IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

MEHRAN MOZAFFARI KERMANI

Received 13 March 2022; revised 15 June 2022; accepted 16 October 2022.
Date of publication 31 October 2022; date of current version 6 September 2023.

Digital Object Identifier 10.1109/TETC.2022.3217006

Error Detection Schemes Assessed on FPGA for
Multipliers in Lattice-Based Key Encapsulation
Mechanisms in Post-Quantum Cryptography

ALVARO CINTAS CANTO ", (Member, IEEE),
AUSMITA SARKER ", (Member, IEEE), JASMIN KAUR, (Student Member, IEEE),
, (Senior Member, IEEE), AND REZA AZARDERAKHSH

Alvaro Cintas Canto is with the School of Technology and Innovation, Marymount University, Arlington, VA 22207 USA
Ausmita Sarker, Jasmin Kaur, and Mehran Mozaffari Kermani are with the Department of Computer Science and Engineering,
University of South Florida, Tampa, FL 33620 USA

Reza Azarderakhsh is with the Department of Computer and Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431 USA

CORRESPONDING AUTHOR: MEHRAN MOZAFFARI KERMANI (mehran2 @ usf.edu)

This work was supported by Marymount University through the START under grant 2450100, and in part by the
US National Science Foundation (NSF) through the award under Grant SaTC-1801488.

ABSTRACT Advances in quantum computing have brought the need for developing public-key cryptosys-
tems secure against attacks potentially enabled by quantum computers. In late 2017, the National Institute of
Standards and Technology (NIST) launched a project to standardize one or more quantum computer-resistant
public-key cryptographic algorithms. Among the main post-quantum algorithm classes, lattice-based cryptog-
raphy is believed to be quantum-resistant. The standardization efforts including that of the NIST which will be
concluded in 2022-2024 also affirm the importance of such algorithms. In this work, we propose error detection
schemes for lattice-based key encapsulation mechanisms (KEMs). As our case study, we apply such schemes to
the hardware accelerators for three post-quantum cryptographic algorithms that have advanced to the third
round of the NIST PQC standardization process, i.e., FrodoKEM, Saber, and NTRU. The merit of the proposed
schemes is that they can be applied to other applications and cryptographic algorithms that use multiplications
in their hardware accelerators. The schemes proposed in this paper are based on recomputing with shifted,
negated, and scaled operands. Moreover, we implement our fault detection schemes on field-programmable
gate array (FPGA) family Kintex Ultrascale+ device xcku5p-sfvb784-1LV-i to benchmark the overheads
induced and the performance degradation of the proposed approaches when added to the original architectures.
The results show acceptable overhead and high error coverage for all three studied NIST PQC finalists.

INDEX TERMS Fault detection, field -programmable gate array (FPGA), lattice-based, post-quantum

, (Member, IEEE)

cryptography

I. INTRODUCTION

Traditional public-key cryptosystems are believed to be
vulnerable to attacks enabled by quantum computers [1]. In
2017, the National Institute of Standards and Technology
(NIST) began the process to standardize quantum-resistant
public-key cryptographic algorithms; algorithms that make
cryptographic systems secure against both classical and
quantum computers, and can work with communication pro-
tocols and networks that currently exist [2]. This effort is in
its final stage as of 2022 and it is expected to conclude in
2022-2024.

Lattice-based cryptosystems have been used for many
years in traditional known public-key schemes such as the
RSA, Diffie-Hellman, or elliptic-curve cryptosystems. Lat-
tice-based cryptography involves all cryptographic primitives
that include lattices, either in the construction itself or in the
security proof. Their high efficiency, strong security guaran-
tees from worst-case hardness, and simplicity to implement,
make lattice-based cryptography a promising quantum-resis-
tant class. Currently, there are three finalists and two alternates
which are lattice-based cryptosystems in the NIST standardi-
zation process.

2168-6750 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE
VOLUNEHdriecBlidehseEREQMIRGited to: UnivessitipadrsaerhfsritlavvDesertisustioatiore/iohtsindex 20p4can20e26¢' 8T from IEEE Xplore. Restrictions apply. 791

https://orcid.org/ 0000-0001-6800-3302
https://orcid.org/ 0000-0001-6800-3302
https://orcid.org/ 0000-0001-6800-3302
https://orcid.org/ 0000-0001-6800-3302
https://orcid.org/ 0000-0001-6800-3302
https://orcid.org/0000-0002-1142-8171
https://orcid.org/0000-0002-1142-8171
https://orcid.org/0000-0002-1142-8171
https://orcid.org/0000-0002-1142-8171
https://orcid.org/0000-0002-1142-8171
https://orcid.org/0000-0003-4513-3109
https://orcid.org/0000-0003-4513-3109
https://orcid.org/0000-0003-4513-3109
https://orcid.org/0000-0003-4513-3109
https://orcid.org/0000-0003-4513-3109
https://orcid.org/0000-0002-6921-6868
https://orcid.org/0000-0002-6921-6868
https://orcid.org/0000-0002-6921-6868
https://orcid.org/0000-0002-6921-6868
https://orcid.org/0000-0002-6921-6868

