
4648 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 68, NO. 11, NOVEMBER 2021

Instruction-Set Accelerated Implementation
of CRYSTALS-Kyber

Mojtaba Bisheh-Niasar , Student Member, IEEE, Reza Azarderakhsh , Member, IEEE,

and Mehran Mozaffari-Kermani , Senior Member, IEEE

Abstract— Large scale quantum computers will break classical
public-key cryptography protocols by quantum algorithms such
as Shor’s algorithm. Hence, designing quantum-safe cryptosys-
tems to replace current classical algorithms is crucial. Luckily
there are some post-quantum candidates that are assumed to be
resistant against future attacks from quantum computers, and
NIST is considering standardizing them. Among these candidates,
lattice-based cryptography sounds more interesting than others
due to the performance results as well as confidence in the
security. There are few works in the literature evaluating the
performance of lattice-based cryptography in hardware. In this
paper, we focus on Cryptographic Suite for Algebraic Lattices
(CRYSTALS) key exchange mechanisms known as Kyber and
provide an instruction-set hardware architecture and imple-
ment on Xilinx Artix-7 FPGA for performance evaluation and
testing. Our proposed architecture provides an efficient and
high-performance set of components to perform polynomial
sampling, number-theoretic transform (NTT), and point-wise
multiplication to speed up lattice-based post-quantum cryptogra-
phy (PQC). This architecture implemented on ASIC outperforms
state-of-the-art implementations.

Index Terms— ASIC, FPGA, hardware architecture, Kyber,
lattice-based cryptography, post-quantum cryptography.

I. INTRODUCTION

QUANTUM computing development constitutes a signifi-
cant threat to classical public-key cryptography protocols

based on Shor’s algorithm [1]. Most current cryptosystems,
i.e., RSA and Elliptic Curve Cryptography (ECC), are envi-
sioned to be broken when large quantum computers will be
built. Thus, designing the lattice-based cryptosystem as one of
the most promising algorithms in Post-Quantum Cryptography

Manuscript received December 28, 2020; revised April 13, 2021 and
June 10, 2021; accepted August 11, 2021. Date of publication August 30,
2021; date of current version November 9, 2021. This work was supported
by NSF under Grant 1801341. This article was recommended by Associate
Editor S. Yin. (Corresponding author: Mojtaba Bisheh-Niasar.)

Mojtaba Bisheh-Niasar is with the Department of Computer and Electrical
Engineering and Computer Science, Florida Atlantic University, Boca Raton,
FL 33431 USA, and also with I-SENSE, Florida Atlantic University, Boca
Raton, FL 33431 USA (e-mail: mbishehniasa2019@fau.edu).

Reza Azarderakhsh is with the Department of Computer and Electrical
Engineering and Computer Science, Florida Atlantic University, Boca Raton,
FL 33431 USA, also with I-SENSE, Florida Atlantic University, Boca
Raton, FL 33431 USA, and also with PQSecure Technologies LLC, Boca
Raton, FL 33431 USA (e-mail: razarderakhsh@fau.edu).

Mehran Mozaffari-Kermani is with the Department of Computer Engineer-
ing and Science, University of South Florida, Tampa, FL 33620 USA (e-mail:
mehran2@usf.edu).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TCSI.2021.3106639.

Digital Object Identifier 10.1109/TCSI.2021.3106639

(PQC) based on alternative mathematical features has become
a fundamental research topic.

Recently, the National Institute of Standards and Tech-
nology (NIST) announced the third-round finalists, which
includes 4 key encapsulation mechanisms (KEMs) and
3 signature schemes [2]. Among these KEM schemes,
CRYSTALS-Kyber shares a common framework with the
CRYSTALS-Dilithium signature scheme [2]. This scheme also
supports efficient matrix-vector and vector-vector multiplica-
tion over a polynomial ring using the fast number-theoretic
transform (NTT) [3]. Although the optimization of NTT-based
multiplication is not a new idea and is used in countless
applications, particularly in signal processing, it is still a per-
formance bottleneck in the lattice-based cryptography imple-
mentation. Thus, several works have been done to optimize
NTT from different perspectives, such as resource utilization,
performance, efficiency, and energy consumption.

Recently, implementations of lattice-based cryptography
have been investigated on various platforms. While soft-
ware (SW) implementations offer programming capabilities,
flexibility, and a shorter design cycle, the hardware (HW)
platforms accelerate the computations and result in signif-
icantly higher throughput. Recently, there are considerable
efforts to implement cryptosystems using hardware-software
(HW/SW) co-design. This method makes the design smaller,
slower, and more controllable/programmable compared to pure
HW schemes at the cost of implementing a software-based
processor. Furthermore, a HW/SW co-design requires a shorter
design period; nevertheless, this method may not lead to the
best performance. On the other hand, pure hardware imple-
mentations can be significantly accelerated using well-known
optimization strategies, including register balancing, par-
allelization, and resource sharing, to increase the overall
throughput of the hardware architectures. The main difficulty
of this strategy is its hand-optimized design requiring a longer
time and may be achieved at the cost of losing flexibility.

To transition to PQC, we must develop hybrid cryptosys-
tems to maintain industry or government regulations, while
PQC updates will be applied thoroughly. Therefore, classical
cryptosystems, e.g. ECC, cannot be eliminated even if PQC
will significantly be developed. The instruction-set processor
builds an appropriate platform for accelerated implementation
compared to SW and HW/SW. while the architecture remains
flexible compared to highly optimized HW. Specifically,
the flexible HW architecture is a promising solution for

1549-8328 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of South Florida. Downloaded on March 02,2022 at 23:49:46 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-6921-6868
https://orcid.org/0000-0002-1311-8679
https://orcid.org/0000-0003-4513-3109

BISHEH-NIASAR et al.: INSTRUCTION-SET ACCELERATED IMPLEMENTATION OF CRYSTALS-KYBER 4649

integrating classic cryptosystems and PQC to move towards
hybrid systems.

Kyber is notable for high speed and constant-time imple-
mentations. It has to be implemented in various platforms
subject to the performance requirement. However, Kyber has
not got sufficient study in the field of hardware implemen-
tation. Therefore, investigation of the hardware implementa-
tion is required considering the advantages of FPGA-based
architectural designs to exploit parallelism, which leads to
improvements in the efficiency of the overall system. In this
paper, we implement a pure hardware design since it is faster
and could be integrated into any HW/SW co-design solutions.

A. Related Work

Software implementation of Kyber has been studied by
Botros et al. in [3], proposing a memory-efficient high-
speed implementation on Cortex-M4. Recently, several PQC
schemes have been implemented, targeting HW/SW co-design.
The work of [4] was one of the first initiatives of
post-quantum acceleration using high-level synthesis (HLS).
Furthermore, Banerjee et al. in [5] proposed a flexible ASIC
crypto-processor to support several lattice-based algorithms
into a RISC-V architecture, including Frodo, NewHope,
qTESLA, and CRYSTALS-Kyber/Dilithium. This work is
extended in [6] to show FPGA validation results. Their design
strategy targets reducing power consumption. The authors
in [7] employ the RISC-V processor integrated with a finite
field multiplier to accelerate polynomial multiplications in a
lightweight architecture of NewHope and Kyber. In [8], per-
forming vectorized modular arithmetic and NTT computations
are proposed employing RISC-V for NewHope, Kyber, and
Saber. The vector processor architecture based on the extensi-
ble RISC-V architecture has been studied in [9], which shows
a remarkable speed up occupying 979k gate equivalent (GE)
in ASIC implementations.

