
794 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 30, NO. 6, JUNE 2022

Efficient Error Detection Architectures for
Postquantum Signature Falcon’s Sampler

and KEM SABER
Ausmita Sarker , Student Member, IEEE, Mehran Mozaffari Kermani , Senior Member, IEEE,

and Reza Azarderakhsh , Member, IEEE

Abstract— Among the National Institute for Standards and
Technology (NIST) postquantum cryptography (PQC) standard-
ization Round 3 finalists (announced in 2020 and anticipated
to conclude in 2022–2024), SABER and Falcon are efficient key
encapsulation mechanism (KEM) and compact signature scheme,
respectively. SABER is a simple and flexible cryptographic
scheme, highly suitable for thwarting potential attacks in the
postquantum era. Implementing SABER can be performed solely
in hardware (HW) or on HW/software coprocessors. On the
other hand, the compact key size, efficient design, and strong
reliability proof in the quantum random oracle model (QROM)
make Falcon a highly suitable signature algorithm for PQC.
Although Falcon is crucial as a PQC signature scheme, the
utilization of the Gaussian sampler makes it vulnerable to
malicious attacks, e.g., fault attacks. This is the first work to
present error detection schemes embedded efficiently in SABER
as well as Falcon’s sampler architectures, which can detect both
transient and permanent faults. Moreover, we implement HW
design for the ModFalcon signature algorithm as well as the
Gaussian sampler. These schemes are implemented on a formerly
Xilinx field-programmable gate array (FPGA) family, for both
SABER and Falcon variants, where we assess the error coverage
and the performance. The proposed schemes incur low overhead
(the area, delay, and power overheads being 22.59%, 19.77%,
and 10.67%, respectively, in the worst case) while providing a
high fault detection rate (99.9975% in the worst case scenario),
making them suitable for high efficiency and compact HW
implementations of constrained applications.

Index Terms— Field-programmable gate array (FPGA), key
encapsulation mechanisms (KEM), learning with errors (LWEs),
learning with rounding (LWR), postquantum cryptography
(PQC), quantum random oracle model (QROM).

I. INTRODUCTION

LATTICE-BASED cryptography [1] is one of the most
promising classes among the National Institute for

Standards and Technology (NIST) postquantum cryptogra-
phy (PQC) submissions of the final round (announced in
2020). One category of lattice-based encryption schemes is

Manuscript received October 28, 2021; revised February 5, 2022; accepted
March 1, 2022. Date of publication March 16, 2022; date of current version
May 23, 2022. This work was supported by the U.S. National Science
Foundation (NSF) under Award SaTC-1801488. (Corresponding author:
Mehran Mozaffari Kermani.)

Ausmita Sarker and Mehran Mozaffari Kermani are with the Department
of Computer Science and Engineering, University of South Florida, Tampa,
FL 33620 USA (e-mail: asarker@usf.edu; mehran2@usf.edu).

Reza Azarderakhsh is with the Department of Computer and Electrical
Engineering and Computer Science, Florida Atlantic University, Boca Raton,
FL 33431 USA (e-mail: razarderakhsh@fau.edu).

Digital Object Identifier 10.1109/TVLSI.2022.3156479

learning with error (LWE)-based schemes, incorporating the
worst case lattice problem. Learning with rounding (LWR) [2]
is a subclass within LWE, both of their security levels relying
on noise introduction. SABER is one such module-LWR [3]
encryption scheme, which is resistant to Chosen-Ciphertext
Attack (CCA) and has proceeded to the third round of NIST’s
PQC competition in 2020.

SABER was computationally challenging for the absence
of an number-theoretic transform (NTT)-based multiplier,
because of using an unconventional set compared to the
popular NTT with prime parameter set [4], which has been
improved by proposing a fast polynomial multiplication based
on the Toom–Cook algorithm [5] in the work of [6]. Soft-
ware (SW) optimization techniques of SABER have been
proposed by improving the Toom–Cook multiplier [6]. The
hardware/SW (HW/SW) codesign approach to accelerate
the SABER computation process has been explored in [7],
which achieved significant speedup compared to SW-based
implementations.

Among NIST PQC competition Round 3 finalists,
Falcon [8], a lattice-based signature scheme, utilizes fast
Fourier sampling over NTRU lattices, instantiating the theoret-
ical framework of a hash-and-sign-based signature technique,
proposed in [9], the latter being provably secure and resistant
to the key-recovery attack [10]. The article in [11] presented a
compact and efficient instantiation of Falcon, which allows an
intermediate security level. The toolchain proposed in [12] to
instantiate efficient constant-time discrete Gaussian sampler,
proved to be practical and secure to use as a postquantum
signature algorithm, e.g., Falcon, with insignificant perfor-
mance degradation compared to a nonconstant-time sampler.
To summarize, Falcon ranks best in terms of efficiency and
compactness, while not sacrificing security, making it an
attractive signature scheme for the PQC era.

In this article, we propose fault detection techniques for
SABER, in both the full HW/SW codesign approach. As the
security concerns of Gaussian samplers have been an issue
for the scheme, we propose error detection for fault attacks
on Falcon HW implementation, a highly compact variant of
Falcon, i.e., ModFalcon [11], as well as the sample algorithm
of a constant time Gaussian sampler [12]. This is the first work
on fault detection schemes of a postquantum cryptographic
signature scheme. Such attacks can break into state-of-the-
art signature schemes and derive sensitive information. Very

1063-8210 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of South Florida. Downloaded on May 19,2022 at 23:07:00 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-1142-8171
https://orcid.org/0000-0002-6921-6868
https://orcid.org/0000-0003-4513-3109

SARKER et al.: EFFICIENT ERROR DETECTION ARCHITECTURES 795

few works such as [13]–[17] exist on error detection of PQC.
Our proposed schemes can be tailored to resource-constrained
applications while being flexible to different reliability levels.