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

Kermani et al.: Error Detection Schemes Assessed on FPGA for Multipliers in Lattice-Based Key Encapsulation Mechanisms in Post-Quantum Cryptography

Traditionally, hardware benchmarking was performed
separated from software benchmarking; however, due to the
mathematical complexity of post-quantum cryptography
(PQC) algorithms and the hardware resources required, pure
hardware implementations are difficult to achieve. There are
only a few pure hardware implementations in the NIST PQC
standardization process, e.g., [3] and [4]. The challenges of
performing PQC algorithms purely hardware dedicated
require new approaches [5]-[9]. The authors of [10] and
[11] propose software/hardware codesigns to solve these
challenges, developing different hardware accelerators for lat-
tice-based key encapsulation mechanisms (KEMs). Such
hardware accelerators involved many rewiring and opera-
tions, where multiplications are one the most costly and time-
consuming processes.

As previous research has shown, lattice-based cryptogra-
phy is vulnerable to differential fault analysis attacks (DFA),
which is a type of side-channel attack where faults are induced
into the cryptographic implementation to reveal data. The
side-channel security aspect of lattice-based cryptography has
received limited attention, but it is necessary to study it since
most of these attacks allow to recover the secret key making
the entire system vulnerable and not secure enough. In [12],
the authors perform successfully partial key exposure attacks
on BIKE, Rainbow and NTRU. The authors of [13] propose
side-channel attacks on BLISS Ilattice-based signatures that
can yield a full key recovery using branch tracing. In [14],
researchers work with polynomials over the ring ;ﬂxl] used in
the RLWE-based public-key encryption scheme and prove
that they can recover the entire key by using the leakage com-
ing from the Number Theoretic Transform (NTT) of such
scheme. The research work in [15] shows DFAs in CRYS-
TALS-Dilithium and qTESLA. In particular, they prove that
up to 65.2% of the execution time of Dilithium is vulnerable
to DFAs leading to fully key recovery. There has been some
previous research providing countermeasures against side-
channel attacks for lattice-based cryptographic systems such
as [16] and [17]. In [16], the authors propose a practical fault
analysis attack against NTRUEncrypt using polynomial
inversions in /){ L ;/J][x] , providing countermeasures to such
attacks based on checksums and spatial/temporal redundancy
in [17]. A major drawback with checksums is the potential for
high hardware overhead when high error coverage is
achieved. In [18]-[20], more countermeasures against side-
channel attacks are proposed.

However, to the best of our knowledge, in this work, we
propose for the first time error detection schemes based on
recomputing for the hardware accelerators of FrodoKEM,
Saber, and NTRU. Such schemes have the advantage of cov-
ering more faults than checksum signatures, they successfully
detect both permanent and transient faults, they provide an
acceptable overhead for such high error detection coverage,
and they are usable by major lattice-based post-quantum algo-
rithms advanced to the final round of the NIST PQC standardi-
zation process. Additionally, we calculate the performance
degradation and the overheads of the proposed error detection

schemes. This is done by embedding the fault detection archi-
tectures into the original constructions. The benchmark has
been done using Xilinx FPGA family Kintex Ultrascale+
device xcku5p-sfvb784-1LV-i to assess the efficiency of the
proposed schemes.

Il. PRELIMINARIES

In this paper, we propose error detection architectures for
hardware accelerators of the lattice-based KEMs proposed in
[10] and [11], i.e., FrodoKEM, Saber, and NTRU. Some of
the benefits of using KEMs instead of the traditional approach
of public-key encryption are that the length of the message is
not limited, they can provide integrity protection, and the
symmetric keys are unrelated, avoiding mathematical proper-
ties. We will go over some important aspects of FrodoKEM,
Saber, and NTRU algorithms; however, if the reader is inter-
ested in a more detailed explanation of such cryptographic
algorithms, please refer to [21], [22], and [23], respectively.

FrodoKEM, Saber, and NTRU are based on the Learning

with Errors (LWE), Module Learning with Rounding (Mod-
LWR), and Shortest Vector problems, respectively. The most
time-consuming operation of such cryptographic algorithms
is matrix-by-matrix multiplication for the case of Frodo-
KEM, matrix-by-vector and vector-by-vector multiplications
(or polynomial multiplication since its matrix and vector ele-
ments are polynomials) for Saber, and polynomial multipli-
cation in NTRU. The multiplications carried by each of these
cryptosystems are modulo a power of two, expressed as q.
Other important parameters of these lattice-based crypto-
graphic algorithms are:

1) For FrodoKEM, n stands for the matrix dimensions, B
is the number of bits encoded in each matrix entry, and
o specifies the standard deviation.

