
2490 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 69, NO. 6, JUNE 2022

Accelerated RISC-V for Post-Quantum SIKE
Rami Elkhatib , Brian Koziel , Reza Azarderakhsh , Member, IEEE,

and Mehran Mozaffari Kermani , Senior Member, IEEE

Abstract— In this work, we present a fast and area-efficient
software-hardware implementation of the supersingular isogeny
key encapsulation (SIKE) mechanism. Our software-hardware
design achieves both the flexibility of software as well as the
efficient performance of intense computations of hardware.
In particular, our implementation takes advantage of new and
highly optimized hardware modules for addition, multiplication,
and hardware-software control, targeted at Xilinx FPGAs. In con-
junction with a small RISC-V processor, we can support all four
SIKE parameter sets. On a Virtex-7 FPGA, this implementation
occupies 3,492 slices, 78 DSPs, and 29 BRAMs, to perform
encapsulation and decapsulation over SIKEp434, SIKEp503,
SIKEp610, and SIKEp751 in 14.5, 19.2, 29.8, and 42.7 ms,
respectively. Despite supporting all four parameter sets, this
design has the best area-time product of all isogeny accelerators
in the literature.

Index Terms— Isogeny-based cryptography, Montgomery mul-
tiplication, post-quantum cryptography, RISC-V, SIKE, software-
hardware co-design.

I. INTRODUCTION

COMPUTER engineering studies and evaluates implemen-
tations based on software code as well as electronic

hardware. General software computers feature Turing Com-
plete coding to accomplish virtually any real-world purpose,
just limited by computation size, memory size, and program
size. Electronic hardware, such as that using digital transistors,
can also accomplish virtually any real-world purpose, but is
much slower to prototype and build. Between these types of
devices, there is an inherent tradeoff between flexibility and
performance. Digital hardware such as application specific
integrated circuits (ASIC) can accomplish tasks and complex
computations much faster and with less power and energy than
a general-purpose software processor, but is limited only to
such tasks.

Manuscript received November 12, 2021; revised January 14, 2022 and
March 8, 2022; accepted March 8, 2022. Date of publication April 21, 2022;
date of current version May 27, 2022. This work was supported in part
by the Department of Defense (DoD) under Grant N001741910031. This
article was recommended by Associate Editor J. Di. (Corresponding author:
Reza Azarderakhsh.)

Rami Elkhatib and Brian Koziel are with the Computer and Elec-
trical Engineering and Computer Science Department, Florida Atlantic
University, Boca Raton, FL 33431 USA (e-mail: relkhatib2015@fau.edu;
bkoziel2017@fau.edu).

Reza Azarderakhsh is with the Computer and Electrical Engineering and
Computer Science Department and I-SENSE, Florida Atlantic University,
Boca Raton, FL 33431 USA (e-mail: razarderakhsh@fau.edu).

Mehran Mozaffari Kermani is with the Computer Science and Engineering
Department, University of South Florida, Tampa, FL 33620 USA (e-mail:
mehran2@usf.edu).

Digital Object Identifier 10.1109/TCSI.2022.3162626

In the realm of cryptographic implementations, there are
a variety of platforms to build and deploy a cryptosystem.
For instance, a small ARM Cortex-M4 device can choose to
employ a full cryptosystem like AES with only the ARM
Cortex-M4 instruction set, or offload the computation to
another chip or device that may be better equipped for it.
Rather than be limited to strictly a hardware or software
implementation, a hybrid software-hardware co-design imple-
mentation can be made such that the software processor acts
as the main control unit and the digital hardware accelerates
intense computations. By taking advantage of the flexibility of
software and the efficiency of hardware, this new co-design
implementation can achieve much better performance, power,
and energy consumption.

Software-hardware co-design implementations are becom-
ing even more necessary with the advent of post-quantum
cryptography (PQC). It is well known that today’s deployed
public-key cryptosystems such as RSA or ECC will be broken
once a large-scale quantum computer emerges. These schemes
rely on hard mathematical problems such as factoring or the
elliptic curve discrete logarithm that are resistant to attacks
by classical computers but vulnerable to quantum computers.
Namely, employing Shor’s algorithm [1] on a large-scale
quantum computer has been shown to break RSA or ECC.
AES and other symmetric key cryptosystems are vulnerable
to Grover’s algorithm [2], but this is not a complete break
and larger key or block sizes can allow their use in the post-
quantum era.

With quantum fears in mind, NIST has created a post-
quantum standardization process for standardizing new PQC
algorithms [3] for use by the US government. Of the initial
3 rounds of scrutiny, the original 69 submissions has now
dwindled to 15. With no final standard, an ASIC imple-
mentation of quantum-safe cryptography seems out of the
question as most of the submissions have gone through
revisions. So long as intense low level arithmetic is isolated,
software-hardware co-design implementations shine here by
achieving good performance and allowing flexibility if a
scheme has changed, new improvements have been found, and
so on.

Here, we propose and implement a software-hardware
co-design implementation of NIST Round 3 alternative can-
didate SIKE. Based on isogenies of supersingular elliptic
curves, SIKE features the smallest key sizes of all NIST
PQC key establishment schemes. However, SIKE is among
the slowest candidates, requiring a multitude of intense finite
field computations. In our software-hardware implementa-

1549-8328 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of South Florida. Downloaded on May 28,2022 at 14:25:33 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-8874-2217
https://orcid.org/0000-0002-6921-6868
https://orcid.org/0000-0003-4513-3109
https://orcid.org/0000-0002-6398-3222

ELKHATIB et al.: ACCELERATED RISC-V FOR POST-QUANTUM SIKE 2491

tion, we offload these expensive computations to highly
optimized hardware. As an example, the finite field mul-
tiplication in the fastest ARM Cortex-M4 implementation
to date requires 2,135 cycles for the NIST Level 5 para-
meter set [4], whereas our hardware co-processor requires
138 cycles, which is about 15 times faster. With software-
hardware co-design, our implementation shows that even small
embedded processors can achieve competitive performance.
Furthermore, this flexibility allows us to support new schemes,
such as the SIKEX hybrid key exchange based on SIKE and
ECDH [5].

Related Work: The first software-hardware co-design imple-
mentation of SIKE was implemented by Massolino et al. [6]
as a compact design. Based upon a simple custom-designed
processor, this work could swap between each SIKE parameter
set and even support newly proposed SIKE parameters with
primes up to 1,008 bits. In [7], Banerjee et al. implemented
a software-hardware co-design of SIKE by using a RISC-V
processor to control an elliptic curve accelerator. Since this
was not fine-tuned for SIKE computations, the design is two
orders of magnitude slower than state-of-the-art hardware-
based SIKE implementations. In [8], Banerjee et al. also
utilized a software-hardware co-design methodology to effi-
ciently support multiple lattice-based cryptosystems. Lastly,
in [9], Roy et al. also provided an efficient hardware/software
co-design with SIKE on both ARM and RISC-V based
microcontrollers, achieving a nice speedup over software only
processors.

This work features a new software-hardware co-design of
SIKE utilizing a RISC-V processor as the main controller.
Based on the structure of SIKE parameters, we have optimized
the hardware performance of low-level arithmetic for FPGA
devices. As a bridge between the RISC-V software core
and our hardware accelerator, we utilize a small APB bus
to exchange data between the two cores and facilitate the
full SIKE operation. This is an extension of our previous
work, “Accelerated RISC-V for Post-Quantum SIKE.” [10]
Upon these preliminary results, we have developed further
optimizations to the addition, multiplication, and control units,
achieving a 30% improvement in performance, while also
occupying 17% fewer slices. Our implementation supports all
SIKE implementations up to 752-bit primes and also features
the best area-time product of any design in the literature.

