
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 31, NO. 1, JANUARY 2023 157

Reliable Architectures for Finite Field Multipliers Using Cyclic Codes on FPGA
Utilized in Classic and Post-Quantum Cryptography

Alvaro Cintas-Canto , Mehran Mozaffari Kermani , and Reza Azarderakhsh

Abstract— Fault detection is becoming greatly important in protecting
cryptographic designs that can suffer from both natural or malicious
faults. Finite fields over GF(2m) are widely used in such designs, since
their data are coded in binary form for practical reasons. Among the
different finite field arithmetic, multiplication is the bottleneck operation
for many cryptosystems due to its complexity. Therefore, in this work,
fault detection schemes based on cyclic codes for finite field multipliers
using different fields found in traditional and post-quantum cryptography
are derived. Moreover, we implement such schemes by embedding them
into the original architectures to perform an exhaustive study, benchmark
the different overheads obtained, and prove their suitability for deeply
constrained embedded systems. These implementations are performed
on advanced micro devices (AMD)/Xilinx field-programmable gate array
(FPGA) and provide a very high error coverage with acceptable overhead.

Index Terms— Cyclic codes, fault detection, field-
programmable gate array (FPGA), finite field multiplication.

I. INTRODUCTION

Finite field arithmetic and its hardware implementations have
gained considerable interest in the literature due to their applicability
to cryptography, coding theory, error-correcting codes, and digital
signal processing. Most of the runtime of such applications is spent
in the computation of multiplications over GF(2m).

These implementations not only have to be efficient but also
secure and free of errors. There are two main types of faults for
hardware implementations, i.e., natural faults, which are products
of the environment or defects in hardware logic operations, and
malicious or intentional faults, which are faults injected by an
unauthorized party to generally obtain secret information or even
produce a denial of service attack. Even though there are many works
on fault detection [1], [2], [3], [4], [5], [6], efficient and reliable
hardware implementations of finite field multipliers based on cyclic
codes are still lacking in the literature. Moreover, most of the exciting
works on fault detection for finite fields are based on either 1-bit
parity or multibit parity schemes [7], [8], [9], [10]. The issue with
the former one is that if the number of faults is even, they remain
undetected, providing an error coverage percentage of 50% at most.
Multiparity increases the error coverage, but it is insufficient for
intelligent fault injection. This brief proposes fault detection schemes
based on cyclic codes, the most commonly used class of linear block
codes, to overcome this. Cyclic codes are not only useful in detecting

Manuscript received 16 August 2022; revised 2 November 2022;
accepted 20 November 2022. Date of publication 30 November 2022; date of
current version 28 December 2022. This work was supported in part by the
Marymount University through the START under Grant 2450100 and in part
by the U.S. National Science Foundation (NSF) under Award SaTC-1801488.
(Corresponding author: Mehran Mozaffari Kermani.)

Alvaro Cintas-Canto is with the School of Technology and Innova-
tion, Marymount University, Virginia, VA 22207 USA (e-mail: acintas@
marymount.edu).

Mehran Mozaffari Kermani is with the Department of Computer Science
and Engineering, University of South Florida, Tampa, FL 33620 USA (e-mail:
mehran2@usf.edu).

Reza Azarderakhsh is with the Department of Computer and Electrical
Engineering and Computer Science, Florida Atlantic University, Boca Raton,
FL 33431 USA (e-mail: razarderakhsh@fau.edu).

Digital Object Identifier 10.1109/TVLSI.2022.3224357

TABLE I

CRYPTOGRAPHIC ALGORITHMS AND THEIR RESPECTIVE FIELDS

single, double, and even triple errors, but they can also detect burst
errors, which are those faults that occur in many consecutive bits
rather than happening in bits independent of each other.