The main contributions of this article are as follows.
1) We present fault detection schemes for SABER on

the performance bottleneck, the pseudo random number
generation (PRNG) generator involving a binomial sam-
pler, as well as the polynomial multiplier architecture for
fully HW SABER architecture.

2) We also propose error detection architecture in
the high-level architecture of the HW/SW codesign
approach of SABER, especially, in the evaluation and
the interpolation datapath of the Toom–Cook algorithm,
which is the most computationally exhaustive stage of
any SABER architecture.

3) We propose error detection schemes for the HW con-
struction of Falcon’s sampler, specifically, in the signa-
ture algorithm of ModFalcon and the Gaussian sampler.
We apply recomputing schemes to achieve high fault
coverage. The schemes are flexible and can be applied
to other signature schemes as well.

4) We simulate the proposed scheme by injecting faults in
a Xilinx field-programmable gate array (FPGA) family.
The assessment of our proposed schemes shows high
error coverage.

5) We implement the proposed architecture on FPGA fam-
ily to evaluate the implementation and performance met-
rics of SABER. The proposed error detection schemes
add acceptable overheads, compared to the original
implementation.

The rest of the article is organized as follows: Section II
summarizes the SABER key encapsulation mechanism (KEM)
and Falcon signature scheme. We present our proposed error
detection schemes of SABER-KEM, Falcon, ModFalcon, and
Gaussian sampler in Section III. We analyze the error coverage
and performance metrics in Section IV. Section V concludes
the article.

II. PRELIMINARIES

A. Recomputing Overview

Recomputing is a time redundancy technique, involving
encoding (c), and decoding (d) operations of the function in
question (f) (e.g., sampler and polynomial multiplication),
where decoding is the functional inverse of the encoding
operation. In this method, typically the transient faults within
the functions result in different outputs between the nonrecom-
puted and recomputed cycles. However, permanent faults are
typically only detected if recomputation is done using encoded
operands. Fault attacks, involving clock or voltage glitches,
laser beam injection, electromagnetic pulses, which tamper the
operation of the electric circuit and alter the input, intermediate
variable, or final results, maybe detected via recomputing.

B. SABER Overview

The security of SABER relies on the hardness of
module-LWR problem, which is given by: (−→a , b =
�(p/q)(−→a T −→s)�) ∈ R

l×l
q ×Rp, here −→a is a vector of randomly

generated polynomials in Rq and −→s is a secret vector of poly-
nomials in Rq whose coefficients are sampled from a centered
binomial distribution, and the modulus p is less than q .

1) Key Generation: This process starts by randomly gen-
erating a seed that determines an l × l matrix

−→
A

consisting of l2 polynomials in Rq . A secret vector−→s of polynomials whose entries are sampled from a
centered binomial distribution is also generated. The
public key then incorporates the matrix seed and the
rounded product

−→
A T −→s , while the secret key consists

of the secret vector −→s .
2) Encryption: Encryption consists of generating a new

‘secret’
−→
s′ and adding the message to the inner product

between the public key and the new secret
−→
s′ . This

forms the first part of the ciphertext, while the second
is used to hide the encrypting secret and contains the
rounded product

−→
A

−→
s′ .

3) Decryption: Decryption utilizes the secret key to com-
pute v, which is approximately the same as the v ′
computed during encryption. This allows extracting the
message from the ciphertext.

4) Parameter Selection: SABER defines three sets of para-
meters which match NIST security levels 1, 3, and 5,
namely, LightSABER, SABER, and FireSABER. All
three levels use polynomial degree N = 256 and
moduli q = 213 and p = 210. However, the binomial
distribution parameter and the message space of them are
the following: LightSABER, SABER, and FireSABER
use module dimensions 2, 3, and 4, respectively, and
their secrets are sampled from [−5, 5], [−4, 4], and [−3,
3]. Our HW implementation supports both LightSABER
and SABER. Our error detection schemes support both
LightSABER and SABER operations.

C. Falcon Overview

A lattice is a discrete subgroup L of some R
n and the

lattices are full-rank. In other terms, a lattice is a set of integer
linear combinations of the rows, the basis being B ∈ R

n∗n .
The Falcon signature algorithm consists of three steps, key
generation, signature generation, and verification, which are
described as follows.

1) Key Generation: In the first step of key generation, one
needs to generate the polynomials, f, g, F, G ∈ Z[x]/ϕ,
fulfilling the NTRU equation. In the next step, Falcon
tree T is constructed, through LDL∗ decomposition of
the matrix G = B B∗. The output of key generation is
a public key pk = h = g f −1 mod q and a secret key
sk = (B̂, T).

2) Signature Generation: In the first part of the signature
generation, a hash value c ∈ Zq[x]/ϕ of the message m
and a salt r are computed. The short values s1, s2 such
that s1 + s2 = c mod q , are computed from the hash
value as well as the sk, the latter taking advantage of its
knowledge about f, g, F, G, and ffSampling algorithm.
A compressed version of s2 which also contains a
random seed r is generated as the signature. Sending

Authorized licensed use limited to: University of South Florida. Downloaded on May 19,2022 at 23:07:00 UTC from IEEE Xplore. Restrictions apply.

796 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 30, NO. 6, JUNE 2022

only s2 as output is sufficient because s2, hash c, and
public key h can reconstruct s1.

3) Signature Verification: The first step of signature veri-
fication repeats the hashing of m and r into the hash
value c. This hashing is followed by recomputing the s1

and checking whether ||s1, s2|| ≤ β is satisfied, β being
predefined acceptance bound.

