Window
length (w)
2 3 5 7 10

1 57% 40% 41% 39% 39%

Number of | 2 83% 67% 68% 63% 62%

faults 4 96% 92% 91% 87% 85%

8 99% 99% 99% 98% 98%
16 | 999% 999% 999% 999%  99.9%

overhead of our approach. This analysis clearly illustrates that our
methods maintain a reasonable overhead while successfully achieving
a high ratio of fault detection.

A. Implementation Results

Through the implementation of our design on ARMv8 and FPGA
architectures, we gained valuable insights into the efficacy of our
schemes across diverse platforms. For hardware implementation,
we have selected AMD/Xilinx FPGA, including Zynq Ultrascale+-,
Artix-7, and Kintex Ultrascale+. We used high-level synthesis (HLS)
Vitis development environment to synthesize our proposed schemes
to register transfer-level (RTL) hardware description. We used Vitis
resource allocation pragmas to achieve the respective area and per-
formance strategies and to control the trade-off between the time
and the required resources. The same pragma rules and clock were
used in the baseline and the proposed error detection scheme. In the
context of the Vivado synthesis tool, area is defined as a combination
of Slices and Digital Signal Processing Units (DSPs). In addition,
the equivalence ratio used is that one DSP is considered equal to
100 Slices. The latency was evaluated using identical test vectors for
each hardware implementation. Tables II-IV present the area, timing,
power, and energy derivations of our proposed error detection scheme
based on the aforementioned area and timing effort strategies on three
different AMD/Xilinx FPGAs. Our proposed error detection designs
successfully reach an approximate maximum operational frequency
of 60 MHz across all the FPGAs. Our proposed error detection
scheme incurs a maximum overhead of 2% in terms of additional
area and adds a latency of up to six clock cycles at most. Our
implementation code in HLS and simulation code are available in
our GitHub account.!

For the ARMv8 architecture, we chose the Raspberry Pi 4 as our
platform, equipped with quad 1.5-GHz Cortex-A72 cores. To ensure
a suitable environment, we installed Raspberry Pi OS lite 32 bit
with kernel version 6.1 as the operating system on the Raspberry
Pi 4. For evaluating performance on the ARMVS architecture, we uti-
lized the Performance Application Programming Interface (PAPI),
a well-established framework for measuring system performance [18].
Table V illustrates the clock cycle counts for both the proposed error
detection scheme and the baseline approach.

B. Implementation Optimization

We note that the performed implementations are utilized for
deriving the overhead of the error detection schemes used, to assess
their suitability for constrained usage models; nevertheless, imple-
mentations on other hardware platforms (other FPGA families and
devices and also ASIC) would result in similar overheads, because
the proposed schemes are platform oblivious.

1 https://github.com/KasraAhmadi/window_method_error_detection.git
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TABLE I

AMD/XILINX ZYNQ ULTRASCALE+, XCZU4EV-SFVC784-2-1
IMPLEMENTATION RESULTS

TABLE IV

AMD/XILINX KINTEX ULTRASCALE+, XCKUS5P-SFVB784-3-E
IMPLEMENTATION RESULTS

Strategy Area Timing Strategy Area Timing
Effort Effort Effort Effort
Our Baseline Our Baseline Our Baseline Our Baseline
Scheme scheme!  work 2 scheme work Scheme scheme work scheme work
LUTs 7,767 7,681 9,245 9,162 LUTs 7,164 7,761 9,243 9,236
Area FFs 5,396 5,306 5,947 5,857 Area FFs 5,468 5,378 6,019 5,929
CLBs 1,629 1,624 1,868 1,850 CLBs 1,579 1,586 1,867 1,915
DSPs 60 60 66 66 DSPs 60 60 66 66
Power (W)
@ 60 MHz 0.42 0.42 0.44 0.44 SR 0.55 0.55 0.57 0.55
L[ac*gij 39711 39705 38825 38819 Latency 55009 30703 38823 38.818
Timing i Timing [CCs]
Total time :
[ms] 0660 0659 0644 0.644 TO‘F‘IL;me 0659 065 0644 0644
Energy (mJ) 0.27 0.27 028 028 Energy (mJ) 0.36 0.36 0.36 035
LOur Scheme: The design which includes error detection scheme.
2Baseline work: The design which does not include any error detection
scheme.
TABLE V