Our Contributions:
• We propose and implement highly optimized hardware

accelerators for Montgomery multiplication and addition
over SIKE primes

• We design a new and more efficient dedicated instruction
controller to efficiently hand off intense field arithmetic
from a RISC-V core to our specialized hardware

• We architect and implement our software-hardware co-
design over all four SIKE parameter sets, achieving the
best area-time trade-off in the literature

The organization of the paper is as follows. In Section II,
we give an overview of isogeny-based cryptography and the
NIST PQC candidate SIKE. In Section III, we propose our
highly optimized designs for field addition and multiplication

in SIKE. In Section IV, we propose our hardware-software
co-design to achieve efficient SIKE operation. In Section V,
we implement our design on FPGA and present our results.
In Section VI, we give our final thoughts and discuss future
work.

II. PRELIMINARIES

Here, we provide some preliminaries related to isogeny-
based cryptography and the NIST PQC isogeny-based sub-
mission SIKE [11]. Roughly, isogeny-based cryptography is
an extension of elliptic curve cryptography (ECC). Rather than
utilize point arithmetic on a single elliptic curve as is the case
for ECC, isogeny-based cryptography utilizes maps between
elliptic curves on top of point arithmetic. We point the reader
to [12] for a more in-depth review of elliptic curves and [13]
for isogeny fundamentals.

A. Isogenies on Elliptic Curves

1) Elliptic Curves: Isogeny-based cryptography has focused
on the use of isogenies as maps between elliptic curves
to achieve some cryptographic application. Similar to ECC,
an elliptic curve is also defined over a finite field. An elliptic
curve over a finite field Fq is the collection of all points (x, y)
as well as the point at infinity that satisfy the short Weierstrass
form:

E/Fq : y2 = x3 + ax + b

where a, b, x, y ∈ Fq . This collection forms an abelian group
over addition. Scalar point multiplications Q = k P , where
k ∈ Z and P, Q ∈ E forms the basis of ECC. As the order
of E grows very large, it becomes infeasible to solve for k
when given Q and P . However, Shor’s algorithm [1] provides
a polynomial time algorithm to break this hard problem with
a sufficiently large quantum computer.

2) Isogenies: Isogenies on elliptic curves are an extension
of ECC. An elliptic curve isogeny over Fq , φ : E → E � is
defined as a non-constant rational map from E(Fq) to E �(Fq)
that preserves the point at infinity. Rather than performing
scalar point multiplication on a single elliptic curve, isogenies
of elliptic curves move between elliptic curves in such a
manner that can be difficult for quantum computers when
constructed correctly. Isogenies move between isomorphism
classes, which can be identified via their j -invariant. A unique
isogeny can be computed over a kernel, φ : E → E/�ker�,
by using Vélu’s formulas [14]. The degree of an isogeny
is its degree as a rational map. We can efficiently compute
large-degree isogenies of the form �e by chaining e isogenies
of degree �.

B. Supersingular Isogeny Key Encapsulation

The supersingular isogeny key encapsulation (SIKE) mech-
anism [11] is the only isogeny-based cryptosystem submitted
to the NIST PQC standardization process. Currently a third
round alternative, SIKE prominently features the smallest
public keys of all key encapsulation mechanisms (KEMs), has

Authorized licensed use limited to: University of South Florida. Downloaded on May 28,2022 at 14:25:33 UTC from IEEE Xplore. Restrictions apply.

2492 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 69, NO. 6, JUNE 2022

a straightforward parameter selection, simple generic attacks,
and no decryption errors. Notably, advances in supersingular
isogeny cryptanalysis revealed that SIKE primes were too
conservative, and they were reduced in the second round. The
main downside of SIKE is its slow performance, as it requires
a large number of finite-field addition and multiplication
operations over 434-bit primes at NIST Level 1 or 751-primes
at NIST Level 5.

1) History: SIKE comes from a rich history of new
emerging applications based on isogenies of elliptic curves.
The use of isogenies for a cryptosystem was first proposed
independently by Couveignes [15] and Rostovtsev and Stol-
bunov [16] in 2006. Initially, they proposed an isogeny-based
key-exchange relying on the hardness of computing isogenies
between ordinary curves. Charles et al. [17] also proposed a
new isogeny-based hash function based on the hardness of
computing isogenies between supersingular elliptic curves in
2009. It was not until 2010 that Childs et al. [18] broke the
initial isogeny-based key-exchange algorithms by proposing a
new quantum algorithm to compute isogenies between ordi-
nary elliptic curves in subexponential time. Next, in 2011, Jao
and De Feo [19] proposed a new isogeny-based key exchange
that was instead protected by the difficulty to compute isoge-
nies between elliptic curves, called the supersingular isogeny
Diffie-Hellman (SIDH) key exchange. SIDH is the precursor to
SIKE. Notably, SIKE is the 2017 NIST submission that applies
the Hofheinz, Hövelmanns, and Kiltz transform [20] to the
original supersingular isogeny public-key encryption scheme
proposed by Jao and De Feo [19]. With new and focused
research on isogenies, optimizations/implementations [4]–[6],
[10], [21]–[32] and security analysis [33]–[40] continue to
emerge.

2) SIKE Overview: SIKE is an IND-CCA KEM based on
the hardness of computing isogenies between supersingular
elliptic curves. In the third round of the NIST PQC stan-
dardization process, there are four parameter sets which are
summarized in Table I. Each parameter set targets a NIST
security level from 1 to 5. NIST security level 1 is hard to
break as an exhaustive key search attack on AES128, level 2 is
as hard to break as finding a SHA256 collision, level 3 is as
hard to break as an exhaustive key search attack on AES192,
and level 5 is as hard to break as an exhaustive key search
attack on AES256. Each of these parameter sets feature the
smallest public keys of all NIST PQC KEMs and almost the
smallest ciphertext. In addition to the regular SIKE operation,
there are compressed SIKE variants that reduce the size of
public keys and ciphertexts by slightly less than half.

3) KEM Operation: In the KEM scenario, Alice and Bob
are attempting to agree on a shared secret that can be used
for a secure session. Bob initiates the KEM by performing
key generation, which generates a secret key and a public key
for Bob. Bob shares this public key over a public channel
so that Alice can proceed by performing key encapsulation
over Bob’s public key, which generates a ciphertext and shared
secret for Alice. Alice then sends this ciphertext back to Bob
over a public channel. Bob finishes the key establishment by
performing key decapsulation over Alice’s ciphertext with his

Fig. 1. Computational hierarchy for SIKE’s isogeny computations.

own secret key. If the operation was performed correctly, Bob
will compute the same shared secret that Alice did and the
two can continue with encrypted communications such as with
AES. If not, Bob still generates a seemingly random secret that
will not reveal his secret key.

4) SIKE Arithmetic: SIKE can be made up of a large-degree
isogeny as well as the SHAKE256 hashing operation. Of these
two, the large-degree isogeny generally requires the majority
of the total SIKE computation time. Thus, unlike most lattice
and other PQC schemes, a fast SHAKE256 module is not
required. Rather, an efficient implementation of SIKE is made
by efficiently implementing the algorithms and subroutines
needed to chain together a large-degree isogeny. The com-
putations required for this isogeny operation are shown in
Figure 1. At a low level, isogenies of supersingular elliptic
curves are composed of many Fp2 quadratic extension field
arithmetic operations, which are then constructed via Fp

addition, subtraction, and multiplication. Here, p is a SIKE
prime which is also included in Table I for each parameter
set. In the following sections, we propose efficient modules to
perform these finite field operations as well as process many
such operations to facilitate SIKE algorithms.