The pure hardware architectures of Kyber are pro-
posed in [10]–[13]. The work of [10] heavily relies on
BlockRAM primitives between components to perform arith-
metic tasks and store intermediate results. We addressed the
high-performance implementation of Kyber in our previous
work [13] as the fastest Kyber design in the literature.
The authors in [14] proposed a Kyber processor for com-
puting NTT and point-wise multiplication. An instruction-
set coprocessor for Saber is presented in [15] to design a
flexible hardware architecture using the quadratic-complexity
schoolbook polynomial multiplication algorithm. Schoolbook
polynomial multiplication is also employed in [16].

Since NTT plays a central role in lattice-based cryptog-
raphy, several hardware implementations focus on NTT from
performance, efficiency, and flexibility perspectives. The work
of [17], [18] introduced a scalable NTT architecture that
can be used for various lattice-based schemes. Furthermore,
the authors in [19] proposed a RISC-V architecture
to increase efficiency and flexibility for NTT compu-
tation used in NewHope, qTESLA, CRYSTALS-Kyber,
CRYSTALS-Dilithium, and Falcon. Additionally, Fritzmann
and Sepúlveda [20] proposed an efficient and low-power NTT,

which reduces the number of clock cycles to nlog(n) cycles.
The authors in [21] proposed a low-complexity NTT/INTT in
the architecture of NewHope-NIST.

The proposed architecture combines the NTT, INTT, and
point-wise multiplication architectures in an efficient way to
utilize significantly fewer resources and improve the overall
performance. To do so, using the Cooley-Turkey (CT) as
NTT and the Gentleman-Sande (GS) as INTT [22], [23] is
a well-known trick in the literature. Moreover, the resource
sharing technique from [5], [24] is extended by using com-
pact storage for pre-computed twiddle factors from [25] and
doubled bandwidth scheme from [14], [21] to account for the
high-performance architecture.

B. Our Contributions

To the best of our knowledge, there appear to be very few
pure hardware implementations that focus only on the Kyber
cryptosystem and make the best of all its features. This paper
proposes an efficient hardware implementation of the module
lattice-based post-quantum KEM CRYSTAL-Kyber on a
Xilinx Artix-7 FPGA (as recommended by NIST) and the
application specific integrated circuit (ASIC) platform.
Our proposed architecture provides an efficient and
high-performance set of components, including polynomial
sampling, NTT, and point-wise multiplication, to accelerate
lattice-based PQC exploiting fewer resources. The
contributions of this paper are itemized in the following:

1) We propose a new approach for implementing
a resource-efficient reconfigurable butterfly core on
FPGA. We reduce the execution time for Kyber NTT
computation from N

2 log2
N
2 + 2N to N

2 log2
N
4 by dou-

bling the transform throughput and merging the pre-
processing into NTT algorithm. We also customize a
memory addressing strategy to implement a high-speed
polynomial multiplier on the target platform.

2) We highly parallelize the operations in polynomial sam-
pling cores through tightly coupling with Keccak core
to decrease the required cycles. The performance of pro-
posed parallel scheduling for binomial sampler indicates
a significant improvement, while our rejection sampler
latency can be completely absorbed by the Keccak core.

3) Our fast and scalable architecture provides a constant-
time implementation over three different quantum
security levels. To enhance our HW accelerator from a
flexibility point of view, we design a set of customized
high-level instruction codes to run the protocol. Hence,
this set identifies the control flow of the proposed
components and provides flexibility for integration with
host processors.

4) We employ various optimization techniques to achieve
an overall optimization in terms of efficiency, including
parallelization, resource sharing, utilizing distributed
RAM and ROM blocks, which significantly improve
the area-time product. The proposed implementation is
constant-time and is resistant to known timing attacks.

The rest of the paper is organized as follows. In Sec. II, we
discuss the preliminaries. In Sec. III, our proposed algorithms

Authorized licensed use limited to: University of South Florida. Downloaded on March 02,2022 at 23:49:46 UTC from IEEE Xplore. Restrictions apply.

4650 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 68, NO. 11, NOVEMBER 2021

TABLE I

THE LIST OF SYMBOLS AND NOTATIONS USED IN THIS PAPER

TABLE II

PARAMETER SETS FOR KYBER IMPLEMENTATION [26]

and architectures are discussed. We discuss our results
and compare them to the counterparts in Sec. IV. Finally,
we conclude the paper in Sec. V.

II. PRELIMINARIES

A. Symbol Definition

To make the paper more readable, Table I provides the list
of notations used in this paper. The polynomial ring Rq =
Zq [X]/(Xn + 1) is defined over the field of Zq = Z/qZ in
which n = 2n�−1 is the dimension and q is the prime modulo.

B. Kyber Algorithms

Kyber [26] is an IND-CCA secure KEM based on hardness
assumptions over module learning with errors (Module-LWE)
[27]. NIST has recently announced the 3rd round PQC stan-
dardization candidates, and Kyber was among the chosen
algorithms as a finalist [2]. Kyber provides three post-quantum
security levels, and its parameter sets are reported in Table II.

Kyber cryptosystem uses a uniformly random ring element
ρ. The Kyber KEM is defined as follows where sk stands for
secret key, pk for public key, and ct for ciphertext:
• KeyGen(): This function returns (sk, pk) by choosing s

and e from a binomial sampling, and Â from a uniform
distribution. pk = (ρ, t̂) and sk = ŝ where t̂ = Â ◦ ŝ+ ê.

• Enc(pk, m, μ): Using seed of μ, a binomial sam-
pling is employed to choose r, e1, and e2. Further-

more, Â
T

is sampled from a uniform distribution.
Computing of u = INTT(ÂT ◦ r̂) + e1 and v =
INTT(t̂T ◦ r̂)+ e2+m construct the ciphertexts such that
ct = (Compress(u), Compress(v)).

• Dec(sk, ct): Message m is computed such that m =
Compress(v− INTT(ŝT ◦ û)), while u and v are extracted
from ct .

1) Keccak: The most performance-critical part of the soft-
ware implementation is the Keccak core based on the profiled
cycle counts presented in [3], [7]. In fact, more than half of
the reported clock cycles in SW and HW/SW benchmarking
are used to compute Keccak. However, this core can be
accelerated in a pure hardware architecture since Keccak is
a hardware-friendly design of SHA.

Fig. 1. 8-point NTT butterfly dataflow [28].

2) Sampling Units: The rejection sampling generates a
matrix from the uniform distribution, while the accepted
samples are smaller than q . The public matrix Â is sampled
directly in the NTT domain. In the updated Kyber v3 speci-
fication the rejection probability calculated as 1 − q/2�log(q)�
is increased from 3.48% to 18.7%.

Noise sampling is performed from a centered binomial
distribution (CBD) based on the subtraction of the Hamming
weights of the two η-bit chunks. Let β be the Keccak output,
the coefficients are computed as follows:

ei =
j=η−1∑

j=0

β2iη+ j −
j=η−1∑

j=0

β2iη+η+ j (1)

which turns uniformly distributed samples into binomial dis-
tribution. According to Table II, in Kyber-512 architecture,
two different samplers are implemented, i.e., η = 2 and
η = 3, while binomial sampling units in Kyber-768 and Kyber-
1024 work only with η = 2.

3) NTT and Multiplication: The centerpiece of KEM is
NTT which is a fast Fourier transform (FFT) applied in a
finite field. Fig. 1 illustrates the butterfly diagram for 8-point
NTT. Let a be a polynomial as follows:

a(x) = (a0, a1, . . . , a255) ∈ Rq (2)

NTT(a) is defined as â = (â0 + â1 X, â2 + â3 X, . . . , â254 +
â255X) such that â2i =

127∑
j=0

a2 jζ
(2br7(i)+1) j and â2i+1 =

127∑
j=0

a2 j+1ζ
(2br7(i)+1) j , where ζ = 17 is the first primitive

256-th root of unity modulo q , and br7 is the bit reversal
function. The pseudo-code of the iterative NTT is shown in
Algorithm 1. The INTT is similar to NTT, while ω−1

n is used
instead of ωn , and the resulting coefficients of a(x) is divided
by n.