III. PROPOSED ERROR DETECTION TECHNIQUES

In this section, we discuss the existing side-channel attacks
on SABER and Falcon as well as present recomputing-based
error detection schemes, which incur low overhead for SABER
and Falcon architectures.

A. Fault Attacks and Threat Model

Fault injection can be defined as an active attack that aims
to disrupt the cryptographic operation processing sensitive
data, and in turn, results in incorrect output revealing sensitive
information [18]. As precise fault injections are getting more
difficult because of the shrinking geometry size of integrated
chips, studies show that arbitrary injection of faults can be
utilized to exploit vulnerabilities instead [19]. Such faults
attacks do not tamper with the combinational circuitry of
digital systems, rather alter the sampling process of the flip-
flop (FF) or decreased clock period of a register, resulting in
wrong output [20], [21]. This injection can exploit the sampler
of any signature algorithm, e.g., the Gaussian sampler of the
Falcon signature.

The ideal attack (which is not practical in general) would be
to inject bit-faults in the location and at the preferred cycle to
gain much information. While technological constraints may
hinder an attacker to flip exactly one bit, our fault model
includes single as well as multiple stuck-at faults (stuck-at
0 and stuck-at 1). We inject single event upset (SEU) and
multiple upset (MU) with a single fault adversary, where the
adversary can inject stuck-at faults at one or multiple positions,
in one execution of the operation. To execute that, the fault
model we choose requires minimal information on faulty
and fault-free computation, resembling differential fault inten-
sity analysis (DFIA) [22]. Although the Fujisaki–Okamoto
(FO) transform applied in the encryption/decryption provides
redundancy through reencryption, it fails to detect recent
attacks described in [23] which gathers linear inequality of
key coefficients by observing the outcome of decapsulation
after inserting an instruction-skipping fault. Our error detection
schemes, combined with the FO transform can prevent such
attacks. Moreover, our suggested schemes, combined with
masking, can protect against recent categories of fault attacks,
i.e., persistent fault analysis [24] and statistical ineffective fault
attack (SIFA) [19].

B. Proposed Error Detection Schemes on SABER

The binomial sampler (essential for random coefficient
generation) and polynomial multiplication (both Toom–Cook
multiplication and schoolbook) are essential to the operation
of SABER; hence, their error detection schemes are crucial.

Fig. 1. Error detection architecture on binomial sampler.

We also explore the error detection techniques for HW/SW
codesign architectures, which are accelerated design resulting
in a fast cycle and high flexibility for encapsulation and
decapsulation operation.

1) Error Detection on Binomial Sampler: The binomial
sampler computes a sample from a μ-bit pseudorandom input
string, e.g., r [μ − 1 : 0], by computing HW(r [μ/2 − 1 :
0]) − HW(r [μ − 1 : μ/2]), where HW() stands for the
Hamming weight (Fig. 1). In SABER, the secret coefficients
are drawn from a centered binomial distribution with the
parameters μ = 10, 8, and 6 for LightSABER, SABER, and
FireSABER, respectively. In Fig. 1, a sample is represented
as a 4-bit, sign, and magnitude number (pair of sign and
an absolute value) in the implementation. For SABER, since
μ = 8 divides the word-length of the data memory, two 64-bit
pseudorandom words are read from the memory, then they
are stored in a 128-bit buffer register, then 16 samples are
generated in parallel and they are stored in an output buffer
register of length 64-bit, and finally, the output buffer is written
to the data memory.

In our architecture from Fig. 1, we implement recomput-
ing with swapped operands (RESwOs), to detect faults in
the binomial sampler. We introduce a multiplexer with the
select Norm/RESwO, which runs the original operation in
Norm cycle, and swaps the inputs of the subtractor in the
RESwO cycle. For example, the subtractor output is (a − b)
in Norm cycle and (b − a) in the RESwO cycle. To detect
faults, we compare the Norm and RESwO cycle outputs, which
are the same in a fault-free scenario. To ensure that, we flip
the sign bit of the 2’s complement so that the output is 2’s
complement of (a − b) in both cases. Fig. 1 shows error
detection operation for μ bits, which is replicated eight times
for a 64-bit data memory output for SABER.

2) Error Detection on Parallel Polynomial Multiplication:
The Toom–Cook method is proposed in the work of [6],

Authorized licensed use limited to: University of South Florida. Downloaded on May 19,2022 at 23:07:00 UTC from IEEE Xplore. Restrictions apply.

SARKER et al.: EFFICIENT ERROR DETECTION ARCHITECTURES 797

Algorithm 1 Schoolbook Polynomial Multiplication

Fig. 2. Proposed error detection architecture on polynomial multiplication
with MAC unit construction.

which can be used to split a polynomial multiplication of
256-coefficient into seven polynomial multiplications of 64-
coefficient. Using such Toom–Cook multiplication, the total
number of calls to schoolbook multiplication is 63 for 256-
coefficient multiplication, compared to 81 calls for the Karat-
suba method. The polynomial multiplier architecture that
implements a parallelized version of the schoolbook multi-
plication is described in Algorithm 1. To attain maximum
parallelism in data read/write, and to avoid the memory-access
bottlenecks, the entire secret polynomial s(x) is stored in a
shift register (Fig. 2), as all the bits of a register can be
accessed simultaneously on a HW platform. At the beginning
of a polynomial multiplication, s(x) is read from the data
memory (block RAM) and then loaded into the shift register.
As shown in Algorithm 1, only one coefficient of the other
polynomial a(x) is required at a time to compute the scalar
multiplication s(x) · a[i]. Hence, it is not necessary to store
the entire a(x) polynomial. The coefficient selector block in
Fig. 2 provides the required coefficient of a(x) during the mul-
tiplication s(x) · a[i] by the parallel multiply-and-accumulate
(MAC) cores, from the inset of Fig. 2. After the multiplication
s(x) · a[i], s(x) needs to be multiplied by x . This operation

is a simple mega-cyclic left-shift operation that moves each
coefficient from position i to position i + 1 and sends the
last coefficient to the first position after a modular subtraction
from zero. In this implementation, such is performed easily
by flipping the 256th coefficient, taking advantage of the
sign-magnitude system representation.