Binary fields with polynomial basis (PB) are particularly suitable
for VLSI implementations due to their simplicity and modularity.
In this work, we present an exhaustive study by deriving fault
detection schemes based on cyclic codes for finite field multipliers
with PB, implementing such proposed schemes for the fields found
in Advanced Encryption Standard (AES), WG Welch-Gong-16 (WG-
16), WG Welch-Gong-29 (WG-29), and the McEliece cryptosystem,
and benchmarking the different overheads on advanced micro devices
(AMD)/Xilinx field-programmable gate array (FPGA) family Artix-7
for device xc7a12tcpg238-3.

Our work is outlined as follows. Section II reviews the mathemati-
cal properties of PB. In Section III, we discuss the overall finite field
multiplier architecture and derive the different fault detection schemes
based on cyclic codes for multiplications over GF(2m) with PB. Next,
such fault detection schemes are embedded into the original finite
field multipliers in Section IV to benchmark the different overheads.
Finally, Section V concludes this brief.

II. PRELIMINARIES

The Galois field of order pm is a finite field with pm elements,
abbreviated as GF(pm). One of the most common fields used is
the Galois field GF(2m), because they are particularly efficient for
implementation in hardware or on a binary computer. Table I shows
different traditional and post-quantum cryptographic algorithms and
their corresponding fields that they operate with. GF(2m) is made
up of 2m binary polynomials, that is, polynomials with coefficients
of 0 or 1. Each of those polynomials has a degree of no more than
m − 1; thus, the elements may be expressed as m-bit strings. At the
same place in the polynomial, each bit in the bit string corresponds to
a coefficient. For instance, GF(23) has eight elements: 0, 1, x , x +1,
x2, x2 + 1, x2 + x , and x2 + x + 1, and they might be expressed as
000, 001, 010, . . . , 111, respectively.

A finite field element A over GF(2m) with PB
{1, x, x2, . . . , xm−1} can be expressed as follows:

A =
m−1∑

i=0

ai xi , ai ∈ {0, 1} (1)

where the values of ai are the coordinates of the input element A.
To perform the different finite field arithmetic operations,

e.g., addition, subtraction, multiplication, inversion, and division,
1063-8210 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of South Florida. Downloaded on January 05,2023 at 15:56:57 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-6800-3302
https://orcid.org/0000-0003-4513-3109
https://orcid.org/0000-0002-6921-6868

158 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 31, NO. 1, JANUARY 2023

Fig. 1. Finite field multiplier using the proposed error detection blocks based
on cyclic codes.

an irreducible polynomial f (x) of degree m over GF(2m) is needed.
This irreducible polynomial limits the number of bits, since it is
used to perform the modulo operation. For instance, to multiply two
elements A and B over GF(2m), the output C is computed as follows:

C = A · B mod f (x).

There has been an increasing amount of research on finite field
multiplication, since it is used not only to perform the multiplication
of two finite field elements, but also to perform finite field squaring,
inversion, and division. Multiplication over GF(2m) is the most
time-consuming basic arithmetic operation in many cryptographic
algorithms, and its hardware implementation may need thousands
of logic gates. Developing large finite field multipliers that always
produce error-free outputs is a complex and expensive endeavor.

The multiplication of the elements A and B over GF(2m) with PB
can be further derived as follows:

C =
m−1∑

i=0

bi · ((Axi) mod f (x))

=
m−1∑

i=0

bi · X (i)

where the set of bi values is the B coefficients, X (i) = α·X (i−1) f (α),
and X (0) = A. To perform such multiplication, we use the archi-
tecture from [11], needing three different modules: Sum, pass-thru,
and α modules. The sum module is also used to perform finite field
addition, using an m-bit XOR gate to add two GF(2m) elements. The
pass-thru module multiplies a GF(2m) element by a GF(2) element.
For example, let A (a GF(2m) element) and b (a GF(2) element)
serve as the inputs of the pass-thru module, while G (a GF(2m)
element) serves as the output. When b = 0, the output of the pass-
thru module is 0, and when b = 1, the output is A. Finally, the α

module multiplies an element of GF(2m) by x , such as

A(x) · x = am−1 · xm + am−2 · xm−1 + · · · + a0 · x (2)