2) For Saber, n is the degree of the polynomial ring, [is
the rank, and p stands for the coefficients of the secret
vectors.

3) For NTRU, n is the degree of the polynomial P and kcb
is the number of bytes in a ciphertext for the KEM.

The FrodoKEM matrices are formed by elements of the ring

7.4, Saber matrices and vectors are formed by elements of the

ring Z’,"ﬂ , and NTRU elements use three different rings: :,,"_[xl] ,
'/,q[x] 73x] .)
=1yt ad =y oy - To eliminate the need for pad

ding, FrodoKEM uses SHAKE as the hash-based function,
Saber uses SHAKE, SHA3-256, and SHA3-512, and NTRU
uses SHA3-256. In Table 1, we provide the different parame-
ter sets for the FrodoKEM, Saber, and NTRU algorithms.

lll. PROPOSED FAULT DETECTION SCHEMES

A. FAULT MODEL

One can observe several fault models based on different facets
of the attacks. These models are based on the number of bits
compromised, the location of the faults, how the faults are intro-
duced, and how long the faults last. An attacker may not be able
to flip precisely one bit to capture crucial information due to
technological limitations. However, to save time and effort, the

792 Authorized licensed use limited to: University of South Florida. Downloaded on February 01,2024 at 20:26:31 UTC from |IEEE Xpla¥E RedAclohd-4SERT. 2023

IEEE TRANSACTIONS ON

EMERGING TOPICS

Kermani et al.: Error Detection Schemes Assessed on FPGA for Multipliers in Lattice-Based Key Encapsulation Mechanisms in Post-Quantum Cryptography IN COMPUTING

TABLE 1. Different parameter sets for FrodoKEM, Saber, and
NTRU.

Algorithm Security p Other
Level Parameters
Frodo-640 1 640 215 B=20=28
Frodo-976 3 976 216 B=3,0=23
Frodo-1344 5 1344 2! B=4,0=14
LightSaber-KEM 1 256 213 =2, u=10
Saber-KEM 3 256 213 =3, u=
FireSaber-KEM 5 256 2B l=4,u=
ntruhps2048509 - 509 2N keb = 699
ntruhps2048677 1 677 21 keb = 930
ntruhps4096821 3 821 212 keb = 1230
ntruhrss701 1 701 213 keb = 1138

attacker tries to introduce as few errors as possible (preferably
single faults of different intensities). There are two main types
of faults depending on the duration of the faults: Transient
faults, which are the most common ones, lasting one or a few
clock cycles and when the system retries to perform the affected
operation, the fault disappears; and permanent faults, which last
longer than transient faults, and the system will have to be reset
or the value where the fault injection took place will have to be
overwritten for the device to output the correct values. The error
detection schemes derived in this work are based on recomput-
ing with shifted, negated, and scaled operands, which consider
both transient faults and permanent internal faults (and the pro-
posed schemes are oblivious of these). Additionally, these tech-
niques can identify numerous stuck-at faults (both stuck-at one
and stuck-at zero situations), adjacent (for interleaved cases),
single or multiple stuck-at faults.

In this paper, we propose error detection architectures for
hardware accelerators of the lattice-based KEMs FrodoKEM,
Saber, and NTRU. We provide recomputing to the different
multiplication modules that each KEM uses, i.e., matrix-by-
matrix, matrix-by-vector, vector-by-vector, and polynomial
multiplications. These multiplications are performed by the
units 4MAC and MAC. 4MAC is used in the hardware accel-
erator of FrodoKEM, while the unit MAC is used in the hard-
ware accelerators of Saber and NTRU. The MAC and 4MAC
units are essentially performing vector-by-vector multiplica-
tions. However, they can by used to perform matrix-by-
matrix, matrix-by-vector, and polynomial multiplications.
For example, to perform matrix-by-vector multiplication in
the hardware accelerator of FrodoKEM, the unit 4MAC takes
one row of matrix A, which is multiplied by the coefficients
of vector B, and the coefficients of vector C are added to
obtain the first bits of ACC. Subsequently, the other rows of
A are being used in parallel to obtain ACC = AB + C. On
the other hand, the unit MAC basically performs one of the
iterations of the unit 4MAC obtaining ACC = AB + C. We
note that A, B, and C are considered vectors throughout this
paper for simplicity; however, for the matrix-by-vector
example that we just proposed, A is considered a matrix. In
the next subsections, we will use the unit MAC to derive the

Normal/
RECO

N Dividing
C LAl Unit
Scaling] “Reco.
—>
Unit B N v
A X
4
N

Error_Flag

FIGURE 1. MAC unit with the proposed RECO scheme.

different error detection schemes, but the proposed schemes
are applicable to the 4MAC unit as well, which means that all
of them can be used for the hardware accelerators of Frodo-
KEM, Saber, and NTRU.