The aforementioned schoolbook polynomial multiplication
is one of the most exhaustive operations in this construction.
Hence, we apply recomputing with negated operands (RENOs)
which ensures the reliability of such architecture (Fig. 2).
In the RENO cycle of the multiplexer select Norm/RENO,
we perform negation of the multiplication inputs, i.e., −s(x)
and −a(i), multiplication of which will eventually lead to the
same product as Norm cycle, i.e., s(x) · a[i], in a fault-free
scenario. In run1 and run2, the original and the recomputed
polynomial multiplications are performed, respectively, and
the results are then compared in the comparator unit. During
permanent faults, e.g., one of the bits of MAC is stuck to 0, the
output of negation operation of the faulty MAC block, after
modular multiplication, will be discrepant from run1, i.e., the
nonrecomputed output, as described in Section II-A. We note
such discrepancies between run1 and run2 cycles, calculated
in the comparator, will confirm the presence of faults. On the
contrary, in the case of transient fault, the error is present in
run1 and absent in run2 and vice-versa, resulting in discrepant
outputs between both cycles. The 2’s complement notations of
the coefficients discard the need for an external negation unit,
incurring low area overhead.

3) Error Detection on HW/SW Codesign: The HW/SW
codesign approach is an extensively researched technique that
aims to achieve performance targets through a shorter devel-
opment cycle than is typical for HW-only implementations.
Replacing a purely-HW benchmarking is not the intention
of HW/SW benchmarking, rather, the aim is to ease the
development of HW-only implementations via researching
HW accelerators for major operations.

During the encapsulation of SABER, only the accelerated
operations performed during encryption are SABER.PKE.Enc.
The seed of SHAKE-128, i.e., s0, is used to generate elements
of the matrix A, with each element representing a polynomial,
as shown in Fig. 3. The sign-extended version of matrix A is
used to generate b′ = (As′+h) mod q , where h is a constant of
the equation. Only one row of the A matrix is produced at once
and the elements of A are multiplied by the corresponding
elements of s0, with a view to shorter execution time and
smaller matrix memory. The registers on the right of MAC in
Fig. 3, stores the temporary results. The MAC constructions
are shown as the inset in Fig. 2.

In our scheme, we apply RENO at both the inputs of the
MAC module in Fig. 3. The negated input operands of the
multiplication detect the presence of faults in the RENO cycle
of the multiplexer select when discrepancy with the Norm
cycle output is flagged by the comparator. Applying RENO
does not increase the bus size; thus, the inputs remain 13-bit;
hence, the implementation is compatible with the existing
architecture. We perform a modular negation operation by
subtracting each MAC input from q . Our schemes can apply
to any modified version of the MAC core, thus our schemes

Authorized licensed use limited to: University of South Florida. Downloaded on May 19,2022 at 23:07:00 UTC from IEEE Xplore. Restrictions apply.

798 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 30, NO. 6, JUNE 2022

Fig. 3. Proposed error detection architecture on HW accelerator.

are MAC architecture oblivious. As the SABER decapsulation
stage utilizes the same mechanism, RENO can be applied there
as well to detect fault injection.

C. Error Detection Schemes on Falcon Sampler

We apply the schemes for the nonconstant time Gaussian
sampler, which is prone to fault attacks, hence requiring
additional countermeasure. Our error detection approaches are
also applicable to constant time Gaussian samplers.

From Section II, we recall the ffSampling algorithm is
the basis to generate secret key sk for signature genera-
tion. As shown in Algorithm 1, the Falcon tree genera-
tion, i.e., line 7 stating LDL* decomposition of matrix G,
and the ffSampling are combined in one algorithm, namely,
ffsampling∗

n. Such combination reduces the memory consump-
tion significantly compared to the reference Falcon implemen-
tation. Here, we note that the three functions of Algorithm 2,
i.e., ffSampling, splitfft, and mergefft are linear elementary
operations: Addition, subtraction, multiplication, and division;
hence, we can apply linear encoding and decoding schemes,
without any loss of information.

1) Recomputing on Negation: Algorithm 2 can be par-
tially depicted (lines 11–13) by Fig. 4(a), multiplexer select
Norm/RENO being at Norm, i.e., unmodified operation of the
ffsampling∗

n. In the original operation of line 13, the output of
ffsampling∗

n, z1 is subtracted from t1. In our encoded scheme,
we perform RENO during the RENO cycle of the multiplexer,
where we negate both t1 and z1, and perform subtraction of
−z1 from −t1, resulting in out1 = (t1 − z1) in a fault-free
scenario, which is consistent with the Norm cycle output.
However, in a faulty scenario, the outputs of both Norm and
RENO cycles will be discrepant, which will be flagged by

Fig. 4. Proposed recomputing-based HW architecture schemes of key
generation in Falcon (a) RENOs on negation, (b) RESwOs on multiplication,
and (c) RENO on multiplication.

the comparator comparing this output with out1, detecting the
presence of faults. We note that decoding in this scheme is
free of HW cost; hence, a low-overhead and inexpensive fault
detection approach.

2) RESwO on Multiplication: In line 13 of Algorithm 2,
(t1 − z1), is multiplied with the left child of LDL∗ output
L10. In our scheme, we perform this unmodified operation
during the Norm cycle of the multiplexer. For the recomputed
operation, we perform RESwOs, where the multiplication
operands L10 and (t1 − z1) are swapped and stored in out2,
as shown in Fig. 4(b). Any discrepancy between the Norm
and RESwO rounds is flagged by the comparator comparing
L10 	 (t1 − z1), and out2. RESwO scheme also requires no
decoding, making it a cost-effective fault detection mechanism.