where

xm ≡ fm−1 · xm−1 + fm−2 · xm−2 + · · · + f0 mod f (x)

reducing the result modulo f (x). For example, if we have a
GF(28) element going through the α module, the input would be
A(x) = a7 · x7 +a6 · x6 +· · ·+a0, which gets multiplied by x in the
α module obtaining A(x) · x = a7 · x8 + a6 · x7 + · · · + a0 · x , where

x8 ≡ x4 + x3 + x + 1 mod f (x) if the irreducible polynomial is
f (x) = x8 + x4 + x3 + x + 1. Therefore, the output of the α module
for this specific case would be A(x) · x = a6 · x7 + a5 · x6 +
a4 · x5 + (a7 + a3) · x4 + (a7 + a2) · x3 + a1 · x2 + (a7 +
a0) · x + a7. Fig. 1 shows the entire finite field multiplier with the
error detection blocks that are derived in Section III. The order of
the error flags EF goes from top to bottom (please note that in the
first iteration, there is no α module). Therefore, EF1 is obtained in
the first α module, EF2 is obtained in the first sum module, EF3 is
obtained in the second α module, EF4 is obtained in the second sum
module, EF5 is obtained in the first pass-thru module, and so on.
Since there are a total of m − 1 α modules, m − 1 sum modules, and
m pass-thru modules, the maximum number of error flags is 3m −2.
ACT. SIGN. and PRED. SIGN. stand for actual and predicted
signatures, respectively, and we will explain them in Section III.

III. PROPOSED FAULT DETECTION ARCHITECTURES

This section presents efficient and overhead-aware error detection
schemes for the different finite field multipliers found in some tradi-
tional and post-quantum cryptographic algorithms. These schemes are
based on cyclic codes, one of the most important subclasses of linear
codes, since they possess many algebraic properties that simplify the
encoding and decoding implementations. In this work, we will use a
(7,4) cyclic code, meaning that for every four data/message bits (k),
there are three parity bits (n−k) associated to form a codeword. This
codeword has the following form:

codeword = [message, parity].
To encode an (n, k) cyclic code into its systematic form, where the
k leftmost digits of each code vector are the message and the n − k
rightmost digits are the parity-check digits, the message polynomial
u(x), with the form of u(x) = uk−1xk−1 + · · · + u1x + u0, is first
multiplied by xn−k . For example, if your message is u(x) = x3 +
x2+1, it becomes x6+x5+x3 (leaving three free bits to add the parity
bits). u(x) · xn−k is then divided by a generator polynomial g(x) =
xn−k + gn−k−1xn−k−1 +· · ·+ g2x2 + g1x +1, which, in this work,
is g(x) = x3 + x +1 to obtain a remainder b(x). b(x) corresponds to
the parity bits, and they are added to the shifted message u(x) · xn−k

to produce a codeword in the form of u(x) · xn−k + b(x). These
steps can be accomplished by the architecture shown in Fig. 2. Let
us explain next how this architecture works and how it is embedded
in the finite field multiplier.

For example, we have the input message u(x)·xn−k , A(x) for short.
A(x) over GF(24) has the form A(x) = a3x6 + a2x5 + a1x4 + a0x3

(leaving three empty bits to append the parity bits). The input A(x)

enters 1 bit at a time (noting that the initial content of the registers
is 0). The first bit that enters is a3, and as shown in Fig. 2, it goes to
registers FF1 and FF2, obtaining a3 for both parity bits P1 and P2
and 0 for the parity bit P3. The next bit that is fed into the circuit is
a2. Since the content of the registers is shifted to the right, FF1 now
stores only a2, and FF2 stores a3 + a2, since the previous value of
FF1 is XORed with the current value of FF2, and FF3 now stores a3,
which is the previous value of FF2. The rest of the message bits are
fed into the circuit in the same manner to obtain the parities shown
in Table II.