B. RECO

The error detection schemes provided in this paper aim to pro-
vide a high level of security at the expense of low overheads,
which are needed for high-performance low-energy deeply-
embedded systems like wearable medical devices. The first
scheme presented is based on recomputing with scaled oper-
ands (RECO), shown in Figure 1. RECO has been used exten-
sively in research and one of its main benefits is that RECO is
a superset of recomputing with shifted operands (RESO) and
recomputing with negated operands (RENO) (presented in the
next subsections), providing flexibility depending on the scal-
ing integer used. By scaling, the operands are multiplied by an
integer . If ¢ is —1, it would be negation, and if ¢ is 2, 4, 8,
etc., it would be shifting by 1, 2, 3, etc. However, not all scal-
ings are efficient: For example, scaling by 3 needs shift and
add but by 4 needs just two shifts in hardware.

As mentioned above, in the recomputation step for RECO,
the operands are scaled by being doubled, quadrupled, or
multiplied by a specific factor 7. After the computing step is
finished and ACC is obtained, the RECO signal is selected to
start the recomputing step. In this step, operands A and B are
multiplied by ¢ by using the Scaling Unit as depicted in
Figure 3. The operand C is then multiplied by 7> by also
using the Scaling Unit since both operands A and B have a
common factor of . To obtain ACC’, the addition of the
scaled operands AB with the scaled operand C is divided by
2 - t using the Dividing Unit to obtain

t-A-t-B+1-C
(

ACC = 5 .)

The result of the computed step (ACC) is finally compared
with the result of the recomputed step to detect if any faults
are present in the system. For the RECO scheme, the sizes of
the registers for operands A and B are n + t7engminpis-bits long,
while the size of the operand C register is n + t%mgm,an—bits,
where n is the size of the original operands. For example, if
A =010, B=001, C =011, and r = 3, three new registers

VOLUNRRdri¥ed3lidehs&ERiE&Raited to: University of South Florida. Downloaded on February 01,2024 at 20:26:31 UTC from IEEE Xplore. Restrictions apply. 793

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

Kermani et al.: Error Detection Schemes Assessed on FPGA for Multipliers in Lattice-Based Key Encapsulation Mechanisms in Post-Quantum Cryptography

Normal/
RENO

Negation
Unit
C
Negation
Unit
A E

Error_Flag

FIGURE 2. MAC unit with the proposed RENO scheme.

are created so when A, B, and C are scaled, A’ = 00110,
B’ = 00100, and C' = 0011011 are obtained. ACC will be

/ (t‘A't'Bthz'C) _00110-000114+0011011 __ 101101 __
101 and ACC’ = (ABH2C) 0114 = 10U _),

Therefore, ACC = ACC'.

C. RENO

The next variant is based on RENO. The schematic of this vari-
ant is provided in Figure 2. During the computation step (Nor-
mal signal), the original MAC operation is performed without
any modifications to obtain ACC. Next, the RESO signal is
selected for the recomputation step, where the operands A and
C are negated through the Negating Unit to obtain —A and
—C. The Negating Unit performs the two’s complement of A
and C, where they are inverted and added with a single ‘1’ bit.
Then, the result of multiplying —AB is stored, C is subtracted
(which is the same as doing the addition of C negated), and
ACC' is calculated by performing a last negation, obtaining

ACC' = —(—AB - C). 2)

To detect if any faults are present in the system, ACC’ is com-
pared with the precomputed ACC value by using XOR gates.
In this variant, the sizes of the operand registers are n, where n
is the bit-size of the inputs. For example, if A = 010, B = 001
and C = 011, three new registers are created so when A and C
are negated, A’ = 110, B' = 001, and C' = 101 are obtained.
ACC will be 101 and ACC' =—(—AB—-C)=—(110-
001 + 101) = —(1011) = 101. Therefore, ACC = ACC'.