However, the original computing of NTT and INTT
needs the pre-processing and the post-processing, respectively.
A point-wise multiplication includes 128 multiplications of
polynomial of degree 2 modulo X2 − ζ 2br7(i)+1.

Authorized licensed use limited to: University of South Florida. Downloaded on March 02,2022 at 23:49:46 UTC from IEEE Xplore. Restrictions apply.

BISHEH-NIASAR et al.: INSTRUCTION-SET ACCELERATED IMPLEMENTATION OF CRYSTALS-KYBER 4651

Algorithm 1 Iterative In-Place NTT Algorithm Based on
Cooley-Tukey Butterfly [25]
Input: a polynomial a(x) ∈ Zq [X]/(Xn + 1), n-th primitive
root of unity ωn ∈ Zq , n = 2l

Output: â(x) = NTTωn (a) ∈ Zq [X]/(Xn + 1)
1: â← bit-reverse(a)
2: for i form 1 to l do
3: m = 2l−i

4: for j from 0 to 2i−1 − 1 do
5: W ← ω

1+ j
n

6: for k from 0 to m − 1 do
7: T ← W · â[2 · j ·m + k + m] mod q
8: U ← â[2 · j ·m + k]
9: â[2 · j · m + k] = U + T mod q
10: â[2 · j · m + k + m] = U − T mod q
11: end for
12: end for
13: end for
14: return â(x)

Algorithm 2 Barrett Reduction Modulus q = 3, 329 [29]

Input: q = 3, 329, m = 224

q = 5, 039, x ∈ [0, q2)
Output: z = x mod q
1: u ← x · m
2: u ← u � 24
3: u ← x − u · q
4: v = u − q
5: if v ≥ 0 then
6: z = v
7: else
8: z = u
9: end if
10: return z

The matrix-vector multiplication Â ◦ ŝ in NTT domain for
Kyber-512 is shown in (3) while a point-wise multiplication
Â j,i ◦ ŝi can be performed as shown in (4).

Â ◦ ŝ =
[

Â00 Â01

Â10 Â11

]
◦

[
ŝ0
ŝ1

]

=
[

Â00 ◦ ŝ0 + Â01 ◦ ŝ1

Â10 ◦ ŝ0 + Â11 ◦ ŝ1

]
(3)

(â j,2i + â j,2i+1 X) · (ŝ2i + ŝ2i+1 X)

= (â j,2i ŝ2i + â j,2i+1ŝ2i+1ζ
2br7(i)+1)

+ (â j,2i ŝ2i+1 + â j,2i+1ŝ2i)X (4)

Operation in polynomial multiplication should be reduced
with respect to the prime q . Although in the C reference
implementation both Montgomery and Barrett reduction are
employed, from a resource sharing optimization point of view,
we focus on Barrett reduction as described in Algorithm 2 to
avoid the cost of Montgomery domain conversion.

To conclude, we outlined the most time-consuming opera-
tions that are performed during KEM. These operations are
composed of several basic computations, including hashing,

Fig. 2. Top-level architecture of Kyber KEM. The CBD core with η = 3 is
implemented only in Kyber-512.

polynomial generation, addition, subtraction, and multiplica-
tion. Dedicated architecture can be implemented to accelerate
corresponding operations in hardware.

III. HIGH-SPEED KYBER ARCHITECTURE

The top-level architecture of Kyber is designed and
presented in Fig. 2.

A. High-Level Architecture

Full HW methodology enhances the performance of archi-
tecture over a HW/SW co-design scheme at the cost of a longer
design cycle, killing the flexibility, and demands customized
data paths for different protocol-level operations. However,
using an instruction-set processor makes the design smaller,
simpler, slower, and more controllable/programmable. A cus-
tomized instruction-set can be a plausible option to achieve
fine-tuned hardware acceleration with a low to moderate logic
overhead. In order to implement a full HW architecture,
cascading computation units in a customized data flow reduces
the required latency significantly while the design becomes
inflexible. In this paper, we implement all computation blocks
in hardware; meanwhile, our implementation remains flexible
to be extended, which is vital for a fast evolving field like
PQC despite existing HW architecture.

Authorized licensed use limited to: University of South Florida. Downloaded on March 02,2022 at 23:49:46 UTC from IEEE Xplore. Restrictions apply.

4652 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 68, NO. 11, NOVEMBER 2021

TABLE III

PROPOSED INSTRUCTION FOR HASHING

To enhance the proposed architecture from a flexibility point
of view, we design 20 different customized high-level instruc-
tion codes to perform the protocol. In particular, each line of
the program ROM is 25-bit wide: 5 bits for instruction code
and two 10 bits for operand addresses. The instruction memory
is located within the controller and stores instructions for all
required operations, including arithmetic, Keccak, and various
memory operations. For example, Table III summarizes our
proposed hashing instructions for different hash types. As
one can see, our instructions can be easily used for integra-
tion with classic cryptosystems, e.g., Ed448 digital signature
scheme [30], in a hybrid architecture, which is beyond of this
work. The data memory can share data with other modules
through a databus handled by the controller. To perform KEM,
the required parameters should be pre-loaded into the memory.

B. Keccak Core

Keccak unit is configured to perform four functions, includ-
ing SHA3-256, SHA3-512, SHAKE-128, and SHAKE-256
during KEM. To design a high-performance core, we modify
the high-speed core implementation of the Keccak provided
by the Keccak team [31]. We develop a dedicated buffer
for interfacing with the Keccak core. This dedicated buffer
read/write data in 64-bit width from/to the memory unit. The
buffer length is adjusted to the most extended required data,
i.e., 1344-bit for SHAKE-128. Therefore, the buffer interfacing
needs a maximum of 21 cycles, which can be handled during
the Keccak sponge function computation, i.e., 24 cycles.

C. Rejection Sampling

Since the 64-bit data path can be matched with the Keccak
core, the rejection data path is set to 64 bits. To design a high-
performance rejection core, we implement six parallel cores in
this module fed by Keccak results. Therefore, a buffer should
be added to store the accepted samples. When the number of
buffered samples is more than three, the 64 bits of the buffer,
i.e., four accepted samples, are stored in the RAM.

As shown in Fig. 2, a 64-bit word is read from memory.
Since 64-bit input is not a multiple of a 12-bit integer, the input
buffer is extended to 80-bit to store some parts of input for the
next cycles. In the first cycle, only four samples are generated
in parallel, and 16 bits of the input are postponed to the next
cycle. In the second cycle, all six cores work on 72 bits of
the buffer, of which 16 bits are kept from the first iteration,
and 56 bits are extracted from the second input. Hence, 8 bits
of the input are postponed to concatenate with 64 bits of the
third cycle processed with six rejection cores. A specific flag
for each core shows whether the input is valid or not.

Fig. 3. Reconfigurable Butterfly Architecture.

In our optimized architecture, this unit works in parallel with
the Keccak core. Therefore, the latency for rejection sampling
is completely absorbed within the latency for Keccak core.