To provide error detection to the finite field multipliers, each of its
modules (α, sum, and pass-thru modules) will need to produce actual
parities and predicted parities that will be compared with each other
to detect any faults that have been introduced (fault analysis attack)
or product of the environment (natural faults). Therefore, the circuit
to encode the (7,4) cyclic code needs to be placed twice on each
module, as shown in Fig. 1. We note that we refer to the combination

Authorized licensed use limited to: University of South Florida. Downloaded on January 05,2023 at 15:56:57 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 31, NO. 1, JANUARY 2023 159

Fig. 2. Architecture embedded in the original finite field multipliers to
produce the different signatures.

TABLE II

DERIVATION OF THE ACTUAL SIGNATURES

USING THE CIRCUIT FROM FIG. 2

of Parity 1, Parity 2, and Parity 3 as signatures. The actual signatures
of each module correspond to the combination of parities shown in
the last row of Table II. However, the predicted signatures for the α

module are calculated differently, using different inputs, since the α

module multiplies A(x) with x , as shown in (2). For example, if we
have a GF(24) element going through the α module, the input would
be A(x) = a3 ·x3 +a2 ·x2 +a1 ·x +a0, which gets multiplied by x to
obtain A(x) · x = a3 · x4 +a2 · x3 +a1 · x2 +a0 · x , where x4 ≡ x2 +
1 mod f (x) if the irreducible polynomial is f (x) = x4+x2+1. Thus,
the output of the α module is A(x)·x = a2x3+(a3+a1)x2+a0x+a3.
This means that the first bit entering the circuit from Fig. 2 is a2,
then (a3 +a1), and so on. Table III shows the derivation of predicted
signatures for the α module, and as it can be seen, the inputs are
different, since the coefficients of A(x) · x are different from A(x).
The predicted signatures are then XORed with the actual signatures
(EF1 = ActualParity1 ⊕ PredictedParity1, EF2 = ActualParity2 ⊕
PredictedParity2, and EF3 = ActualParity3 ⊕ PredictedParity3), as
shown in Fig. 1, to detect if any fault has occurred. For example, if
an error flag EF signals a “1,” the system has detected a fault in that
particular module.

On the other hand, the predicted and actual signatures for the sum
and the pass-thru modules are easier to derive than those for the α

module, since the order of the coefficients does not change. For the
sum module, which adds elements A(x) and B(x) over GF(2m), both
signatures are similar as those from Table II, but since B(x) is added,
its coefficients would be added as well, obtaining p1 = a3 + b3 +
a2 + b2, p2 = a2 + b2 + a1 + b1 + a0 + b0, and p3 = a3 + b3 +
a2 + b2 + a1 + b1. Finally, for the pass-thru module, which adds
element A(x) over GF(2m) with a GF(2) element b, both parities
are also similar as those from Table II, but since b is multiplied,
the parities from Table II are multiplied as well with b to obtain
p1 = b ·(a3 +a2), p2 = b ·(a2 +a1 +a0), and p3 = b ·(a3 +a2 +a1).

We note that the example shown is for GF(24), whose inputs have
precisely 4 bits. However, if one is working with more extensive
fields, the input can be split into blocks of 4 bits, and if m is not
divisible by 4, e.g., GF(213) and GF(229), 0’s can be appended to
fill all the blocks of 4 bits. In this work, we have used a (7,4) cyclic
code for simplicity of the examples, to produce more error flags
per multiplication, and to not append many 0’s at the end of each
last block, e.g., if the field is GF(212), the system does not need

TABLE III

DERIVATION OF THE PREDICTED SIGNATURES
USING THE CIRCUIT FROM FIG. 2

TABLE IV

CALCULATION OF THE ERROR COVERAGE PERCENTAGE
FOR EACH MULTIPLIER

to append any “0” using a (7,4) cyclic code, but it needs to append
“0000” to each last block if using a (12,8) cyclic code. In addition,
in the previous example, using a (7,4) cyclic code obtains nine parity
bits per operation, while the (12,8) obtains eight. Employing smaller
cyclic codes provides more parity bits; however, they can use more
computational resources than bigger cyclic codes, especially for larger
fields. The choice of the utilized cyclic codes can be tailored based
on the reliability requirements and the overhead to be tolerated.