D. RESO

Lastly, this variant is based on RESO and it is shown in
Figure 3. The select signal of the different multiplexers deter-
mines if the system is performing the original MAC operation
(Normal signal) or the recomputing scheme (RESO signal). In
the initial computation step, the Normal signal is selected and
ACC is calculated by performing by multiplying the inputs A
and B first and adding input C after, such as ACC = AB + C.
Once the output ACC is calculated and stored in a register, the
RESO signal is selected so the system can start the recomputa-
tion step, where the operands A, B, and C are shifted k-bits by
the Left Shift Unit. The shifted operands are then stored in
registers to obtain a pipelined implementation. Once the mul-
tiplication of the operands A and B is calculated, C is added

Normal/
RESO

C
Left
B Shift
Unit
A

Error_Flag

FIGURE 3. MAC unit with the proposed RESO scheme.

and the result is shifted right by k-bits through the Right Shift
Unit to obtain

ACC' = shifty, ((shifty(A)) (shifti(B)) + (shift2 (C)).
3)

ACC is then compared to ACC’ to detect any faults. In RESO,
if the operands are of size n-bits, then each register needs to
have a size of (n + k)-bits since the operands are being shifted
k-bits. For example, if A = 010, B = 001 and C = 011, three
new registers are created so when A, B, and C are shifted,
A’ =0100, B'=0010, and C’'=01100 are obtained.
ACC will be 101 and ACC' = shift,,((shifi;(A)) (shift;(B)) +
(shift, (C))) = shift,,(0100 - 0010 4 01100) = shift,(10100) =
101. Therefore, ACC = ACC'.

E. COST OF THE PROPOSED ERROR DETECTION
SCHEMES

For the sake of comparison in terms of area (occupied slices),
delay (ns), and power (mW) with the clock frequency of
50 MHz between RECO, RENO, and RESO, we have added
them to the original MAC and 4MAC units architectures and
implemented them on Xilinx FPGA family Kintex Ultrascale
+ device xckuSp-sfvb784-1LV-i using the Vivado tool. As we
can see in Table 2, the most suitable error detection scheme
for deeply-constrained devices is RESO due to the use of
shifting, which has no cost in hardware. The worst proposed
scheme in terms of area, delay, and overhead is for RECO
when used with a non-power of 2 scaling integer since it not
only needs shifting, but also addition (for the RECO imple-
mentations, we have used a scaling integer of 3). The pro-
posed schemes have an error coverage of close to 100%;
therefore, RESO (or RECO when ¢ is a power of 2) is the best
choice as not only has high error coverage, but also an accept-
able hardware cost. In the next section, more in-depth imple-
mentations are carried out along with an analysis on the error
detection capabilities.

IV. ERROR COVERAGE AND FPGA IMPLEMENTATIONS
The proposed error detection schemes not only have to provide
a high error coverage percentage, but they also need to achieve
acceptable overheads for deeply-embedded systems. The hard-
ware accelerators of Saber and NTRU (ntruhps4096821) use

794 Authorized licensed use limited to: University of South Florida. Downloaded on February 01,2024 at 20:26:31 UTC from |IEEE Xplo¥E RedAclohd-4SERT. 2023

IEEE TRANSACTIONS ON

EMERGING TOPICS

Kermani et al.: Error Detection Schemes Assessed on FPGA for Multipliers in Lattice-Based Key Encapsulation Mechanisms in Post-Quantum Cryptography IN COMPUTING

TABLE 2. An ilustrative example with FPGA implementation
results for the original MAC and 4MAC architectures using RECO,
RENO, and RESO.

Architecture Scheme Area Delay Power
(CLBs) (ns) (mW)
RECO 266 0.426 19.572
Saber MAC RENO 65 0.424 5.194
RESO 19 0.424 4.956
RECO 257 0.426 19.818
NTRU MAC RENO 62 0.424 5.946
RESO 18 0.424 4.851
RECO 1207 0.473 22.376
FrodoKEM 4MAC RENO 302 0.467 7.166
RESO 87 0.461 5.476

256 and 821 MAC units, respectively, while the hardware
accelerator of FrodoKEM uses 8 4MAC units. In Figure 4, an
overall structure of the proposed recomputing schemes embed-
ded in FrodoKEM’s hardware accelerator is presented. As it is
shown in Figure 4, a total of 8 error flags, denoted as EF with
index 1-8, are obtained by XORing the original output ACC
with the output of the recomputing block.

To confirm that the proposed error detection schemes are
overhead-aware and that they provide high error coverage,
the RESO schemes are embedded into every MAC and
4MAC unit in the Saber, NTRU, and FrodoKEM hardware
accelerators and implemented on Xilinx FPGA family Kintex
Ultrascale+ device xckuSp-sfvb784-1LV-i. The error cover-
age is evaluated by simulating fault injection in Xilinx and
using Verilog as our hardware design entry. We note that
this is a fairly recent FPGA family; nevertheless, because our
schemes are independent of the utilized FPGA device/fam-
ily/vendor, we expect similar results on other FPGAs as well.
Due to technological limitations, an adversary may not be
able to flip precisely one bit to capture sensitive information.
Therefore, we inject three types of faults in our simulations,
i.e., single, 2-bit, and multiple-bit faults. More than 7 x 10°
simulations are performed for the three different hardware
accelerators, obtaining a close to 100% error coverage (all
the injected faults are detected). We assume that the compa-
rators are hardened, i.e., the comparators are fault free and
not compromised, and that the inputs are not compromised

A B C
> 4MAC —e—> ACC_1
Recomputing —_D_) EF_I
Recomputing EF_2
L3 [d .
H H .