III. PROPOSED HARDWARE ACCELERATION

OF INTENSE ARITHMETIC OPERATIONS

This section presents our optimized hardware for finite
field addition and finite field multiplication, which provide
the lowest level arithmetic needed for SIKE. These finite field
operations are defined over a prime field, so the functionality
is similar to modular addition and modular multiplication.
We summarize our field arithmetic operations and compare
them with [10] in Table II. Notably, our design achieves a
much higher frequency to expedite the arithmetic over the prior
design.

A. Proposed Finite Field Adder

Given elements a, b, c ∈ Fp, finite field addition performs
a + b = c, where all values are mod p. Since inputs a and

Authorized licensed use limited to: University of South Florida. Downloaded on May 28,2022 at 14:25:33 UTC from IEEE Xplore. Restrictions apply.

ELKHATIB et al.: ACCELERATED RISC-V FOR POST-QUANTUM SIKE 2493

TABLE I

SIKE PARAMETER SETS FOR EACH NIST SECURITY LEVEL [11]. ALL SIZES ARE IN BYTES

TABLE II

LATENCY OF ARITHMETIC OPERATIONS IN OUR ALU ARCHITECTURE ON A VIRTEX-7 FPGA

Fig. 2. Xilinx FPGAs use a Manchester carry chain. We call this a GS block.

Fig. 3. Proposed fast addition units for SIKE on Xilinx FPGAs.

b are already reduced modulo p, finite field addition can be
implemented by performing a + b = c and then performing a
conditional subtraction c� = c− p, if c ≥ p. Based on the finite
field multiplier proposed in Section III-B, we make a slight
caveat to this where general arithmetic is mod 2p, which is

common for SIKE implementations. Thus, we are performing
a + b = c with the conditional subtraction c� = c − 2 p,
if c ≥ 2 p. Finite field subtraction is performed in a similar
way with a− b = c and the conditional addition c� = c+ 2 p,
if c < 0. We perform a final correction to reduce modulo p
at the final step of a protocol. Our new proposed finite field
addition unit utilizes a specialized architecture to achieve high
performance, throughput, and reasonable area.

1) Xilinx Carry Chains: In this implementation, we are
targeting Xilinx FPGA devices, so we are utilizing their
internal fast carry-chains for fast addition. The carry chain
used in Xilinx FPGAs is shown in Figure 2. This is based on
a standard Manchester carry chain. When performing A + B ,
where A and B are n bits, this design would require pushing
A⊕B into pi and A into gi for 0 ≤ i < n. We limit the use of i
for the Manchester carry chain. This carry chain then produces
a sequence of carry and sum bits. si is the propogated sum
and ci is the propagated carry. For the following discussion,
we call this figure a GS block for Generate Sum. Lastly, GS0
means you have a carry-in of “0”, GS1 for a carry-in of “1”,
and GSc for a carry-in of c0.

We now present our new modular adder. This design uses
the parallel prefix network adder from [41] as a base and
applies three innovations to better suit SIKE arithmetic. Given
the fine-tuned granularity of our optimization, we describe the
adder through its operation in the following steps. Specifically,
our optimizations are described in Step 5, Step 6, and a special
application to SIKE addition arithmetic. This architecture is
shown in Figure 3.

Step 1: In Step 1, we are simply acquiring the inputs needed
to perform addition. For the standard Manchester carry chain,
G is one of the inputs and P is the XOR of the addends.

Authorized licensed use limited to: University of South Florida. Downloaded on May 28,2022 at 14:25:33 UTC from IEEE Xplore. Restrictions apply.

2494 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 69, NO. 6, JUNE 2022

Step 2: Next, we break P and G into blocks. These blocks
do not need to be of the same size. If the least significant
blocks of the operands are smaller, then the carry-look ahead
is entered earlier. If the most significant blocks of the operand
are smaller, then there will be less routing delays post-carry
look ahead. In our design, we use a pipeline stage, so a single
block size was used. For clarity, there are at most s elements
in the adder and we use the variable j to denote an output for
0 ≤ j < s.

Step 3: In this step, we apply the GS function on each G and
P block to obtain propagated sums and carries. In Figure 3,
this refers to the top row of computations. The least significant
block utilizes a GSc block with a carry-in. Each of these
GS computations produce propagated sums Sj and the last
propagated carry g j .

Step 4: Step 4 moves to the second row of computations,
which is again the GS computation. Here, the S block acts
inputs for gi and pi in the Manchester chains to produce the
propagated sum Tj and the last propagated carry p j . From
these two rows of computations, we have values Sj , Tj , p j ,
and g j . The state-of-the-art design [41] does not generate Tj

which we utilize as part of one innovation in Step 6. Of these
variables, g j tells us if the block generates a carry for the next
block. p j tells us whether or not all bits of the sum Sj in the
block are 1. This means that if p j = 1, then the carry from the
previous block is propagated to the next block. The end goal
here is to get c j = g j |p j & c j−1, where c j is the propagated
carry. One thing to note here is that unless the GS block in
Step 3 has a carry-in of 1, g j and p j cannot both be 1 as
all GS blocks are GS0, there are no g j and p j carry chain
inputs where both are 1. Lastly, p0 does not exist because the
first block is already fully propagated, i.e. g0 is the propagated
carry for the first block.

Step 5: Step 5 is the first innovation, by providing a new
method to get the propagated carry which is shown in the third
row of Figure 3. The state-of-the-art utilizes a parallel prefix
carry-look ahead unit based on Kogge-Stone and Brent-Kung.
These units require a large amount of bitwise-operations, thus
consuming many LUTs in an FPGA. Instead, we simply apply
another GSc block to each g j and p j with g0 as the c0
input. This GS block produces unused propagated sum and
propagated carry c j . The GSc unit from the figure gives
c j = (∼ p j & g j) | (p j & c j−1}. As we mentioned in Step 4,
both p j and g j cannot both be “1”, so this equation collapses
to c j = g j |p j & c j−1 which is what we are searching for from
Step 4.

Step 6: Step 6 then provides a second innovation to find the
final sum in the fourth row of Figure 3. The state-of-the-art
utilizes an additional GSc block with Sj as both inputs and
c j as the propagated carry. Instead, we observed that Sj from
Step 3 is the sum if c j = 0 and T from Step 4 is the sum
if c j = 1. Thus, we simply use a 2:1 multiplexer where c j is
the select to select the final result R from S or T . The final
propagated carry cout in the figure is the last propagated carry
from carry-look ahead unit from Step 5.

2) Applying to SIKE: We also provide a third innovation
and optimization when we apply this adder for SIKE. For finite
field addition and subtraction, our SIKE adder produces results

a±b∓2 p. For a high frequency implementation, we compute
a±b and a±b∓2 p independently over 2 cycles. To compute
a ± b, we use the adder architecture described above with
P = a⊕ b⊕ sub, G = a, and cin = sub, where sub is ‘1’ if
a subtraction is performed and ‘0’ otherwise.

When computing a± b∓ 2 p, we apply a new trick to per-
form two additions/subtractions simultaneously. The classical
way to perform this computation is to compute S = a ± b
and then R = S ∓ 2 p. However, to perform this in 2 cycles
would severely limit the operating clock frequency. Instead,
our proposed methodology gets two partial sums and feeds
them to the proposed adder. For the sake of simplicity, let us
compute a + b + m. Let us take two consecutive bits from
each input a, b, and m. Assume that we have a1, b1, m1= �0�,
while a0, b0, m0= �1�. In this case the result will be r0= �1�
and r1= �1� and no bits are propagated to r2. From here, we
achieve two partial sums:

1) Zero out all even bits. Each odd-even pair will have its
bits coming from its corresponding odd bits.