3) RENO on Multiplication: One can also explore nega-
tion on the aforementioned multiplicands. In such a case,
as depicted in Fig. 4(c), the Norm cycle will perform L10 	
out1, where out1 = (t1 − z1). On the contrary, during our
proposed RENO cycle, the architecture will perform negation

Authorized licensed use limited to: University of South Florida. Downloaded on May 19,2022 at 23:07:00 UTC from IEEE Xplore. Restrictions apply.

SARKER et al.: EFFICIENT ERROR DETECTION ARCHITECTURES 799

Algorithm 2 ffsampling∗
n(t, G)

Fig. 5. RENO on multiplication-and-accumulator (MAC) module.

on both operands, resulting in out2 = −L10 	 −out1. In a
fault-free scenario, the RENO output should match with the
Norm cycle, deviation from which will be captured by the
comparator comparing out2 and L10 	out1. Similar to the case
of RENO on negation, RENO on multiplication requires no
decoding as negating both operands provides the same output
in the case of multiplication.

4) RENO on Multiplication-and-Accumulator (MAC):
Instead of applying error detection on either the multiplication
or the subtraction of line 13 in Algorithm 2, one can perform
error detection on this overall multiplication-and-accumulator
circuitry. We propose RENO for MAC of line 13, where
the Norm cycle of multiplexer results in t ′

0, according to
Algorithm 2. In our proposed RENO operation, we negate
both L10 and t0, as shown in Fig. 5, resulting in the encoded
output of (−L10	out1)−to, where out1 = (t1−z1). We decode
this encoded operand by again negating the MAC output,
providing out2 = −(−L10 	 out1 − t0), which should be
identical to t ′

0 in a fault-free scenario and the comparator

Fig. 6. RENO on the overall ffsampling∗
n .

flags any inconsistency between these two. The presence of
an additional decoding circuit is somewhat more expensive
than the previously mentioned schemes requiring no decoding;
however, if one wishes to perform overall error detection on
the entire MAC, RENO is a viable choice.

5) RENO on Overall ffsampling∗
n: We finally propose an

error detection scheme that operates on the inputs of the entire
Algorithm 2 and performs RENO on its operands, as depicted
in Fig. 6. During the multiplexer select Norm, the unmodified
function of ffsampling∗

n is performed. On the other hand,
in our proposed RENO scheme to detect faults, we negate to,
the output of ffsampling∗

n z1 as well as t1. Therefore, the
encoded output becomes −t0 + (−t1 − (−z1)) 	 L10, after the
subtraction and MAC operations. Now, to decode the encoded
output and find out4, we again negate it which, in a fault-free
scenario, would result in t0 + (z1 − t1) 	 L10, resembling t ′

0.
The comparator notifies of the discrepancy between Norm and
RENO rounds.

We would like to conclude that a nonconstant time Gaussian
sampler can easily fall victim to timing attacks and other fault
attacks. However, such nonconstant time Falcon approaches
are heavily researched and popular for microcontroller based
platforms. Our proposed error detection schemes are low-
overhead, while ensuring high error detection for those faulty
situations, and can be implemented for already compact Falcon
implementations.

D. Implementation of Constant-Time Falcon Sampler

Falcon being a fairly new scheme, its resilience against
fault attacks has not been analyzed thoroughly. While active
attacks on Falcon are yet unknown, incorporating nonconstant
time Gaussian sampler can seriously affect the security of
the scheme; thus, should be replaced with a constant-time
Gaussian sampler.

1) ModFalcon Implementation and Error Detection: Mod-
Falcon, a new variant of signature schemes based on the
Falcon design, is based on module lattices. This new imple-
mentation possesses both the compactness and efficiency of
Falcon. ModFalcon achieves the highly compact lattice-based
signature with a 128-bit quantum level security. This variant
generalizes the instantiation of the hash-and-sign algorithm to
NTRU lattices for large module ranks; hence, broadening the
parameter set of the Falcon design to a much wider range.

Authorized licensed use limited to: University of South Florida. Downloaded on May 19,2022 at 23:07:00 UTC from IEEE Xplore. Restrictions apply.

800 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 30, NO. 6, JUNE 2022

Algorithm 3 Signature: (sk,msg) → (r, S)

Fig. 7. Signature scheme of ModFalcon architecture.

As shown in Algorithm 3, the pair (r, S) is the signature,
r being a hashing salt and S being an encoding of a short
vector s such that s · vk = H (r ||msg). After computing
H (r ||msg), the secret key BF,g is used to sample a proper s.
Algorithm 3 can be partially depicted (line 4) by Fig. 7.
One can compute z via the parallel computations of Falconsig.
Even constant-time Falcon can be vulnerable to fault attacks,
hence Fig. 7 can be modified to incorporate error detection
schemes. One can select multiplexer Norm/RENO being at
Norm, i.e., unmodified operation of the ModFalcon signature
scheme. In the original operation of line 4, the output of
signature scheme z is subtracted from t . In our encoded
scheme, we perform RENO during the RENO cycle of the
multiplexer, where we negate both t and z, and perform
subtraction of −z from −t , resulting in out1 = (t − z) in
a fault-free scenario, which is consistent with the Norm cycle
output. However, in a faulty scenario, the outputs of both Norm
and RENO cycles will be discrepant, which will be flagged
by the comparator comparing this output with out1, detecting
the presence of faults. We note that decoding in this scheme is
free of HW cost; hence, a low-overhead and inexpensive fault
detection approach.