IV. ERROR COVERAGE AND FPGA IMPLEMENTATIONS

As mentioned earlier, the proposed error detection schemes are
intended to detect natural faults product of the environment and
intentional faults, e.g., fault analysis attacks. Fault analysis attacks
are active attacks where the adversary seeks to interfere with the
cryptographic process handling sensitive data, causing inaccurate
outputs, which can reveal sensitive data. Bit-fault injection at the
desired place and at the desired cycle would be the perfect attack
to carry out in order to gather a wealth of data. However, this is
generally not practical, as costly equipment is required due to the
shrinking geometry size of integrated chips. Our fault model covers
single as well as multiple stuck-at faults (stuck-at 0 and stuck-at 1),
since technological limitations may make it difficult for an attacker to
flip precisely 1 bit. In this work, we assume that the comparators are
hardened, i.e., the comparators are fault free and not compromised,
and that the inputs are not compromised prior to the execution of the
multiplier units.

The total number of signatures needs to be determined to calculate
the error coverage provided by the various fault detection strategies
proposed in this work. The formula used to calculate the error
coverage is 100 · (1 − (1/2)s)%, where s is the total amount of
signatures. The percentage of not detecting errors using the signatures
is independent, and thus, this is the percent of detecting errors for
randomly distributed faults. Each multiplier needs a total of m − 1
α modules, m − 1 sum modules, and m pass-thru modules, and
each of them has a signature (as mentioned earlier, we note that
the term signature through this brief refers to the combination of
the parities, and one actual signature with one predicted signature is
equivalent to just one signature in the previous formula). Therefore,
each cryptosystem has a different number of signatures and a different
error detection coverage, as it is shown in Table IV.

Normal parity and multibit parity schemes are usually fast and do
not require too many extra resources to implement. However, normal
parity has only an error coverage of up to 50% (it can only detect an

Authorized licensed use limited to: University of South Florida. Downloaded on January 05,2023 at 15:56:57 UTC from IEEE Xplore. Restrictions apply.

160 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 31, NO. 1, JANUARY 2023

TABLE V

OVERHEADS OBTAINED WHEN IMPLEMENTING THE PROPOSED ERROR DETECTION SCHEMES ON TOP OF THE ORIGINAL ARCHITECTURES USING
AMD/XILINX FPGA FAMILY ARTIX-7 DEVICE XC7A12TCPG238-3

odd number of faults), and multibit parity is vulnerable to intelligent
fault injection. While normal parity only produces a single parity bit,
multibit parity schemes group several bits obtaining multiple parity
bits. For example, if your system has GF(210) elements, you could
have five 2-bit groups, giving five error flags or parity bits. However,
faults usually occur in clumps, since it is very costly to inject a
single fault, and multiparity bit schemes would not detect some
clumps of injected faults, e.g., four consecutive faults. Cyclic codes
outperform normal and multibit parities by increasing the complexity
of the arithmetic operations employed. As it can be observed in
Table III, the only combination of injected faults that the system
would not detect faults in the α module is when they are injected
at a3 and a1, since both are located in parity bits 2 and 3 but not
in parity bit 1. Note that producing two single faults in the same
cycle is extremely challenging and costly. Using the (7,4) cyclic code
presented in this work, there are four different places where single
fault can be injected, six different combinations where two faults can
be injected, four different combinations where triple faults can be
injected, and only one combination where four faults can be injected,
which makes a total of 15 combinations. Out of those 15 cases,
our schemes would detect faults in 14 of them, or in other words,
in 93.33% of the cases. For the sum and pass-thru modules, the error
coverage is very similar. For the sum module, since the coefficients
of the GF(2m) element B(x) are added to the parities, the only case
where the scheme does not detect faults is if there is a double fault
at b3 and b1 or at a3 and a1 (253 out of 255 cases would be covered:
99.2% error coverage). Finally, for the pass-thru module, since b is
a GF(2) element and gets multiplied on each parity bit, the only case
where the scheme would not detect faults is if there is a double fault
at a3 and a1 (30 out of 31 cases would be covered: 96.77% error
coverage).