2) Zero out all odd bits. Each even-odd pair will have its
bits coming from its corresponding even bits.

Once we have these two partial sums, we can add them
together using the proposed adder.

Lastly, our design uses two pipeline stages to achieve a high
frequency of 300 MHz on Xilinx Virtex-7. In our explained
Steps, our first pipeline registers g j , p j , Sj and Tj at the end of
Step 4 and then our second pipeline registers the output from
Step 6. Since we compute two addition/subtraction operations
for modular arithmetic, we get two final carries and two sums.
The final carries are used to select the final result between a±b
and a ± b ∓ 2 p.

Algorithm 1 Proposed Montgomery Multiplication

Input : m = 2eA · 3eB < 2K−2, R = 2K , w, s,
K = w · s, sA = �2eA/w, a, b < 2m − 1

Output: MontMult(a, b)
1 T ← 0
2 for i ← 0 to s − 1 do
3 for j ← 0 to s − 1 do
4 U [j] ← a[i] · b[j]
5 (C, S)← T [0] +U [0]
6 q ← S
7 for j ← sA to s − 1 do
8 U [j] ← U [j] + q ·m[j]
9 for j ← 0 to s − 1 do

10 (C, S)← T [j] +U [j] + C
11 T [j − 1] ← S

12 (C, S)← C
13 T [s − 1] ← S

14 return T

︷
︸
︸
︷

Mul

︷
︸
︸
︷

First Acc

︷
︸
︸
︷

Red

︷
︸
︸
︷

Acc

︷
︸
︸
︷

Final Acc

B. Proposed Finite Field Multiplier

Given elements a, b, c∈Fp , finite field multiplication per-
forms a× b= c, where all values are mod p. Even if inputs

Authorized licensed use limited to: University of South Florida. Downloaded on May 28,2022 at 14:25:33 UTC from IEEE Xplore. Restrictions apply.

ELKHATIB et al.: ACCELERATED RISC-V FOR POST-QUANTUM SIKE 2495

Fig. 4. Architecture of multiplier core.

a and b are already reduced modulo p, a simple multipli-
cation between a and b produces a value that can be up
to twice the bit-length of p. To solve this problem, we use
the specialized Montgomery multiplication [42] method that
combines multiplication and reduction. By trading expensive
trial divisions for simple shifts, Montgomery multiplication is
the most popular modular multiplication method for SIKE.
In this work, we improve the Montgomery multiplication
proposed in [26] to consume less DSPs and operate at higher
frequency while keeping the same number of interleave and
multiplication cycles.

Our Montgomery multiplier operably performs the function-
ality shown in Algorithm 1. Similar to [21], [26], we utilize
a systolic architecture where processing elements compute
partial products and sums. As is shown in Figure 4, we
break Algorithm 1 into multiplication “mul”, accumulation
“acc”, and reduction blocks “red”. This proposed architecture
computes the result in w bits at a time. There are a total of
s processing elements. Compared to our prior work [10], we
make a small optimization in the reduction by feeding it p+1
rather than p, which saves an adder.

The multiplication block simply computes the product
U [j] = a[i] ·b[j]. This corresponds to Line 4 in Algorithm 1.
Input a is loaded serially every two cycles and input b is
loaded in parallel. Each processing element within the systolic
architecture computes w bit operations, so the end product is
2w bits which is sent to the accumulation block.

Fig. 5. Dual multiplier IO for the multiplier core.

The accumulation block sums and propagates the Mont-
gomery multiplication values between each iteration i . First,
the accumulation block, utilizes the first accumulation result
T [0] +U [0] to compute the Montgomery quotient q that can
then be pushed to the reduction block. Since Montgomery
multiplication produces values with zeroes in the w least
significant bit positions, the accumulation block propagates
the least significant w bits S backwards and the remaining
bits C forward along the systolic array. The first accumulation
block, corresponding to Lines 5-6 of Algorithm 1, computes
the quotient q for the reduction block and the first C for
the accumulation block. The remaining elements perform
Lines 10-11 of Algorithm 1 with the final C loaded to S of
the same element similar to Lines 12-13. The first word of
the final product is obtained from S of the second element
after 2s cycles and the following words are obtained from the
following elements in the following cycles until a total of 3s
cycles are passed.

Similar to the multiplication block, the reduction block
computes the product of a quotient q obtained from the
accumulation block and m = p + 1 with m loaded in parallel
and q loaded serially. Each element in the reduction block is
added to its corresponding element in the multiplication block
to perform one iteration of Line 8 in Algorithm 1. Since the
first eA bits of m are 0, the first sA = �eA/w blocks are
skipped. Furthermore, q is delayed such that the first reduction
element aligns with the sA’th multiplication element when the
addition is performed.

Authorized licensed use limited to: University of South Florida. Downloaded on May 28,2022 at 14:25:33 UTC from IEEE Xplore. Restrictions apply.

2496 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 69, NO. 6, JUNE 2022

Fig. 6. Waveform showing the output at each multiplication and reduction
block for the first 2 digits of operand a and quotient q. Columns indicate
cycles. Rows indicate blocks according to Figure 4. Parameters: s = 8 and
sA=3.

TABLE III

DSP COST OF MONTGOMERY MULTIPLIER FOR w = 17

We further include Figure 6 as an additional method to
illustrate the functionality of our multiplier core with cycles.
In this figure, we set s = 8 and sA = 3. The Mult 0-7 and
Red 3-7 represent the multiplication circle blocks in Figure 4
for the multiplication and reduction blocks, respectively. For
instance, Mult 0 refers to the multiplication block where
the operand is b0, Mult 3 refers to the multiplication block
where the operand is bsA , and Red 3 refers to the reduction
block where the operand is msA . For simplicity, Figure 6
only shows the first 2 digits of operand a and quotient q .
First, we highlight that the operand ai moves from Mult
0 to Mult 1 and so on each cycle, just as the quotient qi

moves from Red 3 to Red 4 and so on each cycle. Second,
we reiterate that each ai and qi are aligned such that ai enters
the lower multiplication blocks, aka mult sA and beyond, at the
same time qi enters the reduction blocks. This corresponds to
Cycle 3, where we compute a0b3 with Mult 3 and q0m3 with
Red 3. Third, we note that we wait 2 cycles before pushing the
next ai and qi values. During this gap, we schedule a second
multiplier if needed to achieve the dual multiplier architecture.

Unlike [26], the accumulation block is split from the mul-
tiplication block with each element of the multiplication and
reduction blocks mapped to 1 DSP. Thus, the number of DSPs
is reduced from 3s − sA − 1 to 2s − sA . Table III shows the
number of DSPs reduced between our design and the design
in [26] for w = 17. In Xilinx FPGAs, the DSP48E can perform
up to a 17 × 17 bit unsigned multiplication. In addition, the
adders not belonging to the accumulation block in Figure
4 are mapped into the adder part of the DSP. Furthermore,
the critical path is reduced to one DSP which improves the
frequency from 294 MHz to 401 MHz for the Xilinx Virtex-7
device. The accumulation block is mapped into the fabric of
the FPGA. To support all security levels, we set s = 45 and

sA = 12 with w = 17. Therefore, the architecture occupies a
total of 78 DSPs.