TABLE III

AMD/XILINX ARTIX-7, XC7A100T-CSG324-3
IMPLEMENTATION RESULTS

Strategy Area Timing
Effort Effort
Our Baseline Our Baseline
Scheme
scheme work scheme work
LUTs 8,011 7,364 9,550 9,406
A FFs 6,279 6,189 6,330 6,740
rea
SLICEs 2,909 2,950 3,349 3,318
DSPs 64 64 70 70
Power (W)
@ 60 MHz 0.16 0.16 0.17 0.18
Laency 39719 39713 38833 38827
.. [CCs]
Timing
Toultime o 659 0650  0.644  0.644
[ms]
Energy (mJ) 0.10 0.10 0.11 0.11

While HLS has transitioned the design abstraction from RTL to
C/C++, it is often essential, in practice, to engage in substantial
source code rewriting, including the insertion of pragmas, to achieve
satisfactory performance. We achieved our intended area and timing
efforts implementation by strategically placing the following pragmas
within our program.

1) Pragma HLS Inline: We placed this pragma to limit the
resource allocation to control the area usage. Inlining promotes
cross optimization among various C functions arranged hier-
archically. Differing from a basic optimization method that
handles each function independently, this pragma encourages
resource sharing to improve performance and reduce the usage
of digital resources.

2) Pragma HLS Pipeline: We placed this pragma to enable
instruction-level pipelining to increase the throughput and clock
frequency within the doubling and addition modules, which are

ARMVE IMPLEMENTATION RESULTS

Window method ECSM

Scheme Our Scheme Bascline
work
Clock cycles 27,718 27,118
Clock cycles overhead® 2.2% -

Approach’s clock cycles—Baseline work’s clock cycles
2 : x 100
Baseline work’s clock cycles

LClock cycles overhead =

the most time-consuming components in the window method
ECSM. However, it is worth noting that this optimization comes
with the trade-off of consuming additional digital resources.

3) Pragma HLS Interface: We used this pragma to integrate our
scheme into Vivado as an external IP. This pragma not only
simplified the incorporation process but also resulted in an
overall performance boost and more efficient utilization of
resources, effectively making our IP an integral part of the
FPGA design.

VI. DISCUSSION

The presented error detection scheme can be utilized on various
curves, such as Montgomery (Curve448 and Curve25519) and Weier-
strass, all of which employ the fixed window method ECSM. In
addition, it applies to both the binary and NAF of the scalar. More-
over, it has the potential to be employed in the t-NAF conversion of
the scalar within Koblitz curves, where the window method ECSM
is utilized. It is important to note that our error detection approach is
not reliant on particular coordinates. This signifies that whenever the
window method algorithm is chosen for scalar multiplication due to
application requirements and hardware limitations, our error detection
approach remains applicable.

A. Challenges and Shortcomings

A potential add-on to this work could be an extension, so that
our proposed error detection scheme can identify errors occurring
within the doubling or addition components. Our research focuses
specifically on the algorithmic level of the window method ECSM.
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To address this issue, multiple error detection schemes [8], [9] have
been performed for multiplication, addition, inversion, and squaring,
which can be integrated into our work. Furthermore, another method
to overcome the aforementioned issue is to easily confirm that the
doubling and the addition’s output lie on a valid elliptic curve. This
procedure is referred to as point verification (PV) [15].

VII. CONCLUSION

In this article, we proposed an error detection scheme for window
method ECSM operation, which is a crucial operation in ECC-based
cryptosystems. By computing the occurrences of possible scalar pat-
terns in a window length, we provide a coherency function between
the scalar as an input and intermediate outputs on the window
method scalar multiplication. Through conducting simulations and
mathematical analysis, we showed that our proposed error detection
scheme achieved high error coverage. Furthermore, we implemented
our proposed design on FPGAs and ARMv8. In terms of overhead,
the implementation resulted in negligible additional cost in hardware
and software.
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