We performed a total of 216 fault simulations on FPGA for GF(28)
multipliers using normal parity schemes and cyclic codes. Of those
simulations, 214 were with single fault injected, 214 were with double
faults injected, 214 were with three faults injected, and 214 were with
four faults injected. The GF(28) multiplier with normal parity had an
error coverage percentage of 50%, since it detected all odd amounts
of faults but not any even amounts of faults. On the other hand,
the GF(28) multiplier with a (7,4) cyclic code detected >99.9% of
the injected faults. More information regarding the implementation
results of these two schemes can be found at the end of this section.

In addition, we have implemented the proposed error detec-
tion schemes on the AMD/Xilinx FPGA family Artix-7 device
xc7a12tcpg238-3 to benchmark the different overheads obtained
when cyclic codes are applied to the original architectures. We use
the Vivado tool and Verilog as the hardware design entry to analyze
the area (occupied slices), delay (ns), power (mW) with the clock

frequency of 50 MHz, and throughput (Gb/s). The different overheads
obtained are shown in Table V, and as one can see, the schemes added
a worst case area overhead of 31.59% and a worst case delay overhead
of 26.02% when they were added to the WG-29. Regarding the power,
the overheads obtained when we apply the error detections schemes
are negligible due to the size of the designs, obtaining a worst case
power overhead of 1.28% when cyclic codes were applied to the
original GF(229) multiplier.

To the best of our knowledge, there has not been any prior work
done on error detection based on general cyclic codes for finite field
multipliers with PB elements. Let us review several case studies
on error detection in GF(2m) arithmetic hardware for qualitative
comparison to ensure that the overheads incurred are reasonable.
Fault detection techniques for the key generator of code-based post-
quantum cryptosystems on FPGA are implemented in [12], obtaining
between ≈5% (best case) and ≈49% (worst case) area overheads. In
[10], fault detection capability on binary extension fields based on
parity is proposed for elliptic curve cryptography (ECC), obtaining
a little over 10% area overhead. In [13], cyclic redundancy checks
(CRC), which are a type of cyclic codes, are proposed for the inverse
of an element with PB in GF(2163), yielding an area overhead of
around 26%. In addition, CRC schemes are implemented on the
key generator of the Niederreiter cryptosystem in [14], obtaining
the efficiency degradations of at most 7.72%. For the sake of
comparison, we have also compared our schemes with a GF(28)
finite field multiplier using error detection based on normal parity.
The latter obtained worse results in terms of area, with an overhead
of 2.86% (36 occupied slices), but a lower delay overhead of 13.55%
(3.208 ns). It is also worth mentioning that normal parity error
detection does not detect an even amount of faults. These and other
comparable research on error detection demonstrate the acceptability
of the overheads obtained in this work.

V. CONCLUSION

This brief presents error detection techniques for finite field mul-
tipliers with PB elements based on cyclic codes. Moreover, we have
also added the suggested fault detection schemes to the original
finite field multipliers of algorithms, such as AES, WG, and the
McEliece cryptosystem in the AMD/Xilinx FPGA family Artix-
7 device xc7a12tcpg238-3. In addition, we calculate the different
overheads added by such schemes and compare them with related
works to prove that the overheads from the proposed schemes are
acceptable. The schemes added a worst case area overhead of 31.59%
and a worst case delay overhead of 26.02% when the schemes were
added to the WG-29 cryptosystem, which is suitable due to the high
error coverage achieved of close to 100%.

Authorized licensed use limited to: University of South Florida. Downloaded on January 05,2023 at 15:56:57 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 31, NO. 1, JANUARY 2023 161

REFERENCES

[1] A. C. Canto, M. Mozaffari-Kermani, and R. Azarderakhsh, “Reliable
CRC-based error detection constructions for finite field multipliers with
applications in cryptography,” IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 29, no. 1, pp. 232–236, Jan. 2021.