This multiplier is also a dual multiplier in that it can handle
two simultaneous multiplications. This is an odd-even multi-
plier as on a given cycle, the architecture is only operating
over an “odd” or “even” multiplication. Thus, by carefully
scheduling operations and storing intermediate partial prod-
ucts, we can support two multiplications in parallel. As is
shown in Figure 5, we include additional latching and shift
mechanisms to swap between the two sets of operands.

IV. COMBINING RISC-V WITH A COPROCESSOR

Here, we present our software hardware co-design method-
ology to accelerate SIKE. Our high-level architecture is shown
in Figure 7. Our hardware ALU was described in the previous
section and now we present our RISC-V primary controller
to facilitate the SIKE cryptosystem by interacting with the
hardware coprocessor. In particular, the software coprocessor
initializes the hardware’s ALU functionality and the software’s
RAM with the SIKE scheme’s parameters. The hardware
processor is then used within the software’s flow for the
intense operations. For the following subsections, we elaborate
on the critical components and flow from the left-most compo-
nent (RISC-V CPU) to the right-most component (inner ALU).
Finally, we summarize our instruction controller operation.

A. RISC-V Processor

Our software-hardware co-design architecture utilizes a
RISC-V software processor as the main brains of the device.
Our RISC-V core is based on Murax, which is a publicly
available system-on-chip for VexRiscv CPU. This core uses
the basic rv32i instruction set to support simple basic integer
operations excluding multiplication and division.

Inside our RISC-V chip, a configurable RAM block is
connected that acts as the program memory. Here, we com-
pile and assemble a machine code based on Microsoft’s
SIKE library [43]. However, we swap out all Fp addition,
subtraction, and multiplication operations for a call to our
hardware co-processor’s instruction. Since our addition and
dual-multiplier run separately, we applied a scheduler based
on [25] to optimally schedule Fp operations. The other major
operation, SHAKE256, was implemented in C, to require
around 46,000 cycles per permutation.

Our software was compiled using the RISC-V GNU com-
piler toolchain with rv32i architecture and optimization level 1.
We found that increasing optimization level further had min-
imal impact on performance but resulted in larger memory.
Each SIKE parameter set was compiled separately. To run a
SIKE operation, the parameter set machine code was loaded
into the RISC-V RAM unit and then executed. SIKEp434
required 28 KB, SIKEp503 required 30 KB, SIKEp610
required 32 KB, and SIKEp751 required 32 KB. Thus, the
RISC-V RAM block was a 32 KB RAM, which fits into
8 BRAMs on Xilinx FPGAs.

B. APB Bridge

In order to share data between the RISC-V chip and the
hardware coprocessor, we chose to use the Advanced Periph-

Authorized licensed use limited to: University of South Florida. Downloaded on May 28,2022 at 14:25:33 UTC from IEEE Xplore. Restrictions apply.

ELKHATIB et al.: ACCELERATED RISC-V FOR POST-QUANTUM SIKE 2497

Fig. 7. (a) RISC-V accelerator architecture. (b) Coprocessor-APB bridge. (c) ALU architecture.

eral Bus (APB) bridge. The APB protocol is a royalty-free
protocol to connect low-bandwidth peripherals by ARM. This
was chosen because it has a very low area cost. In general,
our multiplication operations take far longer than the number
of cycles for a RISC-V processor to send an instruction.
We found that the CPU is on average sending an instruction
in less than 10 cycles, where as the smallest interleave delay
is 52 cycles. Other protocols such as the Advanced eXtensible
Interface (AXI) could have sent instructions much faster, but as
we show in our coprocessor architecture, this is not a problem
as we keep a buffer of instructions to execute.

As is shown in Figure 7, the RISC-V processor chip features
a APB decoder to send the data (our coprocessor instructions)
to the coprocessor. In this bus scenario, the RISC-V processor
is the master and the coprocessor is the slave. In addition to
the coprocessor, the APB bus is also used to connect to the
GPIO and UART peripherals for IO operations.

1) APB Operations: The APB interface utilizes 7 addresses
reserved in the CPU to interact with the coprocessor. All com-
munication between the CPU and coprocessor are performed
through the APB interface. The special addresses are:

1) Write RAM: Writes the 752-bit data from data buffer to
coprocessor RAM at the specified address.

2) Read RAM: Reads the 752-bit data from the coprocessor
RAM at the specified address to the data buffer.

3) Data Buffer: Writes or reads between data buffer and
CPU (32-bit data at a time).

4) Sec Level: Loads the security level. This will initialize
the 2 p and p+1 in the ALU for the adder and multiplier,
respectively, with the SIKE parameter set values. This
will also initialize the cycle counts for the instruction
controller.

5) Start: Allows the instruction controller to start process-
ing instructions in the instruction buffer. This must be

issued before loading any instructions to the instruction
buffer.

6) Status: Reports whether the instruction controller is
active or not.

7) Instruction: Loads an instruction into the instruction
buffer. The four opcodes are Fp addition, Fp subtraction,
Fp multiplication, and end.

C. Coprocessor Architecture

The coprocessor is the primary working unit to accomplish
SIKE by efficiently scheduling Fp addition/subtraction and Fp

multiplication operations. This is facilitated by an instruction
controller that reads instructions received from the APB bus,
an ALU that performs modular addition and multiplication
according to these instructions, and a RAM unit where input
and output data is stored. It is important to note that the
coprocessor RAM unit is separate from the RISC-V RAM
unit.

1) Buffers: The APB bridge can be used to send data
to the data buffer and instructions to the instruction buffer
inside the coprocessor. The data buffer is a 768-bit register
that shift 32 bits at a time in and out from the CPU and
can write and read 752 bits from the RAM. The instruction
buffer is a 32 × 26 simple dual port RAM containing 26-bit
instructions in a circular buffer. Of these 26 bits, three 8-bit
chunks are used for operand A’s address, operand B’s address,
and the destination’s address. The final 2 bits indicate an Fp

addition, Fp subtraction, Fp multiplication, or end opcode.
Since the instruction buffer is a FIFO circular buffer, we have
an empty and full signal. The empty signal is connected to
the instruction controller and the full signal is connected to
the APB interface. We give more details about the instruction
controller in the next subsection.

2) RAM: The RAM unit is a 256 × 752 (depth×width)
true dual-port RAM used to store all isogeny constants and

Authorized licensed use limited to: University of South Florida. Downloaded on May 28,2022 at 14:25:33 UTC from IEEE Xplore. Restrictions apply.

2498 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 69, NO. 6, JUNE 2022

Fig. 8. Instruction controller state machine.

computations. In our selected Virtex-7 FPGA device this
requires 21 BRAM units. The RAM unit uses 9 bits to control
each port with 8 bits to select the address and 1 bit to enable
writing. To minimize the critical path, the data is available to
be read from this RAM unit 2 cycles after the address is set.

3) ALU: The coprocessor’s ALU is composed of a single
modular adder and a dual modular multiplier. The inputs to
these modules is at most s bits, where s is the largest supported
SIKE prime. Here, s = 752. The modulus m inside the ALU
is used for modular addition and modular multiplication. This
can be updated by writing to the correct memory-mapped
registers with the APB bridge. Since the dual Montgomery
multiplier can perform two simultaneous multiplications, two
signals “load1” and “load2” are used to initialize the inputs for
each multiplier, respectively. Because there are two outputs of
the multiplier, a 2:1 multiplexer is used to select the correct
result to store to memory. With the true dual-port RAM,
we assign one write port to the multiplication circuit “prod”
and one write port to the addition circuit “sum.”

D. Instruction Controller

The basic flow of the instruction controller is shown in
Figure 8. Since our RAM has a two cycle delay for reads,
we begin with “RAM1” and “RAM2” cycles to decode the
instruction. From there, we have three pipelines: addition, odd
multiplication, and even multiplication. Our adder requires
2 cycles, so its result is simply written after 2 cycles.