D. Binomial Sampling

Fig. 2 illustrates the datapath of the binomial sampler. Since
this module is inherently lightweight, we implement 16 par-
allel combinational cores. Then, 16 consecutive samples are
generated in parallel and stored in a buffer register. Although
the resulting samples, which are in [−η, η], can be presented
in 3-bit, we use 4-bit representation to simplify the addressing.
The main difference in implementing CBD core with η = 3 is
an input buffer to keep data for concatenating with the input in
the next cycles. In this mode, three consecutive 64-bit words
are read to generate 32 samples in two words.

E. Butterfly Unit

The main configurations of our butterfly unit are detailed
in Fig. 3. We employ hand-crafted resource sharing techniques
to implement this core with optimized resources. There is
only one modular multiplier in our butterfly architecture. In
addition, we use only one reduction unit in the middle of
the butterfly operation and employ a modular adder/subtractor
in the proposed configurations. Hence, implementing Mont-
gomery reduction requires more resources due to converting
back from that domain and demands more clock cycles.
Moreover, our proposed modular reduction is constant-time
and takes two cycles, as illustrated in Fig. 3. As one can see,
the architecture is pipelined to avoid any delay in butterfly
operation.

1) Speeding up the NTT/INTT: An n-point NTT requires
n/2 independent butterfly operations per stage. As a
result, the naive implementation of polynomial multiplica-
tions requires 4,352 modular multiplications, of which 2 ×
(7 × 128 + 256) = 2, 304 modular multiplications for twice
performing NTT, 5 × 128 = 640 modular multiplications for
point-wise multiplication, and 7 × 128 + 2 × 256 = 1, 408

Authorized licensed use limited to: University of South Florida. Downloaded on March 02,2022 at 23:49:46 UTC from IEEE Xplore. Restrictions apply.

BISHEH-NIASAR et al.: INSTRUCTION-SET ACCELERATED IMPLEMENTATION OF CRYSTALS-KYBER 4653

Fig. 4. The proposed address flow of our NTT memory architecture in the first two stages. (Butterfly inputs are in white and outputs are in black).

modular multiplications for INTT are required. To avoid the
bit-reverse permutation in Algorithm 1, two different butterfly
configurations, i.e., CT and GS, are required for NTT and
INTT, respectively, as follows:

f.g = INTTGS(NTTCT (f) ◦ NTTCT (g)). (5)

To be consistent with standard software implementation,
the input polynomials in normal order are transformed to the
NTT domain in bit-reverse order employing CT configuration,
while twiddle factors are absorbed in bit-reversed order. The
point-wise multiplication is performed in bit-reverse order and
transformed back using GS configuration in normal order.
However, the required twiddle factors are absorbed in the
bit-reversed order.

We observe that an efficient implementation of point multi-
plication requires 3,584 modular multiplications reducing 18%
complexity compared to the naive implementation. According
to Fig. 3, for NTT operation, the butterfly is arranged based on
CT configuration, while in INTT, it is reconfigured to match
with the GS configuration. In NTT/INTT, when the pipeline is
fulfilled, the butterfly unit can read and write two data inputs
and outputs in each clock cycle.

The most crucial bottleneck in implementing NTT core is
memory access because memory access patterns change during
each operation stage [15], [32]. Therefore, designing efficient
memory management is critical to avoid memory conflicts
and achieve high throughput. On the other hand, memory
bandwidth limits the efficiency of the butterfly operation.
Hence, we use two memory units to provide double bandwidth
during NTT operation to reduce latency. In the first round,
the results are stored in NTT RAM 0. After completing the first
round, the input coefficients are read from NTT RAM 0, and
the butterfly outputs are stored in NTT RAM 1. This scenario
is repeated for seven rounds until NTT is computed.

In this method, two coefficients are fetched from the
first RAM block at a time and fed into a butterfly unit.
Then, the butterfly output will be prepared and written into
the second RAM block after pipelined stages, i.e., five cycles.
Employing the ping-pong strategy, after 128 cycles, all coef-
ficients are fed into the butterfly core, and the five additional
cycles are required to complete a round of NTT/INTT compu-
tation. In the next round, the input coefficients are fetched from
the second RAM block, and the outputs are stored in the first
RAM block. This computation will be continued to complete
all seven required rounds of NTT. To optimize the memory
utilization in this method, different vectors are stored in the
same RAM bock. For example, the s0 and s1 are located in the

same memory, where in each address the lower column stores
s0 and the higher column stores s1 coefficients. In each clock
cycle, two addresses of memory (e.g., i and j) are read which
contains four coefficients, i.e., s0,i and s1,i from address i , and
s0, j and s1, j from address j . Then, s0,i and s0, j are fed into
the first butterfly, while s1,i and s1, j are used by the second
core. The results of these cores will be stored in the same
fashion in the second RAM. Fig. 4 shows the address flow of
our proposed NTT architecture using RAM0 and RAM1.

To implement a highly parallel architecture, we implement
multiple butterfly units matched with the number of polyno-
mial vectors in s, i.e., two, three, and four units for Kyber-512,
Kyber-768, and Kyber-1024, respectively.

Our first method reduces the NTT execution time from
N
2 log2

N
2 + 2N to N

2 log2
N
2 compared with the naive imple-

mentation. In our second method, we take advantage of the
NTT definition in the Kyber scheme to perform two indepen-
dent NTT computations for odd and even coefficients. Hence,
we employ two butterfly cores in parallel to computes NTT,
which halves execution time to N

2 log2
N
4 . In this method,

each address of memory stores two consecutive coefficients,
i.e., si,2 j and si,2 j+1. Then, two addresses of memory are fed
into two butterfly cores where contains four coefficients, i.e.,
si,2 j and si,2 j+1 from address j , and si,2k and si,2k+1from
address k of memory. So, si,2 j and si,2k are used for the first
butterfly, which are independently processed form si,2 j+1 and
si,2k+1 in the second core. Similar to the previous method,
the results should be stored similarly in the second RAM.
Although this method does not improve the efficiency due to
doubling the resources to halve the latency, it can accelerate
the computations to target high-performance architectures.

2) Optimizing Point-Wise Multiplication: To implement
an optimized high-throughput point-wise multiplication core,
we use a specific memory pattern for matrix Â coefficients.
In our proposed memory pattern for Â, four consecutive
coefficients are stored in pairs, i.e., (Â00(3), Â00(2), Â00(1),
Â00(0)), . . . ,(Â11(255), Â11(254), Â11(253), Â11(252)).
Further, two parallel butterfly cores are employed to
accelerate the polynomial multiplication. The number of the
pipelined stages is set to five to design a high-throughput
architecture for point-wise multiplication, i.e., 4-coefficient
per 5-cycle. In other words, based on detailed scheduling
and our proposed memory scheme, this design results in
higher throughput while limits the maximum operating
frequency. It is observed that the path from reduction
output to the multiplier is the critical path. Nevertheless,
increasing the pipeline latency improves the critical path

Authorized licensed use limited to: University of South Florida. Downloaded on March 02,2022 at 23:49:46 UTC from IEEE Xplore. Restrictions apply.

4654 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 68, NO. 11, NOVEMBER 2021

delay at the cost of decreasing the point-wise multiplication
throughput.

Let R̂00 = Â00◦ ŝ0; hence, based on (4), the R̂00 coefficients
can be computed as follows:

R̂00(2i) = ζi Â00(2i + 1)ŝ0(2i + 1)+ Â00(2i)ŝ0(2i) (6)

R̂00(2i + 1) = Â00(2i + 1)ŝ0(2i)+ Â00(2i)ŝ0(2i + 1) (7)

Hence, we use the first core for the R̂00(4i) and R̂00(4i+1),
and the second core works on R̂00(4i + 2) and R̂00(4i + 3).
Operations in each step is described for a core as follows:

Step 1: ŝ0(2i + 1) and ζi are read from NTT memory and
twiddle factor ROM memory to perform modular multiplica-
tion, respectively.