[2] D. Heinz and T. Poppelmann, “Combined fault and DPA protection
for lattice-based cryptography,” IEEE Trans. Comput., early access,
Aug. 8, 2022, doi: 10.1109/TC.2022.3197073.

[3] V. Arribas, F. Wegener, A. Moradi, and S. Nikova, “Cryptographic fault
diagnosis using VerFI,” in Proc. IEEE Int. Symp. Hardw. Oriented Secur.
Trust (HOST), Dec. 2020, pp. 229–240.

[4] J. Kaur, M. Mozaffari-Kermani, and R. Azarderakhsh, “Hardware con-
structions for error detection in lightweight authenticated cipher ASCON
benchmarked on FPGA,” IEEE Trans. Circuits Syst. II, Exp. Briefs,
vol. 69, no. 4, pp. 2276–2280, Apr. 2022.

[5] M. Mozaffari-Kermani and A. Reyhani-Masoleh, “Reliable hardware
architectures for the third-round SHA-3 finalist grostl benchmarked on
FPGA platform,” in Proc. IEEE Int. Symp. Defect Fault Tolerance VLSI
Nanotechnol. Syst., Oct. 2011, pp. 325–331.

[6] M. Mozaffari-Kermani and A. Reyhani-Masoleh, “A high-performance
fault diagnosis approach for the AES SubBytes utilizing mixed bases,”
in Proc. Workshop Fault Diagnosis Tolerance Cryptography, Sep. 2011,
pp. 80–87.

[7] C.-Y. Lee, P. K. Meher, and J. C. Patra, “Concurrent error detection in
bit-serial normal basis multiplication over GF(2m) using multiple parity
prediction schemes,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,
vol. 18, no. 8, pp. 1234–1238, Aug. 2010.

[8] A. Cintas-Canto, M. M. Kermani, and R. Azarderakhsh, “Reliable
architectures for composite-field-oriented constructions of McEliece
post-quantum cryptography on FPGA,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 40, no. 5, pp. 999–1003,
May 2021.

[9] A. Reyhani-Masoleh and M. A. Hasan, “Fault detection architectures
for field multiplication using polynomial bases,” IEEE Trans. Comput.,
vol. 55, no. 9, pp. 1089–1103, Sep. 2006.

[10] C. Fei, F. Zhou, N. Wu, F. Ge, J. Wen, and P. Qin, “A scalable
bit-parallel word-serial multiplier with fault detection on GF(2m),” in
Proc. IEEE 20th Int. Conf. Commun. Technol. (ICCT), Oct. 2020,
pp. 1660–1664.

[11] A. Reyhani-Masoleh and M. A. Hasan, “Error detection in polynomial
basis multipliers over binary extension fields,” in Proc. CHES, 2002,
pp. 515–528.

[12] A. C. Canto, M. M. Kermani, and R. Azarderakhsh, “Reliable con-
structions for the key generator of code-based post-quantum cryptosys-
tems on FPGA,” ACM J. Emerg. Technol. Comput. Syst., Jun. 2022,
pp. 1–10.

[13] A. Cintas-Canto, M. Mozaffari-Kermani, and R. Azarderakhsh, “CRC-
based error detection constructions for FLT and ITA finite field inver-
sions over G F(2m),” IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,
vol. 29, no. 5, pp. 1033–1037, May 2021.

[14] A. Cintas-Canto, M. Mozaffari-Kermani, R. Azarderakhsh, and
K. Gaj, “CRC-oriented error detection architectures of post-
quantum cryptography niederreiter key generator on FPGA,” in
Proc. IEEE Nordic Circuits Syst. Conf. (NorCAS), Oct. 2022,
pp. 1–7.

Authorized licensed use limited to: University of South Florida. Downloaded on January 05,2023 at 15:56:57 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TC.2022.3197073

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