1) Multiplier Pipelines: The multiplier is a dual multiplier,
so it supports two separate multiplication operations, one on
an odd cycle and the other on an even cycle. A single bit
is used to keep track of starting the odd or even multiplier
next and another single bit is used to keep track of which
multiplier result is to be stored. If the current multiplication
is an odd multiplication, then we wait for an odd cycle
and start the odd multiplication pipeline. Likewise, if the
current multiplication is an even multiplication, then we start
the even multiplication pipeline. Within these multiplication
pipelines, the stage 1 counter is the same as the interleave
delay, and we wait this many cycles before we start reading
the multiplier results. The stage 2 counter indicates when
the multiplier is completely done with its operation, which
is multiplication latency - interleave latency cycles. After the
stage 2 counter is done, the multiplication result is written
back to the coprocessor RAM.

2) FSM Locks: In this finite state machine, instructions will
continue to process until a lock happens. When a lock happens,
everything before RAM1 halts. The three possible locks are:

TABLE IV

AREA RESULTS OF RISC-V ACCELERATOR CHIP IN XILINX FPGAS

TABLE V

DETAILED AREA BREAKDOWN OF RISC-V ACCELERATOR CHIP IN
VIRTEX-7 FPGA

TABLE VI

TIMING RESULTS OF RISC-V ACCELERATOR CHIP IN XILINX FPGAS. V7
IS VIRTEX-7 AND A7 IS ARTIX-7

1) Multiplier Lock: This happens when there are 2 mul-
tiplication instructions between RAM1 and the stage
1 counter. This means that the dual multiplier is fully
occupied and we must wait until one of the multiplica-
tions passes the stage 1 counter state.

2) Memory Lock: This happens when the input of an
instruction at the start of RAM1 is an output of any
previous instruction being processed and not written
yet. This previous instruction could be in an arithmetic
pipeline or still being decoded in RAM2.

3) Write Lock: This happens when either the multiplier or
adder are storing their result. The true dual port RAM
unit cannot perform a read and write in the same cycle,
so all fetch and decode operations are delayed by one
cycle.

V. FPGA IMPLEMENTATION

The SIKE software-hardware co-design architecture was
implemented, tested, and synthesized on Xilinx FPGAs. The

Authorized licensed use limited to: University of South Florida. Downloaded on May 28,2022 at 14:25:33 UTC from IEEE Xplore. Restrictions apply.

ELKHATIB et al.: ACCELERATED RISC-V FOR POST-QUANTUM SIKE 2499

TABLE VIII

IMPROVEMENTS OVER STATE-OF-THE-ART SOFTWARE-HARDWARE CO-DESIGN IMPLEMENTATIONS ON VIRTEX-7 FPGA. NOTE THAT AREA IMPROVE-
MENTS ARE A DIFFERENCE AND LATENCY IMPROVEMENTS ARE A RATIO

architecture is written in Verilog and SystemVerilog with the
RISC-V processor chip generated in Verilog using Spinal-
HDL. The architecture is implemented on Xilinx Virtex-7
xc7vx690tffg1157-3 to be similar to the rest of the literature
and the Xilinx Artix-7 xc7a200tffg 1156-3 to be consis-
tent with the NIST PQC benchmarking platform. All results
obtained are post-place and route. The goal of this design is
to achieve a fast and area-efficient implementation of SIKE
using our proposed software-hardware co-design architecture.

A. Area Results

Table IV shows the area results of the design on our target
Virtex-7 and Artix-7 FPGAs. Interestingly the Artix-7 synthe-
sis exchanged about 2,000 LUTs (300 slices) for a BRAM
when compared to the Virtex-7 synthesis. The maximum
frequency of the Virtex-7 and Artix-7 implementations were
303 and 217 MHz, respectively. Thus, the Virtex-7 results are
approximately 40% faster than the Artix-7 results.

B. Timing Results

We summarize the SIKE timing results in Table VI. The
three main SIKE operations are key generation (K), key
encapsulation (E), and key decapsulation (D). Since a party
only needs to generate a single private-public keypair with
key generation, the encapsulation and decapsulation combined
latency (E+D) is a good summary of the implementation’s
performance. As these results show, the E+D latency ranges
from 4.39 million cycles to 12.94 million cycles for the NIST
level 1 and level 5 parameter sets, respectively. On the Virtex-
7 FPGA, this corresponds to E+D timings of 14.5 ms to
42.7 ms. The Artix-7 FPGA results are about 40% slower,
ranging from 20.2 ms to 59.5 ms. In normal use cases, it is
expected that a party’s latency will be about half of that as they
will be performing one of key encapsulation or decapsulation.

C. Comparisons

It is difficult to make a fair comparison to other SIKE
implementations as there are a variety of optimization targets.
Nevertheless, many implementations use the Virtex-7 FPGA,
so we can roughly compare the area, performance, and area-
time product of these implementations, which are summarized

in Table VII. In Table VII, the “Time” column indicates the
combined latency of key encapsulation and key decapsulation
(E+D) for a given SIKE parameter set for the implementa-
tion’s max frequency. The area-time (AT) product is used as
a further metric to indicate the relative efficiency of area to
perform cryptographic operations. As an attempt to equalize
the cost of FPGA resources between slices, DSPs, and BRAMs
on a Virtex-7 FPGA, we use the equivalence 1 DSP=100
Slices and 1 BRAM=200 Slices for area-time calculations.
With this metric, our area-time product results outperform
all existing hardware implementations in the literature. Our
implementation utilizes a single dual multiplier, whereas other
designs achieve a higher parallelization with a plurality of
multipliers and complex scheduling. Notably, the high-speed
implementations from [25], [26] are about 60% faster than
ours, but require 3 to 4 times as many simultaneous multi-
plication units. For SIKEp751, this requires 2.8-3.9 times as
many slices and 5.8-6.6 times as many DSPs. This shows the
diminishing returns from adding additional multiplication units
and elevates the impact of our highly optimized adder, mul-
tiplier, and controller units. The high-speed implementation
from [45] shows the top-end performance of SIKE, but at the
cost of significantly more slices, DSPs, and BRAMs, resulting
in a higher area-time product.

We summarize our comparison to other software-hardware
co-design implementations in Table VIII. We note that we
did not include the RISC-V implementation from [9] as it
used a Xilinx Zedboard platform, making a fair comparison
even more difficult. On the smaller end, the software-hardware
co-design in [6] uses another software-hardware architecture,
but targets a compact use case. Their small implementation
is about 3-4 times slower than our implementation across the
parameter sets, but saves 527 slices, 21 DSPs, and 8 BRAMs.
Their fast implementation uses almost double the resources
of our implementation and is about 1.5-1.7 times slower than
our implementation. Interestingly, the results from [6] show a
much different ratio of FFs to LUTs, preferring less sequential
FFs for more combinational LUTs. Lastly, we used a very
similar approach to [10], but our optimizations to the addi-
tion, multiplication, and controller units edge out 669 slices
and 5.5 fewer BRAMs even with 1.3 times performance
improvement.

Authorized licensed use limited to: University of South Florida. Downloaded on May 28,2022 at 14:25:33 UTC from IEEE Xplore. Restrictions apply.