'yY

4MAC E ACC_17
Recomputing | EF_7

4MAC

Recomputing —_D_) EF_8

FIGURE 4. Proposed recomputing schemes embed in FrodoKEM’s
hardware accelerator.

YYY

prior to the execution of the MAC and 4MAC units. The pro-
posed detection schemes compare the original output to pro-
duce an error flag. If this error flag signals ‘1,” a fault has
been detected.

Moreover, we present the overhead results in terms of area
(CLBs), delay, and power consumption (at the frequency of
50 MHz) for the implementations of the original MAC and
4MAC units with our proposed error detection based on
recomputing in Table 3. For the implementations, we create
internal inputs from a seed using a shifter, and the outputs are
ORed once calculated. To obtain the area, CLBs are read from
Vivado’s location utilization report. We utilize the Timing
Constraints Wizard function in Vivado to calculate the delay,
setting a primary clock period restriction of 20 ns, which cor-
responds to a frequency of 50 MHz. The total on-chip power,
which is the power consumed internally within the FPGA and
is calculated by summing device static power and design
power, is also reported. Recomputing schemes decrease the
throughput greatly due to computing the operations twice;
however, by using pipelined implementations, the throughput
does not decrease as much. From Table 3, we can see that the
overheads of the implemented architectures are acceptable.

TABLE 3. Overheads of the proposed error detection schemes based on RESO for the MAC and 4MAC units found in the saber, NTRU,
and FrodoKEM hardware accelerators on Xilinx FPGA family kintex ultrascale+ device xcku5p-Sfvb784-1LV-I.

Architecture Area Delay (ns) Power (mW)
(CLBs) @50 MHz

Saber MAC units 3,991 4.544 0.491
Saber MAC units using Recomputing 5,451 (36.6%) 5.833 (28.3%) 0.497 (1.2%)
NTRU MAC units 11,820 5.088 0.630
NTRU MAC units using Recomputing 16,503 (39.6%) 5.939 (16.7%) 0.650 (3.2%)
FrodoKEM 4MAC units 640 4.742 0.451
FrodoKEM 4MAC units using Recomputing 822 (28.4%) 6.291 (32.7%) Negligible Over.

VOLUNRRdri¥ed3lidehs&E i€ MRAited to: University of South Florida. Downloaded on February 01,2024 at 20:26:31 UTC from IEEE Xplore. Restrictions apply. 795

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

Kermani et al.: Error Detection Schemes Assessed on FPGA for Multipliers in Lattice-Based Key Encapsulation Mechanisms in Post-Quantum Cryptography

TABLE 4. Worst-case overhead comparison of the presented schemes with other fault detection works.

Worst-Case Overhead %

Work Fault Detection Scheme Area Delay Power Error Coverage %

[17] Spatial duplication 6.22 Not given Not given 100

[18] Recomputing with swapped ciphertext and 4.9/6.7 Not given Not given >99.9
additional authenticated blocks (plain/pipelined)

[19] Normal parity/2-bit parity/3-bit parity 9.78/11.35/9.57 1.39/0.84/1.00 2.74/2.74/2.74 100

[20] Statistical tests (low cost/standard/expensive) 8/44/85 Not given Not given Not given

[24] CRC-5 18.33 11.25 0 >99.9

This work RESO (Sabet/NTRU/FrodoKEM) 36.6/39.6/28.4 28.3/16.7/32.7 1.2/3.2/Negl. >99.9

The area overhead of the error detection schemes based on
recomputing on top of the Saber hardware accelerator is
36.6%, while the delay increments a 28.3%, and the power
goes up by 1.2%. The area overhead added into the NTRU
hardware accelerator is 39.6%, while the delay increments a
16.7%, and the power goes up by 3.2%. Lastly, the area over-
head added into the FrodoKEM hardware accelerator is
28.4%, while the delay increments a 32.7%, and the power
overhead is negligible. These overhead increases are due to
additional CLBs, clock-cycles, and power usage that are
needed to calculate the recomputed outputs, which are then
compared to original output to detect if a fault has occurred.
Moreover, the worst-case scenario in terms of area overhead
is 39.6% for the hardware accelerator of the lattice-based
KEM NTRU and a worst-case scenario in terms of delay over-
head of less than 33% for the FrodoKEM hardware accelera-
tor. Furthermore, the power overheads added to the original
architectures are less than 4%, obtained by the NTRU hard-
ware accelerator. As it is shown, the proposed error detection
schemes add acceptable overheads considering that they pro-
vide a close to 100% error coverage.