2) Samplez Implementation and Error Detection: The
constant-time sampler, formally described in Algorithm 4,
works by using BaseSampler to generate a sample z0. Then,
it samples a random bit b, and compute z = (2b − 1) · z0 + b.
Finally, it calls BerExpC(σ)(x) to determine if z is returned or
rejected and start again if necessary.

We explore fault detection to thwart fault attacks on the
Samplez . One can explore negation in line 4 of Algorithm 4.
In such a case, the Norm cycle will perform the afore-
mentioned computation of z. On the contrary, during our
proposed RENO cycle, the architecture will perform negation
on both operands, resulting in out2 = {−(2b − 1) · −z0} + b.
In a fault-free scenario, the RENO output should match with
Norm cycle, deviation from which will be captured by the
comparator comparing out2 and z. Similar to the case of RENO

Algorithm 4 SamplerZ (σ, μ)

on negation, RENO on multiplication requires no decoding as
negating both operands provides the same output in the case
of multiplication.

IV. ERROR COVERAGE AND FPGA IMPLEMENTATIONS

This section presents the results of our FPGA assess-
ments using Xilinx Vivado and VHDL with an FPGA
family (Zynq-UltraScale+ ZCU102), using the device
xczu9eg-ffvb1156-2-e, to assess the overhead of the proposed
construction for the case study of proposed RESwO and
RENO in the SABER encapsulation algorithm as well as the
HW accelerator, as shown in Table I.

A. Fault Simulation

We have simulated the error coverage of our proposed
work with VHDL as design entry, by injecting three types
of stuck-at faults, i.e., 1) single; 2) two-bit; and 3) multiple-
bit faults for 200 000 cases, all injected at the input state of the
parallel polynomial multiplication algorithm, for permanent
and transient faults. In each case, we observed high error
detection rates (99.9975%), for both permanent and transient
faults incorporating our schemes. For example, in single-bit
stuck-at 0 faults, we inserted faults at the LSB of both the
inputs of the polynomial multiplication architecture of Saber,
using logical AND operation between that faulty bit and logical
0. We also injected two-bit and multibit (6-bit) faults, similarly,
for a total of 200 000 instances. After the simulation, the
error flags were high for 199 995 cases, demonstrating the
presence of faults. We calculated the fault detection ratio as
[(faults detected)/(faults injected)], which in our case resulted
in 99.9975%. To be very conservative in reporting the error
coverage and about the faults occurring in the entire archi-
tecture, one needs to consider those affecting the comparator
unit. In case a voter is faulty, a comparator using modular
redundancy can be one of the solutions for a compromised
comparator circuit, among different fault-tolerant techniques.

B. FPGA Implementations

We perform the benchmark for error detection on the
RESwO scheme for binomial sampler and RENO schemes for
both parallel polynomial multiplier and HW/SW accelerator

Authorized licensed use limited to: University of South Florida. Downloaded on May 19,2022 at 23:07:00 UTC from IEEE Xplore. Restrictions apply.

SARKER et al.: EFFICIENT ERROR DETECTION ARCHITECTURES 801

TABLE I

IMPLEMENTATION RESULTS FOR FPGA THROUGH XILINX ZYNQ-ULTRASCALE+ ZCU102 (XCZU9EG-FFVB1156-2-E) FOR BINOMIAL SAMPLING,
POLYNOMIAL MULTIPLICATION AND HW/SW CODESIGN. ALL THE INPUTS ARE 256 bits AND THE PARENTHESES REPRESENT PERCENT

OVERHEADS COMPARED TO ORIGINAL ARCHITECTURE1

as well as the original. For both cases, we tabulated both
the lookup table (LUT) and FF as area overhead as well
as delay and power overheads in Table I, all of which
are of the acceptable range. Both error detection schemes
applied to binomial sampling and polynomial multiplication
incur approximately 18% area overhead, whereas the RENO
incorporated in HW/SW accelerator adds 22.59% overhead
for LUTs. On the contrary, the RESwO and RENO of the
binomial sampler and HW/SW accelerator show a lower
overhead (19.32% and 17.66%, respectively), compared to
the 22.72% overhead for RENO of the polynomial multiplier
in FFs. In terms of power, it is evident that the RESwO
added the least overhead (6.88%) compared to both the
RENO architectures. The delay overhead for the RENO on
the polynomial multiplier was the lowest at 11.42%, although
the RESwO overhead was acceptable at 15.76%. Thus, we can
conclude RESwO results in lower percent overhead compared
to the RENO models, due to the simplicity of the RESwO
architecture. As this is the first work on implementing error
detection of SABER architecture as well as HW/SW codesign,
there is no previously published architecture to compare with
our performance and overhead matrices. In some of the
previous works on fault detection of postquantum architectures
[13], [14], recomputing has been utilized to detect faults
on NTT and ring polynomial multiplication, respectively,
two integral components of lattice-based cryptosystems. The
implementation overheads in the work of [13] are 20%,
6%, and 16%, on average, for the area, delay, and power,
respectively. On the other hand, the performance matrices for
the error detection in [14] are 19.6%, 13.5%, and 15.1% in
cases of area, delay, and power overhead, respectively. The
overheads of our error detection overheads align with the
performance overheads of the previous works, demonstrating
the efficiency and low cost of our implementations.

Implementing lattice-based signatures is difficult, based on
either the high-speed or lightweight approach, which explains
the lack of literature on HW or HW/SW implementation of
Falcon and other lattice-based signatures, e.g., LUOV, HQC,
and NTS-KEM [25]. However, recomputing being an efficient
scheme, we expect similar low overhead results for Falcon as
our derived results for SABER.