2500 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 69, NO. 6, JUNE 2022

TABLE VII

COMPARISON OF AREA AND TIMING RESULTS IN VIRTEX-7 FPGA. NOTE:
AT= (SLICES+ 100×DSPS+ 200× BRAMS)× TIME

VI. CONCLUSION

In this paper, we implemented a fast an efficient software-
hardware co-design for SIKE targeting all security levels in
one design. We proposed and implemented optimized units
for addition, multiplication, and control. Our presented Xilinx
FPGA results prominently feature the best area-time product of
any hardware implementation of SIKE in the literature. This
work shows that careful optimization and isolation of low-
level arithmetic can be made to greatly improve the efficiency
of cryptosystems.

ACKNOWLEDGMENT

The authors would like to thank the reviewers for their
comments.

REFERENCES

[1] P. W. Shor, “Algorithms for quantum computation: Discrete logarithms
and factoring,” in Proc. 35th Annu. Symp. Found. Comput. Sci. (FOCS),
1994, pp. 124–134.

[2] L. K. Grover, “A fast quantum mechanical algorithm for database
search,” in Proc. 28th Annu. ACM Symp. Theory Comput. (STOC).
New York, NY, USA: Association for Computing Machinery, 1996,
pp. 212–219.

[3] The National Institute of Standards and Technology. (2018).
Post-Quantum Cryptography Standardization. [Online]. Available:
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-
cryptography-standardization

[4] M. Anastasova, R. Azarderakhsh, and M. M. Kermani, “Fast strategies
for the implementation of SIKE round 3 on ARM Cortex-M4,” IEEE
Trans. Circuits Syst. I, Reg. Papers, vol. 68, no. 10, pp. 4129–4141,
Oct. 2021.

[5] R. Azarderakhsh, R. E. Khatib, B. Koziel, and B. Langenberg,
“Hardware deployment of hybrid PQC,” Cryptol. ePrint Arch., New
York, NY, USA, Tech. Rep. 2021/541, 2021. [Online]. Available:
https://ia.cr/2021/541

[6] P. M. C. Massolino, P. Longa, J. Renes, and L. Batina, “A compact and
scalable hardware/software co-design of SIKE,” IACR Trans. Crypto-
graph. Hardw. Embedded Syst., pp. 245–271, Mar. 2020.

[7] U. Banerjee, S. Das, and A. P. Chandrakasan, “Accelerating post-
quantum cryptography using an energy-efficient TLS crypto-processor,”
in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), Oct. 2020, pp. 1–5.

[8] U. Banerjee, T. S. Ukyab, and A. P. Chandrakasan, “Sapphire: A config-
urable crypto-processor for post-quantum lattice-based protocols,” IACR
Trans. Cryptograph. Hardw. Embedded Syst., vol. 2019, pp. 17–61,
Aug. 2019.

[9] D. B. Roy, T. Fritzmann, and G. Sigl, “Efficient hardware/software co-
design for post-quantum crypto algorithm SIKE on ARM and RISC-V
based microcontrollers,” in Proc. 39th Int. Conf. Comput.-Aided Design
(ICCAD), Nov. 2020, pp. 1–9.

[10] R. Elkhatib, R. Azarderakhsh, and M. Mozaffari-Kermani, “Accelerated
RISC-V for SIKE,” in Proc. IEEE 28th Symp. Comput. Arithmetic
(ARITH), Lyngby, Denmark, Jun. 2021, pp. 131–138.

[11] R. Azarderakhsh et al., “Supersingular isogeny key encapsulation,” NIST
Post-Quantum Standardization Project, New York, NY, USA, Tech. Rep.,
2020.

[12] J. H. Silverman, The Arithmetic of Elliptic Curves, vol. 106. New York,
NY, USA: Springer, 1992.

[13] L. D. Feo, “Mathematics of isogeny based cryptography,” 2017,
arXiv:1711.04062.

[14] J. Vélu, “Isogénies entre courbes elliptiques,” Comptes Rendus de
l’Académie des Sciences Paris A-B, vol. 273, pp. A238–A241, Jun. 1971.

[15] J.-M. Couveignes, “Hard homogeneous spaces,” Cryptol. ePrint Arch.,
New York, NY, USA, Tech. Rep. 2006/291, 2006.

[16] A. Rostovtsev and A. Stolbunov, “Public-key cryptosystem based
on isogenies,” Cryptol. ePrint Arch., New York, NY, USA,
Tech. Rep. 2006/145, 2006.

[17] D. X. Charles, K. E. Lauter, and E. Z. Goren, “Cryptographic hash
functions from expander graphs,” J. Cryptol., vol. 22, no. 1, pp. 93–113,
Jan. 2009.

[18] A. Childs, D. Jao, and V. Soukharev, “Constructing elliptic curve
isogenies in quantum subexponential time,” J. Math. Cryptol., vol. 8,
no. 1, pp. 1–29, 2014.

[19] D. Jao and L. De Feo, “Towards quantum-resistant cryptosystems from
supersingular elliptic curve isogenies,” in Proc. 4th Int. Workshop Post-
Quantum Cryptogr. (PQCrypto) 2011, pp. 19–34.

[20] D. Hofheinz, K. Hövelmanns, and E. Kiltz, “A modular analysis of the
Fujisaki-Okamoto transformation,” in Theory of Cryptography (Lecture
Notes in Computer Science). Heidelberg, Germany, 2017, pp. 341–371.

[21] B. Koziel, A. Ackie, R. El Khatib, R. Azarderakhsh, and M. M. Kermani,
“SIKE’d up: Fast hardware architectures for supersingular isogeny key
encapsulation,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 67, no. 12,
pp. 4842–4854, Dec. 2020.

[22] B. Koziel, R. Azarderakhsh, and M. Mozaffari-Kermani, “Fast hardware
architectures for supersingular isogeny Diffie–Hellman key exchange on
FPGA,” in Prog. 17th Int. Conf. Cryptol. India, 2016, pp. 191–206.

[23] B. Koziel, R. Azarderakhsh, M. M. Kermani, and D. Jao, “Post-quantum
cryptography on FPGA based on isogenies on elliptic curves,” IEEE
Trans. Circuits Syst., vol. 64, no. 1, pp. 86–99, Jan. 2017.

[24] B. Koziel, R. Azarderakhsh, and M. M. Kermani, “A high-performance
and scalable hardware architecture for isogeny-based cryptography,”
IEEE Trans. Comput., vol. 67, no. 11, pp. 1594–1609, Nov. 2018.

Authorized licensed use limited to: University of South Florida. Downloaded on May 28,2022 at 14:25:33 UTC from IEEE Xplore. Restrictions apply.

ELKHATIB et al.: ACCELERATED RISC-V FOR POST-QUANTUM SIKE 2501

[25] M.-H. Farzam, S. Bayat-Sarmadi, and H. Mosanaei-Boorani, “Imple-
mentation of supersingular isogeny-based Diffie–Hellman and key
encapsulation using an efficient scheduling,” IEEE Trans. Circuits Syst.
I, Reg. Papers, vol. 67, no. 12, pp. 4895–4903, Dec. 2020.

[26] R. Elkhatib, R. Azarderakhsh, and M. Mozaffari-Kermani, “Highly
optimized Montgomery multiplier for SIKE primes on FPGA,” in Proc.
IEEE 27th Symp. Comput. Arithmetic (ARITH), Jun. 2020, pp. 64–71.

[27] H. Seo, M. Anastasova, A. Jalali, and R. Azarderakhsh, “Supersingular
isogeny key encapsulation (SIKE) round 2 on ARM cortex-M4,” IEEE
Trans. Comput., vol. 70, no. 10, pp. 1705–1718, Oct. 2021.