A. COMPARISONS WITH OTHER SCHEMES FOR PQC

To the best of the authors’ knowledge, there is no previous
research on these types of error detection schemes for the
MAC and 4MAC units found in the hardware accelerators of
Saber, NTRU, and FrodoKEM. However, for a qualitative
comparison, we will go over some case studies to verify that
the overheads incurred are acceptable. In [24], authors per-
formed concurrent error detection based on cyclic redun-
dancy check (CRC) signatures for finite field multipliers on
FPGA with the Luov cryptosystem (a multivariate-based
PQC algorithm) as a case study, obtaining worst-case area
and delay overheads of approximately 18.3% and 11.3%,
respectively. Moreover, error detection architectures for
redundant arithmetic-based inversion in GF(2%) are pre-
sented in [18], obtaining a worst-case area overhead of
35.6%. Additionally, Table 4 shows a comparison on the
implementation cost and error detection capability between
the proposed methods and other previous works. These and
other prior works on classical and post-quantum cryptogra-
phy demonstrate that the proposed techniques have equiva-
lent overheads to other fault-detection architectures, resulting
in a reasonable overhead. These degradations are acceptable

due to the error detection offered to original architectures
that lack the ability to identify faults.

V. CONCLUSION

Software/hardware codesigns solve the challenge of perform-
ing PQC algorithms purely hardware dedicated by develop-
ing different hardware accelerators for lattice-based KEMs.
Such hardware accelerators are vulnerable to differential fault
analysis attacks and it is extremely important to provide
countermeasures against such attacks. In this work, we have
derived different error detection schemes based on recomput-
ing with negated, shifted, and scaled operands for the Frodo-
KEM, Saber, and NTRU hardware accelerators. Moreover,
we embedded the proposed fault detection architectures into
the original constructions to calculate the performance degra-
dation and the overheads of the proposed schemes. This is
done by using Xilinx FPGA Kintex Ultrascale+ xckuSp-
sfvb784-1LV-i, showing a high error coverage. The pro-
posed error detection schemes have at most 39.6% area
overhead, obtained by the hardware accelerator of the lattice-
based KEM NTRU, a worst-case scenario in terms of delay
overhead of less than 33% obtained by the FrodoKEM hard-
ware accelerator, and worst-case scenario of less than 4% in
terms of power overhead, obtained by the NTRU hardware
accelerator. The proposed schemes are compared with other
fault detection works to demonstrate that the techniques pro-
posed in this work have a reasonable overhead.

REFERENCES

[1] P. W. Shor, “Algorithms for quantum computation: Discrete logarithms
and factoring,” in Proc. IEEE Annu. Symp. Foundations Comput. Sci.,
1994, pp. 124-134.

[2] D. Moody, “Post-quantum cryptography: NIST’s plan for the future,”
in Proc. 7th Int. Conf. Post-Quntum Cryptography, Feb. 2016.

[3] W. Wang, J. Szefer, and R. Niederhagen, “FPGA-based niederreiter cryp-
tosystem using binary Goppa codes,” in Proc. Int. Conf. Post-Quantum
Cryptography, 2018, pp. 77-98.

[4] J.Howe, T. Oder, M. Krausz, and T. Giineysu, “Standard lattice-based key
encapsulation on embedded devices,” IACR Trans. Cryptographic
Hardware Embedded Syst., vol. 2018, pp. 372-393, 2018.

[5] K. Gaj, “Challenges and rewards of implementing and benchmarking post-
quantum cryptography in hardware,” in Proc. Great Lakes Symp. VLSI, 2018,
pp- 359-364.

[6] Y. Xing and S. Li, “A compact hardware implementation of CCA-secure
key exchange mechanism CRYSTALS-KYBER on FPGA,” IACR Trans.
Cryptographic Hardware Embedded Syst., vol. 2021, no. 2, pp. 328-356,
2021.

796 Authorized licensed use limited to: University of South Florida. Downloaded on February 01,2024 at 20:26:31 UTC from |IEEE Xplo¥E RedAclohd-4GERT. 2023

IEEE TRANSACTIONS ON

EMERGING TOPICS

Kermani et al.: Error Detection Schemes Assessed on FPGA for Multipliers in Lattice-Based Key Encapsulation Mechanisms in Post-Quantum Cryptography IN COMPUTING

[71

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

S. S. Roy and A. Basso, “High-speed instruction-set coprocessor for lat-
tice-based key encapsulation mechanism: Saber in hardware,” IACR Trans.
Cryptographic Hardware Embedded Syst., vol. 2020, no. 4, pp. 443-466,
2020.