Step 2: ŝ0(2i) is multiplied by Â00(2i). Furthermore, the
previous multiplication result is passed into the modular
reduction unit.

Step 3: ŝ0(2i) is multiplied by Â00(2i + 1).
Step 4: The first step result after reduction is multiplied by

Â00(2i + 1).
Step 5: The second term of R̂00(2i + 1), i.e., Â00(2i)

and ŝ0(2i + 1) are multiplied. The reduced result of step 2,
i.e., Â00(2i)ŝ0(2i), is entered into the pipeline stages.

Steps 6-7: The reduction outputs, i.e., Â00(2i + 1)ŝ0(2i)
and ζi Â00(2i + 1)ŝ0(2i + 1), are entered sequentially into the
pipeline stages. Moreover, the next coefficients are read from
the memories to start from Step 1.

Step 8: The modular addition computes ζi Â00(2i+1)ŝ0(2i+
1)+ Â00(2i)ŝ0(2i). Furthermore, Â00(2i)ŝ0(2i + 1) is passed
from the reduction unit into the pipeline stages.

Step 9: The previous addition result, i.e., R̂00(2i),
is buffered in the next register, while the modular addition
computes Â00(2i + 1)ŝ0(2i)+ Â00(2i)ŝ0(2i + 1).

Step 10: The R̂00(2i) and R̂00(2i + 1), which are already
buffered in the output registers, are stored in the memory.

Since the memory Â includes four coefficients per address,
the addition between Â00 ◦ ŝ0 and Â01 ◦ ŝ1 can be performed
by a 64-bit addition. In the described scenario, one port of the
memory is always in read mode to feed the cores. The second
port is used for accumulating the results.

F. Scalability

The proposed architecture for NTT computation employing
two butterfly cores for Kyber-512 achieves high-performance
results with reasonable resource utilization. However, different
hardware resource utilization can be explored to achieve a
desirable area-time trade-off from various optimization per-
spectives. For example, to reduce the required cycles, the num-
ber of butterfly cores can be increased to 4 cores. However,
the resources can be saved if only one butterfly core is imple-
mented at the cost of increasing the total latency. It should be
noted that increasing the number of butterfly cores changes
the memory access pattern, and some modifications should be
considered to feed all cores. Hence, a high-performance design
requires complex memory access management to reduce the
access overhead.

Besides, a high-performance Keccak core occupies almost
25% of the total area. We can implement different architectures

TABLE IV

FPGA IMPLEMENTATION RESULTS FOR OUR KECCAK, BINOMIAL, AND
REJECTION CORES AND COMPARISON WITH STATE-OF-THE-ART

TABLE V

ASIC IMPLEMENTATION RESULTS FOR OUR KECCAK, BINOMIAL, AND
REJECTION CORES AND COMPARISON WITH STATE-OF-THE-ART

of this core and achieve scalability through area versus latency
trade-offs.

This architecture can be easily scaled to match the upper
or lower security level. To scale up the architecture, the same
structure can be applied, while the number of butterfly cores
should increase. Moreover, the depth of Data RAM and
RAM(A) needs to be increased. The main difference between
these architectures is using two separate CBD circuits for
Kyber-512, which causes more resources to provide a ded-
icated sampler. Hence, a general core utilizing the most up
security level resources with additional CBD core for η = 3
can be used to provide a scalable Kyber cryptosystem.

IV. EXPERIMENTAL RESULTS AND COMPARISON

In this section, we provide implementation results and com-
pare them to the counterparts available in the open literature.
Along with the fact that the implementations employ different
platforms, a fair and meaningful discussion or comparison of
different designs and implementations with previous work is
not straightforward. Nevertheless, we like to put our results in
the context with existing implementations to allow the reader
a quick overview of other designs and architectures.

A. Results for Keccak and Polynomial Sampling

Tables IV and V report the required FPGA and ASIC
resources and latency specifications for the Keccak, the CBD,

Authorized licensed use limited to: University of South Florida. Downloaded on March 02,2022 at 23:49:46 UTC from IEEE Xplore. Restrictions apply.

BISHEH-NIASAR et al.: INSTRUCTION-SET ACCELERATED IMPLEMENTATION OF CRYSTALS-KYBER 4655

TABLE VI

FPGA IMPLEMENTATION RESULTS FOR OUR NTT CORE AND COMPARISON WITH STATE-OF-THE-ART (n = 256)

Fig. 5. Proposed Scheduling for Sampling Units in Kyber-512.

and rejection sampling cores in our design and other state-
of-the-art implementations. As one can see, the software
implementation of Keccak runs in thousands of clock cycles,
which can be significantly accelerated while implemented
in hardware. A lightweight Keccak core presented in [34]
uses 359 LUTs to perform a round of Keccak-f [1600]
in 1,665 cycles, while in [35], the authors proposed an
architecture performing in 12 clock cycles at the cost of
almost 10k LUTs. In our proposed design, a Keccak-f [1600]
is performed in 24 cycles at the cost of 4.4k LUTs or 24k GEs.
Additionally, decreasing the latency of the Keccak core does
not considerably improve the performance due to interfacing
cost, which requires 21 clock cycles for a 1,344-bit output.

The reported results show that the performance of our
binomial and rejection sampler outperform sampling units of
previous works [6], [8], [9]. Our proposed implementation
takes advantage of parallel computations between our sam-
pling units and Keccak core. Our binomial sampler requires
68 clock cycles for generating four polynomials of degree
256, i.e., 1,024 samples. The rejection sampler in our pro-
posed scheme works simultaneously with the Keccak core.
Therefore, its required latency for generating matrix Â with
1,024 samples, i.e., 432 clock cycles, is totally absorbed. This
unit, with 16 parallel cores, occupies almost 2k LUTs in FPGA
or 13k GEs on ASIC platform.

Fig. 5 shows the proposed scheduling for sampler units
in Kyber-512. Rejection sampler works parallel by Keccak
core, and therefore its latency, i.e., 108 cycles, is absorbed
completely. The accepted samples will be stored in RAM(A),
shown in Fig. 2. For a binomial sampling of a polynomial of
degree 256 with η = 3, two rounds of Keccak are required.
Each round of Keccak result is processed in 17 cycles by
the binomial sampler. However, processing the second round
result cannot be parallelized by the next CBD due to memory
bandwidth limitation.

TABLE VII

ASIC RESULTS FOR NTT AND COMPARISON WITH STATE-OF-THE-ART

B. Results for the Butterfly Core
Tables VI and VII report the required FPGA and

ASIC hardware resources and latency specifications for
our proposed butterfly unit in different configurations,
i.e., NTT, INTT, and point-wise multiplication, including
other state-of-the-art implementations. We remark that a more
technology-independent measurement is the required cycle.
Thus, for efficiency comparison between different proposed
NTT architectures, efficiency can be computed by the required
clock cycles×area.

Our pipelined architecture employing our first method
requires 133 cycles for performing one round of 256-point
NTT; hence, a full NTT with seven rounds requires 940 cycles.
Computing INTT requires 263 additional clock cycles for
post-processing. Moreover, point-wise multiplication between
two polynomials of degree 256 requires 1,289 clock cycles.
Our proposed architecture is significantly smaller compared to
previous best works occupying 360 LUTs, 145 FFs, 187 Slices,
3 DSPs, and 2 BRAMs.

Besides, our second proposed method requires 474 cycles
for performing a full NTT employing two parallel butterfly
cores. Hence, this method results in a significant speedup
by halving the cycle count compared to other NTT imple-
mentations for Kyber. Although the efficiency of both meth-
ods is the same, a trade-off between area and time can be
achieved.