[28] M. Anastasova, R. Azarderakhsh, and M. M. Kermani, “Fast strategies
for the implementation of SIKE round 3 on ARM Cortex-M4,” Cryptol.
ePrint Arch., New York, NY, USA, Tech. Rep. 2021/115, 2021. [Online].
Available: https://eprint.iacr.org/2021/115

[29] B. Koziel, A. Jalali, R. Azarderakhsh, D. Jao, and
M. Mozaffari-Kermani, “NEON-SIDH: Efficient implementation of
supersingular isogeny Diffie–Hellman key exchange protocol on ARM,”
in Proc. 15th Int. Conf. Cryptol. Netw. Secur. (CANS), 2016, pp. 88–103.

[30] B. Koziel, R. Azarderakhsh, D. Jao, and M. M. Kermani, “On fast
calculation of addition chains for isogeny-based cryptography,” in Proc.
12th Int. Conf. Inf. Secur. Cryptol. (Inscrypt), Beijing, China, Nov. 2016,
pp. 323–342.

[31] A. Faz-Hernández, J. López, E. Ochoa-Jiménez, and
F. Rodríguez-Henríquez, “A faster software implementation of the
supersingular isogeny Diffie–Hellman key exchange protocol,” IEEE
Trans. Comput., vol. 67, no. 11, pp. 1622–1636, Nov. 2018.

[32] C. Costello and H. Hisil, “A simple and compact algorithm for SIDH
with arbitrary degree isogenies,” in Proc. 23rd Int. Conf. Theory Appl.
Cryptol. Inf. Secur., 2017, pp. 303–329.

[33] S. D. Galbraith, C. Petit, B. Shani, and Y. B. Ti, “On the security
of supersingular isogeny cryptosystems,” in Advances in Cryptology—
ASIACRYPT (Lecture Notes in Computer Science). Heidelberg, Ger-
many, 2016, pp. 63–91.

[34] C. Costello, P. Longa, M. Naehrig, J. Renes, and F. Virdia, “Improved
classical cryptanalysis of the computational supersingular isogeny prob-
lem,” Cryptol. ePrint Arch., New York, NY, USA, Tech. Rep. 2019/298,
2019. [Online]. Available: https://eprint.iacr.org/2019/298

[35] B. Koziel, R. Azarderakhsh, and D. Jao, “An exposure model for
supersingular isogeny Diffie–Hellman key exchange,” in Proc. Cryp-
tographers Track RSA Conf. (CT-RSA), 2018, pp. 452–469.

[36] B. Koziel, R. Azarderakhsh, and D. Jao, “Side-channel attacks on
quantum-resistant supersingular isogeny Diffie–Hellman,” in Proc. 24th
Int. Conf. Sel. Areas Cryptogr. (SAC), 2018, pp. 64–81.

[37] A. Gélin and B. Wesolowski, “Loop-abort faults on supersingular
isogeny cryptosystems,” in Proc. 8th Int. Workshop Post-Quantum
Cryptogr. (PQCrypto), 2017, pp. 93–106.

[38] Y. B. Ti, “Fault attack on supersingular isogeny cryptosystems,” in Proc.
8th Int. Workshop Post-Quantum Cryptography (PQCrypto), Utrecht,
The Netherlands. Cham, Switzerland: Springer, Jun. 2017, pp. 107–122.

[39] S. Jaques and J. M. Schanck, “Quantum cryptanalysis in the RAM
model: Claw-finding attacks on SIKE,” Cryptol. ePrint Arch., New
York, NY, USA, Tech. Rep. 2019/103, 2019. [Online]. Available:
https://eprint.iacr.org/2019/103

[40] G. Adj, D. Cervantes-Vázquez, J. Chi-Domínguez, A. Menezes, and
F. Rodríguez-Henríquez, “On the cost of computing isogenies between
supersingular elliptic curves,” Cryptol. ePrint Arch., New York, NY,
USA, Tech. Rep. 2018/313, 2018.

[41] M. Rogawski, E. Homsirikamol, and K. Gaj, “A novel modular adder for
one thousand bits and more using fast carry chains of modern FPGAs,”
in Proc. 24th Int. Conf. Field Program. Log. Appl. (FPL), Sep. 2014,
pp. 1–8.

[42] P. L. Montgomery, “Modular multiplication without trial division,” Math.
Comput., vol. 44, no. 170, pp. 519–521, Apr. 1985.

[43] C. Costello, P. Longa, and M. Naehrig, “Efficient algorithms for super-
singular isogeny Diffie–Hellman,” in Proc. 36th Annu. Int. Cryptol. Conf.
Adv. Cryptol. (CRYPTO), 2016, pp. 572–601.

[44] R. Elkhatib, R. Azarderakhsh, and M. Mozaffari-Kermani, “High-
performance FPGA accelerator for SIKE,” IEEE Trans. Comput., early
access, May 10, 2021, doi: 10.1109/TC.2021.3078691.

[45] J. Tian, B. Wu, and Z. Wang, “High-speed FPGA implementation of
SIKE based on an ultra-low-latency modular multiplier,” IEEE Trans.
Circuits Syst. I, Reg. Papers, vol. 68, no. 9, pp. 3719–3731, Sep. 2021.

Rami Elkhatib received the bachelor’s degree from
the American University of Beirut in 2013. He is
currently pursuing the Ph.D. degree in computer
engineering with Florida Atlantic University. His
research areas include finite field arithmetic, cryp-
tographic engineering, post-quantum cryptography,
quantum cryptanalysis, FPGA implementations, and
optimization.

Brian Koziel received the dual B.Sc. and M.Sc.
degree in computer engineering from the Rochester
Institute of Technology in 2016. He is currently
pursuing the Ph.D. degree with Florida Atlantic
University. His current research interests include
constructions, implementations, and deployment of
post-quantum cryptography. He has been awarded
an NSF Graduate Research Fellowship. At RIT,
he was a recipient of the prestigious Outstanding
Undergraduate Scholar Award.

Reza Azarderakhsh (Member, IEEE) received the
Ph.D. degree in electrical and computer engineering
from Western University in 2011. He was a recipient
of the NSERC Post-Doctoral Research Fellowship
working at the Center for Applied Cryptographic
Research and the Department of Combinatorics and
Optimization, University of Waterloo. He is cur-
rently an Associate Professor at the Department
of Electrical and Computer Engineering, Florida
Atlantic University. His current research interests
include finite field and its application, elliptic curve

cryptography, pairing-based cryptography, and post-quantum cryptography.
He is serving as an Associate Editor for IEEE TRANSACTIONS ON CIRCUITS

AND SYSTEMS.

Mehran Mozaffari Kermani (Senior Member,
IEEE) received the B.Sc. degree from the Univer-
sity of Tehran, Iran, and the M.E.Sc. and Ph.D.
degrees from the University of Western Ontario,
London, Canada, in 2007 and 2011, respectively.
In 2012, he joined the Electrical Engineering Depart-
ment, Princeton University, NJ, USA, as an NSERC
Post-Doctoral Research Fellow. From 2013 to 2017,
he was an Assistant Professor with the Rochester
Institute of Technology and starting 2017, he has
joined the Computer Science and Engineering

Department, University of South Florida, where he is currently an Associate
Professor. He is serving as an Associate Editor for the IEEE TRANSACTIONS

ON VERY LARGE SCALE INTEGRATION SYSTEMS, the ACM Transactions on
Embedded Computing Systems, and the IEEE TRANSACTIONS ON CIRCUITS

AND SYSTEMS—I: REGULAR PAPERS. He has been a Guest Editor of the
IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING.

Authorized licensed use limited to: University of South Florida. Downloaded on May 28,2022 at 14:25:33 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TC.2021.3078691

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