In the absence of any compensation, the total time of
recomputing architectures that do not embed throughput alle-
viation approaches will be twice the original. Subpipelining is
the solution to alleviate this drastic decline of the through-
put. By increasing frequency, subpipelining increments the
frequency, which in turn makes the recomputed architecture
throughput close to the original architecture. The slight area
overhead of adding subpipelining can be reasonably traded off
by achieving low throughput degradation. The timing paths
can be broken into approximately equal halves by inserting
registers in proper locations.

In conclusion, we would like to note that the proposed
architectures are platform oblivious of the FPGA fabric and
HW platform. As a result, implementing the schemes on
application-specific integrated circuits (ASICs) will also pro-
vide similar results. Moreover, adding pipelines in the archi-
tectures will improve the efficiency and throughput, with the
compromise of increased HW overhead. We would like to note
that the proposed architectures are platform oblivious of the
FPGA fabric and HW platform.

V. CONCLUSION

We present error detection schemes for SABER on fully
HW construction and HW/SW codesign accelerators. More-
over, we propose error detection schemes for postquantum
signature scheme Falcon, its compact variant ModFalcon and
Gaussian sampler, a crucial element of the Falcon signa-
ture scheme. Our error detection schemes with recomputing
incur low overheads with high error coverage on these two
state-of-the-art NIST PQC finalists. We achieve high error
coverage of 99.9975% on average, from our recomputing
schemes. Moreover, the area, delay, and power overheads
are 22.59%, 19.77%, and 10.67%, respectively, in the worst
case scenario. The proposed architectures are implemented on
the FPGA family Zynq-UltraScale+, which shows acceptable
area, power, and delay overhead.

REFERENCES

[1] T. Güneysu, V. Lyubashevsky, and T. Pöppelmann, “Practical lattice-
based cryptography: A signature scheme for embedded systems,” in
Proc. CHES, Sep. 2012, pp. 530–547.

Authorized licensed use limited to: University of South Florida. Downloaded on May 19,2022 at 23:07:00 UTC from IEEE Xplore. Restrictions apply.

802 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 30, NO. 6, JUNE 2022

[2] H. Baan et al., “Round2: KEM and PKE based on GLWR,”
Cryptol. ePrint Arch., Int. Assoc. Cryptol. Res., Lyon, France,
Tech. Rep., 2017/1183, Feb. 2022.

[3] A. Banerjee, C. Peikert, and A. Rosen, “Pseudorandom functions and
lattices,” in Proc. Annu. Conf. Adv. Cryptol., 2012, pp. 719–737.

[4] V. Lyubashevsky and D. Micciancio, “Generalized compact knapsacks
are collision resistant,” in Automata, Languages and Programming.
Cham, Switzerland: Springer, 2006, pp. 144–155.

[5] D. Knuth, The Art of Computer Programming, vol. 3. Boston, MA, USA:
Addison-Wesley, 1997.

[6] J.-P. D’Anvers, A. K. S. S. Roy, and F. Vercauteren, “SABER: Module-
LWR based key exchange, CPA-secure encryption and CCA-secure
KEM,” in Proc. Africacrypt, May 2018, pp. 282–305.

[7] J. M. B. Mera, F. Turan, A. Karmakar, S. S. Roy, and I. Verbauwhede,
“Compact domain-specific co-processor for accelerating module lattice-
based key encapsulation mechanism,” Cryptol. ePrint Arch., Int. Assoc.
Cryptol. Res., Lyon, France, Tech. Rep. 2020/321, Feb. 2022.

[8] T. Prest et al., “Falcon,” Nat. Inst. Standards Technol., Gaithersburg,
MD, USA, Tech. Rep., Apr. 2021. [Online]. Available: https://csrc.nist.
gov/projects/post-quantum-cryptography/round-3-submissions

[9] C. Gentry, C. Peikert, and V. Vaikuntanathan, “Trapdoors for hard
lattices and new cryptographic constructions,” in Proc. ACM STOC,
May 2008, pp. 197–206.

[10] L. Ducas and P. Q. Nguyen, “Faster Gaussian lattice sampling using lazy
floating-point arithmetic,” in Proc. ASIACRYPT, 2012, pp. 415–432.

[11] C. Chuengsatiansup, T. Prest, D. Stehlé, A. Wallet, and K. Xagawa,
“ModFalcon: Compact signatures based on module-NTRU lattices,”
in Proc. 15th ACM Asia Conf. Comput. Commun. Secur., Oct. 2020,
pp. 853–866.

[12] A. Karmakar, S. S. Roy, F. Vercauteren, and I. Verbauwhede, “Pushing
the speed limit of constant-time discrete Gaussian sampling. A case
study on the Falcon signature scheme,” in Proc. 56th Annu. Des. Autom.
Conf., Jun. 2019, pp. 1–6.

[13] A. Sarker, M. Mozaffari-Kermani, and R. Azarderakhsh, “Hardware
constructions for error detection of number-theoretic transform utilized
in secure cryptographic architectures,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 27, no. 3, pp. 738–741, Mar. 2019.

[14] A. Sarker, M. Mozaffari Kermani, and R. Azarderakhsh, “Error detection
architectures for ring polynomial multiplication and modular reduction
of ring-LWE in Z/ pZ[x]

xn+1 benchmarked on ASIC,” IEEE Trans. Rel.,
vol. 70, no. 1, pp. 362–370, Mar. 2021.

[15] A. Sarker, M. M. Kermani, and R. Azarderakhsh, “Fault detection
architectures for inverted binary ring-LWE construction benchmarked
on FPGA,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 68, no. 4,
pp. 1403–1407, Apr. 2021.

[16] M. Mozaffari-Kermani and A. Reyhani-Masoleh, “A high-performance
fault diagnosis approach for the AES SubBytes utilizing mixed bases,”
in Proc. Workshop Fault Diagnosis Tolerance Cryptogr., Sep. 2011,
pp. 80–87.