The authors in [19] presented a flexible NTT architecture
over RISC-V, which consumes significantly greater cycles.
In [7], 3-layer merged NTT for NewHope was proposed. The
work of [24] and [13] implemented 2-layer merged NTT using
the KRED algorithm, while this reduction algorithm needs
a special prime form. In [10], Montgomery reduction was
employed. From a resource sharing perspective, we use a

Authorized licensed use limited to: University of South Florida. Downloaded on March 02,2022 at 23:49:46 UTC from IEEE Xplore. Restrictions apply.

4656 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 68, NO. 11, NOVEMBER 2021

TABLE VIII

FPGA IMPLEMENTATION RESULTS AND COMPARISON WITH STATE-OF-THE-ART

general reduction method that can be configured for different
prime values in a hybrid cryptosystem. Moreover, in [37]
and [21], the bandwidth doubling technique is used for feeding
the processing units. Particularly, in this work, we propose a
compact reconfigurable architecture to accelerate the polyno-
mial multiplication, which is enhanced by borrowing the com-
pact memory implementation [25], resource sharing technique
[5], [24], and doubled bandwidth scheme [14], [21].

In comparison to the SW implementations, our first method
achieves a speedup factor of 8.2×, 7.7×, and 21.6× for NTT,
INTT, and point-wise multiplication, respectively. Our sec-
ond proposed method can also accelerate 16.3×, 15.2×, and
21.6× NTT, INTT, and point-wise multiplication, respectively.
However, our proposed architecture decrease 26% (15%) the
performance compared to [13] ([38]) in the HW platform,
while the NTT core designed in [13] employs 4 butterfly units.
It should be noted that although the design presented in [9] is
faster implementing a vectorized butterfly unit, it consumes
512k GE logic gates, which is several times bigger than
our proposed design. Hence, our design outperforms state-
of-the-art ASIC implementations with at least 11.6× better
Area×Cycles.

Note that the NTT can also be parallelized by sampling
unit to reduce the total latency; however, applying this par-
allelization in this work results in diminishing the flexibility
and increasing the required memory units. To achieve both
high speed and instruction-level flexibility, we do not follow
this methodology such that the design remains flexible to add
or modify new instructions.

TABLE IX

ASIC RESULTS AND COMPARISON WITH STATE-OF-THE-ART

C. FPGA Implementations

Our proposed architecture for different NIST security levels
is synthesized with Xilinx Vivado 2019.2 and implemented
on a Xilinx Artix XC7A100T-3 FPGA. All given results are
obtained after place-and-route (PAR). We report the area,
timing, and area-time trade-off (number of LUT×time in μs)
results of the design in Table VIII. In some previous works,
each DSP is considered equivalent to 100 Slices [39]. How-
ever, no single element of FPGA can be accurately expressed
in terms of other elements; hence, DSP and BRAM are not
considered in A. To have a fair comparison, we evaluate the

Authorized licensed use limited to: University of South Florida. Downloaded on March 02,2022 at 23:49:46 UTC from IEEE Xplore. Restrictions apply.

BISHEH-NIASAR et al.: INSTRUCTION-SET ACCELERATED IMPLEMENTATION OF CRYSTALS-KYBER 4657

TABLE X

COMPARISONS WITH EXISTING FPGA-BASED PQC IMPLEMENTATIONS OF CCA-SECURE KEM SCHEMES IN NIST SECURITY LEVEL 5

performance of the proposed design on the state-of-the-art
targeted platforms, which changes performance by a factor
of 1.35×, 1.4×, and 0.68× on Zynq-7000, Virtex-7, and
Virtex-6 compared to Artix-7.

We compare our architecture results to the best SW design
on the ARM Cortex-M4 chip, as well as the HW imple-
mentations and the HW/SW co-design. The total latency is
the summation of key encapsulation and key decapsulation
(Encaps + Decaps), as the key generation can be done offline.
As one can see, for NIST level 1 security, our proposed scheme
occupies 18k LUTs, 5k FFs, 6 DSPs, and 15 BRAMs. It also
runs at 115 MHz and performs the whole Kyber protocol
in 148 μs. Our design achieves a speedup factor of 83.9×
and 74.1× compared to the leading counterpart in SW and
HW/SW designs. Furthermore, our architecture employing
the various optimization techniques is highly efficient, with
area-time trade-off being about 98% improved compared to
[6]. It is to be noted that the HW/SW co-design [6]–[9] is
a complete design for all Kyber security levels. The same
improvement can be observed in the remaining security levels.
Compared to HW architecture, our proposed design consumes
5× time than our previous work [13], resulting in a greater
A×T by a factor of 7. Our design is also 2× slower and 2.5×
larger compared to [12]. However, this overhead comes to
keep the customized instruction-set design flexible compared
to highly parallel [13] or highly compact architectures [12].
The hardware specially designed to cater a scheme may fail in
flexibility; thereby, this work aims to achieve both high speed
and flexibility for Kyber to support extension for building a
hybrid cryptosystem.

Although our implementations are constant-time, investi-
gating side-channel analysis attacks will part of our future
work.

D. ASIC Results

The ASIC implementation results of our architectures based
on the 65-nm TSMC cell library using Synopsys Design
Compiler are presented in this section. All the designs are
synthesized with a 5ns clock period. Table IX reports the
maximum clock frequency and the amount of logic cells
for our proposed designs and state-of-the-art implementations.
As one can see, the placed-and-routed design of our proposed
Kyber-1024 consists of 104 kGE for logic and 190 KB SRAM
for memory, which shows a significant speedup compared to
previous works.

E. Comparison With Other Implementations

In Table X, the comparison between our proposed architec-
ture with some existing PQC hardware implementations tar-

geting NIST security level 5 is reported. It should be noted that
due to the varying techniques of different FPGA generations,
a fair comparison is actually not accurately possible.

In [15], a fast architecture of Saber is proposed using
the high-speed instruction-set coprocessor on a Xilinx
ZCU102 board. In this work, a non-NTT-based approach is
used, taking advantage of the module power of 2 in the Saber
scheme, which results in 153 μs time execution. Employing
multiply-and-accumulate units provides the required trade-off
between area and time for different applications. However,
this design needs more hardware resources compared to ours,
which results in 1.1× area-time product.

We also compare our work with FrodoKEM-1344 based
on standard learning with error problem. To the best of our
knowledge, there is not a pure HW work for FrodoKEM tar-
geting security level 5; hence, the results in [6] used a HW/SW
approach are reported. As one can see, the FrodoKEM scheme
requires a considerable cycle compared to other PQC schemes
due to performing expensive matrix-vector multiplications.
Our implementation of Kyber-1024 is almost 26,000 times
faster, occupying almost the same resources compared to [6].

SIKE [40] as an isogeny-based PQC scheme requires
significantly more DSP resources to design parallel Mont-
gomery multiplier architecture over a large prime. Although
this scheme outperforms FrodoKEM implementation, our
Kyber-1024 design shows 155 times better area-time product
compared to this scheme.

It should be noted that there is a large body of work on opti-
mizing PQC schemes on a variety of platforms. For example,
the work of [21] and [28] propose the NewHope on a Xilinx
XC7Z020 and Zynq-7000, respectively. The architecture of
NewHope is very similar to that of Kyber; however, this
scheme has not been selected to continue into the third round
of NIST. In [21], a low-complexity architecture of NewHope
is introduced, having a competitive performance compared to
our design. Hence, taking advantage of this architecture to
improve the total performance of Kyber is kept for future
works.