J. W. Bos, M. Ofner, J. Renes, T. Schneider, and C. V. Vredendaal, “The
matrix reloaded: Multiplication strategies in FrodoKEM,” in Proc. Int.
Conf. Cryptol. Netw. Secur., 2021, Art. no. 72-91.

P. A. Fouque, P. Kirchner, T. Pornin, and Y. Yu, “BAT: Small and fast
KEM over NTRU lattices,” IACR Trans. Cryptographic Hardware
Embedded Syst., vol. 2022, no. 2, pp. 240-265, 2022.

V. B. Dang, F. Farahmand, M. Andrzejczak, and K. Gaj, “Implementing
and benchmarking three lattice-based post-quantum cryptography algo-
rithms using software/hardware codesign,” in Proc. IEEE Int. Conf. Field-
Programmable Technol., 2019, pp. 206-214.

F. Farahmand, V. B. Dang, M. Andrzejczak, and K. Gaj, “Implementing
and benchmarking seven round 2 lattice-based key encapsulation mecha-
nisms using a software/hardware codesign approach,” in Proc. Second
PQC Standardization Conf., 2019, pp. 22-24.

A. Esser, A. May, J. Verbel, and W. Wen, “Partial key exposure attacks on
BIKE, rainbow and NTRU,” in Proc. Annu. Int. Cryptology Conf., 2021,
pp. 346-375.

T. Espitau, P. A. Fouque, B. Gerard, and M. Tibouchi, “Side-channel attacks
on BLISS lattice-based signatures: Exploiting branch tracing against strong-
swan and electromagnetic emanations in microcontrollers,” in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur., 2017, Art. no. 1857.

R. Primas, P. Pessl, and S. Mangard, “Single-trace side-channel attacks on
masked lattice-based encryption,” in Proc. Int. Workshop Cryptographic
Hardware Embedded Syst., 2017, Art. no. 513.

G. Bruinderink and P. Pessl, “Differential fault attacks on deterministic lat-
tice signatures,” in Proc. Int. Workshop Cryptographic Hardware Embed-
ded Syst., 2018, Art. no. 21-43.

[16]

[17]

(18]

[19]

[20]

[21]
[22]

(23]

[24]

A.Kamal and A. M. Youssef, “Fault analysis of the NTRUEncrypt cryptosys-
tem,” IEICE Trans. Fundam. Electron. Commun. Comput. Sci., vol. E94A,
2011, Art. no. 1156.

A. Kamal and A. Youssef, “Strengthening hardware implementations of
NTRUEncrypt against fault analysis attacks,” J. Cryptographic Eng.,
vol. 3, no. 4, 2013, Art. no. 227.

M. Mozaffari-Kermani and R. Azarderakhsh, “Reliable architecture-oblivi-
ous error detection schemes for secure cryptographic GCM structures,”
IEEE Trans. Rel., vol. 68, no. 4, pp. 1347-1355, Dec. 2019.

A. Cintas-Canto, M. Mozaffari-Kermani, and R. Azarderakhsh, “Reliable
architectures for composite-field-oriented constructions of McEliece post-
quantum cryptography on FPGA,” [EEE Trans. Comput.-Aided Des.
Integr. Circuits Syst., vol. 40, no. 5, pp. 999-1003, May 2021.

J. Howe, A. Khalid, M. Martinoli, F. Regazzoni, and E. Oswald, “Fault
attack countermeasures for error samplers in lattice-based cryptography,”
in Proc. IEEE Int. Symp. Circuits Syst., 2019, pp. 1-5.

M. Naehrig et al., “FrodoKEM: Practical quantum-secure key encapsula-
tion from generic lattices,” NIST submissions, 2019.

J. P. D’Anvers, A. Karmakar, S. S. Roy, and F. Vercauteren, “SABER:
Mod—}WR based KEM,” NIST submissions, 2019.

A. HAé&lsing, J. Rijneveld, J. M. Schanck, and P. Schwabe, “NTRU-HRSS-
KEM: Algorithm specifications and supporting documentation,” NIST sub-
missions, 2019.

A. Cintas-Canto, M. Mozaffari-Kermani, and R. Azarderakhsh, “Reliable
CRC-based error detection constructions for finite field multipliers with
applications in cryptography,” IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 29, no. 1, pp. 232-236, Jan. 2021.

VOLUNRRdri¥ed3lidehs&ERis&Raited to: University of South Florida. Downloaded on February 01,2024 at 20:26:31 UTC from |IEEE Xplore. Restrictions apply. 797

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