[17] M. Mozaffari-Kermani and A. Reyhani-Masoleh, “Reliable hardware
architectures for the third-round SHA-3 finalist Grostl benchmarked on
FPGA platform,” in Proc. IEEE Int. Symp. Defect Fault Tolerance VLSI
Nanotechnol. Syst., Oct. 2011, pp. 325–331.

[18] E. Biham and A. Shamir, “Differential fault analysis of secret key
cryptosystems,” in Proc. Annu. Int. Cryptol. Conf., 1997, pp. 17–21.

[19] C. Dobraunig, M. Eichlseder, T. Korak, S. Mangard, F. Mendel, and
R. Primas, “SIFA: Exploiting ineffective fault inductions on symmet-
ric cryptography,” IACR Trans. Cryptograph. Hardw. Embedded Syst.,
pp. 547–572, Aug. 2018.

[20] M. Dumont, M. Lisart, and P. Maurine, “Electromagnetic fault injec-
tion: How faults occur,” in Proc. Workshop Fault Diagnosis Tolerance
Cryptogr. (FDTC), Aug. 2019, pp. 9–16.

[21] M. Agoyan, J. Dutertre, D. Naccache, B. Robisson, and A. Tria, “When
clocks fail: On critical paths and clock faults,” in Proc. Int. Conf. Smart
Card Res. Adv. Appl., 2010, pp. 182–193.

[22] N. F. Ghalaty, B. Yuce, M. Taha, and P. Schaumont, “Differential
fault intensity analysis,” in Proc. Workshop Fault Diagnosis Tolerance
Cryptogr., Sep. 2014, pp. 49–58.

[23] P. Pessl and L. Prokop, “Fault attacks on CCA-secure lattice KEMs,”
IACR Trans. Cryptograph. Hardw. Embedded Syst., vol. 2021, no. 2,
pp. 37–60, Feb. 2021.

[24] F. Zhang et al., “Persistent fault analysis on block ciphers,” IACR Trans.
Cryptograph. Hardw. Embedded Syst., vol. 2018, no. 3, pp. 150–172,
Aug. 2018.

[25] V. B. Dang, F. Farahmand, M. Andrzejczak, and K. Gaj, “Implement-
ing and benchmarking three lattice-based post-quantum cryptography
algorithms using software/hardware codesign,” in Proc. Int. Conf. Field-
Programmable Technol. (ICFPT), Dec. 2019, pp. 206–214.

Ausmita Sarker (Student Member, IEEE) received
the B.Sc. degree in electrical and electronic engi-
neering from the Bangladesh University of Engineer-
ing and Technology, Dhaka, Bangladesh, in 2016.
She is currently working toward the Ph.D. degree at
the Department of Computer Science and Engineer-
ing, University of South Florida, Tampa, FL, USA.

Her research interests include cryptographic engi-
neering, postquantum cryptography, and embedded
systems.

Mehran Mozaffari Kermani (Senior Member,
IEEE) received the B.Sc. degree in electrical
and computer engineering from the University of
Tehran, Tehran, Iran, in 2005, and the M.E.Sc. and
Ph.D. degrees from the Department of Electrical
and Computer Engineering, University of Western
Ontario, London, ON, Canada, in 2007 and 2011,
respectively.

He joined Advanced Micro Devices, Santa Clara,
CA, USA, as a Senior ASIC/Layout Designer, inte-
grating sophisticated security/cryptographic capabil-

ities into accelerated processing. In 2012, he joined the Department of
Electrical Engineering, Princeton University, Princeton, NJ, USA, as an
NSERC Post-Doctoral Research Fellow. From 2013 to 2017, he was an
Assistant Professor with the Rochester Institute of Technology, Rochester, NY,
USA, and starting 2017, he has joined the Department of Computer Science
and Engineering, University of South Florida, Tampa, FL, USA, where he is
currently an Associate Professor.

Dr. Mozaffari Kermani was a recipient of the prestigious Natural Sciences
and Engineering Research Council of Canada Post-Doctoral Research Fel-
lowship in 2011, the Texas Instruments Faculty Award (Douglas Harvey) in
2014, outstanding research award at College of Engineering, USF, in 2018,
Nexus Initiative Global Award, in 2019, and USF university-wide Faculty
Outstanding Research Achievement Award in 2021. He has been a TPC
member for a number of conferences including HOST (Publications Chair),
CCS (Publications Chair), DAC, DATE, RFIDSec, LightSec, WAIFI, FDTC,
and DFT. He is currently serving as an Associate Editor for the IEEE TRANS-
ACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, ACM
Transactions on Embedded Computing Systems, the IEEE TRANSACTIONS

ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS.

Reza Azarderakhsh (Member, IEEE) received the
Ph.D. degree in electrical and computer engineer-
ing from Western University, London, ON, Canada,
in 2011.

He is currently an Associate Professor with the
Department of Electrical and Computer Engineering,
Florida Atlantic University, Boca Raton, FL, USA.
His current research interests include finite field and
its application, elliptic curve cryptography, pairing-
based cryptography, and postquantum cryptography.

Dr. Azarderakhsh was a recipient of the NSERC
Post-Doctoral Research Fellowship working in the Center for Applied Cryp-
tographic Research and the Department of Combinatorics and Optimization,
University of Waterloo. He was the Guest Editor for the IEEE TRANSAC-
TIONS ON DEPENDABLE AND SECURE COMPUTING for the special issue
of Emerging Embedded and Cyber Physical System Security Challenges and
Innovations (2016 and 2017). He was also the Guest Editor for the IEEE/ACM
TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS for
special issue on security. He is serving as an Associate Editor of the IEEE
TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS.

Authorized licensed use limited to: University of South Florida. Downloaded on May 19,2022 at 23:07:00 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