Although one of the drawbacks of various post-quantum
cryptosystems is requiring larger key sizes and more com-
putational power than the current pre-quantum algorithms,
the efficiency of our proposed implementation already has
performance levels comparable to or even significantly better
than pre-quantum algorithms [30], [41], [42].

V. CONCLUSION

The threat from large-scale quantum computers is real,
and we need to act now as the deployment, integration,
and migration to quantum-safe security systems take several

Authorized licensed use limited to: University of South Florida. Downloaded on March 02,2022 at 23:49:46 UTC from IEEE Xplore. Restrictions apply.

4658 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 68, NO. 11, NOVEMBER 2021

years. In this paper, we have presented an instruction-set
post-quantum cryptosystem for CRYSTALS-Kyber. Our pro-
posed architecture is synthesized for a Xilinx Artix-7 FPGA
(which is a NIST recommended tool for prototype) prototype
and an ASIC. Implementing efficient components, including
sampling cores, NTT, and point-wise multiplication architec-
tures, increases the performance compared to the state-of-
the-art SW and HW/SW implementations. More specifically,
our proposed architecture performs Kyber-512, Kyber-768,
and Kyber-1024 protocols in only 148, 209, and 286 μs
on a Artix-7 FPGA, respectively. Our future work will
focus on the side-channel resistance and the development of
countermeasures against such attacks.

ACKNOWLEDGMENT

The authors would like to thank the reviewers for their
comments.

REFERENCES

[1] P. W. Shor, “Algorithms for quantum computation: Discrete logarithms
and factoring,” in Proc. 35th Annu. Symp. Found. Comput. Sci., Santa Fe,
NM, USA, Nov. 1994, pp. 124–134.

[2] Status Report on the Second Round of the NIST Post-Quantum
Cryptography Standardization Process, Nat. Inst. Standards Technol.,
Gaithersburg, MD, USA, 2020.

[3] L. Botros, M. J. Kannwischer, and P. Schwabe, “Memory-efficient high-
speed implementation of Kyber on Cortex-M4,” in Proc. 11th Int. Conf.
Cryptol., Rabat, Morocco, Jul. 2019, pp. 209–228, 2019.

[4] K. Basu, D. Soni, M. Nabeel, and R. Karri, “NIST post-quantum
cryptography a hardware evaluation study,” in Proc. IACR, 2019, p. 47.

[5] U. Banerjee, T. S. Ukyab, and A. P. Chandrakasan, “Sapphire:
A configurable crypto-processor for post-quantum lattice-based proto-
cols,” in Proc. IACR, vol. 4, 2019, pp. 17–61.

[6] U. Banerjee, T. S. Ukyab, and A. P. Chandrakasan, “Sapphire:
A configurable crypto-processor for post-quantum lattice-based proto-
cols (extended version),” in Proc. IACR, 2019, p. 1140.

[7] E. Alkim, H. Evkan, N. Lahr, R. Niederhagen, and R. Petri, “ISA
extensions for finite field arithmetic accelerating Kyber and NewHope
on RISC-V,” in Proc. IACR, vol. 3, 2020, pp. 219–242.

[8] T. Fritzmann, G. Sigl, and J. Sepúlveda, “RISQ-V: Tightly coupled
RISC-V accelerators for post-quantum cryptography,” in Proc. IACR,
Aug. 2020, pp. 239–280.

[9] G. Xin et al., “VPQC: A domain-specific vector processor for
post-quantum cryptography based on RISC-V architecture,” IEEE
Trans. Circuits Syst. I, Reg. Papers, vol. 67, no. 8, pp. 2672–2684,
Aug. 2020.

[10] Y. Huang, M. Huang, Z. Lei, and J. Wu, “A pure hardware implemen-
tation of CRYSTALS-KYBER PQC algorithm through resource reuse,”
IEICE Electron. Exp., vol. 17, no. 17, 2020, Art. no. 20200234.

[11] V. B. Dang, F. Farahmand, M. Andrzejczak, K. Mohajerani,
D. T. Nguyen, and K. Gaj, “Implementation and benchmarking of round
2 candidates in the NIST post-quantum cryptography standardization
process using hardware and software/hardware co-design approaches,”
in Proc. IACR Cryptol. Arch., 2020, p. 795.

[12] Y. Xing and S. Li, “A compact hardware implementation of CCA-
secure key exchange mechanism CRYSTALS-KYBER on FPGA,” in
Proc. IACR, Feb. 2021, pp. 328–356.

[13] M. Bisheh-Niasar, R. Azarderakhsh, and M. Mozaffari-Kermani,
“High-speed NTT-based polynomial multiplication accelerator for
CRYSTALS-Kyber post-quantum cryptography,” Proc. IACR, 2021,
p. 563.

[14] Z. Chen, Y. Ma, T. Chen, J. Lin, and J. Jing, “Towards efficient kyber on
FPGAs: A processor for vector of polynomials,” in Proc. 25th Asia South
Pacific Design Autom. Conf. (ASP-DAC), Beijing, China, Jan. 2020,
pp. 247–252.

[15] S. Sinha Roy and A. Basso, “High-speed instruction-set coprocessor
for lattice-based key encapsulation mechanism: Saber in hardware,” in
Proc. IACR Trans. Cryptograph. Hardw. Embedded Syst., Aug. 2020,
pp. 443–466.

[16] Y. Zhang, C. Wang, D. E. S. Kundi, A. Khalid, M. O’Neill, and W. Liu,
“An efficient and parallel R-LWE cryptoprocessor,” IEEE Trans. Circuits
Syst. II, Exp. Briefs, vol. 67, no. 5, pp. 886–890, May 2020.

[17] A. C. Mert, E. Karabulut, E. Ozturk, E. Savas, M. Becchi, and A. Aysu,
“A flexible and scalable NTT hardware: Applications from homomor-
phically encrypted deep learning to post-quantum cryptography,” in
Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE), Grenoble, France,
Mar. 2020, pp. 346–351.

[18] A. C. Mert, E. Karabulut, E. Ozturk, E. Savas, and A. Aysu, “An
extensive study of flexible design methods for the number theoretic
transform,” IEEE Trans. Comput., early access, Aug. 19, 2020, doi:
10.1109/TC.2020.3017930.

[19] E. Karabulut and A. Aysu, “RANTT: A RISC-V architecture extension
for the number theoretic transform,” in Proc. 30th Int. Conf. Field-
Program. Log. Appl. (FPL), Aug. 2020, pp. 26–32.

[20] T. Fritzmann and J. Sepulveda, “Efficient and flexible low-power NTT
for lattice-based cryptography,” in Proc. IEEE Int. Symp. Hardw. Ori-
ented Secur. Trust (HOST), McLean, VA, USA, May 2019, pp. 141–150.

[21] N. Zhang, B. Yang, C. Chen, S. Yin, S. Wei, and L. Liu, “Highly
efficient architecture of NewHope-NIST on FPGA using low-complexity
NTT/INTT,” in Proc. IACR, Mar. 2020, pp. 49–72.

[22] T. Pöppelmann, T. Oder, and T. Güneysu, “High-performance ideal
lattice-based cryptography on 8-bit ATxmega microcontrollers,” in Proc.
LATINCRYPT, Guadalajara, Mexico, Aug. 2015, pp. 346–365.

[23] P. Longa and M. Naehrig, “Speeding up the number theoretic transform
for faster ideal lattice-based cryptography,” in Proc. 15th Int. Conf.,
Milan, Italy, Nov. 2016, pp. 124–139.

[24] P.-C. Kuo et al., “High performance post-quantum key exchange on
FPGAs,” in Proc. IACR, 2017, p. 690.

[25] C. Du and G. Bai, “Towards efficient polynomial multiplication for
lattice-based cryptography,” in Proc. IEEE Int. Symp. Circuits Syst.
(ISCAS), Montréal, QC, Canada, May 2016, pp. 1178–1181.

[26] R. Avanzi et al., “CRYSTALSKyber: Algorithm specification and sup-
porting documentation (version 3.0). submission to the NIST post-
quantum cryptography standardization project,” NIST Post-Quantum
Cryptogr. Standardization Project, Tech. Rep., 2020.

[27] J. Bos et al., “CRYSTALS-Kyber: A CCA-secure module-lattice-based
KEM,” in Proc. IEEE Eur. Symp. Secur. Privacy (EuroS&P), London,
U.K., Apr. 2018, pp. 353–367.

[28] Y. Xing and S. Li, “An efficient implementation of the NewHope key
exchange on FPGAs,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 67,
no. 3, pp. 866–878, Mar. 2020.

[29] P. Barrett, “Implementing the Rivest Shamir and Adleman public key
encryption algorithm on a standard digital signal processor,” in Proc.
CRYPTO, Santa Barbara, CA, USA, 1986, pp. 311–323.

[30] M. Bisheh-Niasar, R. Azarderakhsh, and M. M. Kermani, “Area-time
efficient hardware architecture for signature based on Ed448,” IEEE
Trans. Circuits Syst. II, Exp. Briefs, vol. 68, no. 8, pp. 2942–2946,
Aug. 2021.

[31] G. Bertoni, J. Daemen, S. Hoffert, M. Peeters, and G. V. Assche,
“Keccak in VHDL,” Keccak Team, Tech. Rep., 2020.

[32] S. S. Roy, F. Vercauteren, N. Mentens, D. D. Chen, and I. Verbauwhede,
“Compact ring-LWE cryptoprocessor,” in Proc. Cryptograph. Hardw.
Embedded Syst., Busan, South Korea, Sep. 2014, pp. 371–391.

[33] K. Stoffelen, “Efficient cryptography on the RISC-V architecture,” in
Proc. LATINCRYPT, Santiago de Chile, Chile, Oct. 2019, pp. 323–340.

[34] B. Jungk and M. Stottinger, “Hobbit—Smaller but faster than a dwarf:
Revisiting lightweight SHA-3 FPGA implementations,” in Proc. Int.
Conf. ReConFigurable Comput., Cancun, Mexico, Nov. 2016, pp. 1–7.

[35] T. Fritzmann, U. Sharif, D. Muller-Gritschneder, C. Reinbrecht,
U. Schlichtmann, and J. Sepulveda, “Towards reliable and secure post-
quantum co-processors based on RISC-V,” in Proc. Design, Autom. Test
Eur. Conf. Exhib. (DATE), Florence, Italy, Mar. 2019, pp. 1148–1153.

[36] M. J. Kannwischer, J. Rijneveld, P. Schwabe, and K. Stoffelen,
“PQM4: Post-quantum crypto library for the ARM Cortex-M4,” PQM4,
Tech. Rep., 2018.

[37] Z. Chen, Y. Ma, T. Chen, J. Lin, and J. Jing, “High-performance area-
efficient polynomial ring processor for CRYSTALS-kyber on FPGAs,”
Integration, vol. 78, pp. 25–35, May 2021.

[38] C. Zhang et al., “Towards efficient hardware implementation of NTT
for kyber on FPGAs,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS),
May 2021, pp. 1–5.

[39] M. Bisheh-Niasar, R. Azarderakhsh, and M. Mozaffari-Kermani,
“Cryptographic accelerators for digital signature based on Ed25519,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 29, no. 7,
pp. 1297–1305, Jul. 2021.

Authorized licensed use limited to: University of South Florida. Downloaded on March 02,2022 at 23:49:46 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TC.2020.3017930

BISHEH-NIASAR et al.: INSTRUCTION-SET ACCELERATED IMPLEMENTATION OF CRYSTALS-KYBER 4659

[40] R. Elkhatib, R. Azarderakhsh, and M. Mozaffari-Kermani, “Highly
optimized Montgomery multiplier for SIKE primes on FPGA,” in Proc.
IEEE 27th Symp. Comput. Arithmetic (ARITH), Portland, OR, USA,
Jun. 2020, pp. 64–71.

[41] M. B. Niasar, R. El Khatib, R. Azarderakhsh, and
M. Mozaffari-Kermani, “Fast, small, and area-time efficient
architectures for key-exchange on Curve25519,” in Proc. IEEE 27th
Symp. Comput. Arithmetic (ARITH), Portland, OR, USA, Jun. 2020,
pp. 72–79.

[42] M. B. Niasar, R. Azarderakhsh, and M. M. Kermani, “Efficient hardware
implementations for elliptic curve cryptography over Curve448,” in
Proc. 21st Int. Conf. Cryptol., Indocrypt, India, Dec. 2020, pp. 228–247.

Mojtaba Bisheh-Niasar (Student Member, IEEE)
received the B.Sc. degree from Amirkabir Univer-
sity of Technology in 2011 and the M.Sc. degree
in electrical engineering from Iran University of
Science and Technology in 2015. He is currently
pursuing the Ph.D. degree in computer engineering
with Florida Atlantic University under the supervi-
sion of Dr. Azarderakhsh. He is also a Research
Assistant with I-SENSE Lab. He is a Research Intern
in azure hardware security architecture (AHSA)
at Microsoft, Redmond, Washington. His research

interests include applied cryptography, post-quantum cryptography, and
efficient implementation of cryptographic algorithms.

Reza Azarderakhsh (Member, IEEE) received the
Ph.D. degree in electrical and computer engineering
from Western University in 2011. He has worked at
the Center for Applied Cryptographic Research and
the Department of Combinatorics and Optimization,
University of Waterloo. He is currently an Asso-
ciate Professor with the Department of Electrical
and Computer Engineering, Florida Atlantic Uni-
versity. His current research interests include finite
field and its application, elliptic curve cryptogra-
phy, isogenies on elliptic curves, and lattice-based

post-quantum cryptography. He was a recipient of the NSERC Post-Doctoral
Research Fellowship. He is serving as an Associate Editor for the IEEE
TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS.

Mehran Mozaffari-Kermani (Senior Member,
IEEE) received the B.Sc. degree from the University
of Tehran, Iran, and the M.E.Sc. and Ph.D. degrees
from the University of Western Ontario, London,
Canada, in 2007 and 2011, respectively. In 2012,
he joined the Department of Electrical Engineer-
ing, Princeton University, NJ, USA, as an NSERC
Post-Doctoral Research Fellow. From 2013 to 2017,
he was an Assistant Professor with Rochester Insti-
tute of Technology and has joined the Department
of Computer Science and Engineering, University

of South Florida, in 2017, where he is currently an Associate Professor.
He has been the TPC Member for a number of conferences, including
HOST (publications chair), CCS (publications chair), DAC, DATE, RFIDSec,
LightSec, WAIFI, FDTC, and DFT. He is serving as an Associate Editor for
the IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI)
SYSTEMS, the Transactions on Embedded Computing Systems (ACM), and the
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS.
He has been a Guest Editor of the IEEE TRANSACTIONS ON DEPENDABLE

AND SECURE COMPUTING, the IEEE/ACM TRANSACTIONS ON COMPU-
TATIONAL BIOLOGY AND BIOINFORMATICS, and the IEEE TRANSACTIONS

ON EMERGING TOPICS IN COMPUTING for special issues on security.

Authorized licensed use limited to: University of South Florida. Downloaded on March 02,2022 at 23:49:46 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

