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Abstract— The Supersingular Isogeny Key Encapsulation
mechanism (SIKE) is the only post-quantum key encapsulation
protocol based on elliptic curves and isogeny maps between them.
Despite the quantum security of the protocol, SIKE requires
a greater number of clock cycles and hence does not provide
competitive timing and energy consumption results. However, it is
more attractive offering the smallest public key as well as cipher-
text sizes, which considering the impact of the communication
costs and storage of the keys could become a good fit for resource-
constrained devices. In this work, we present the fastest practical
implementation of SIKE, targeting the platform Cortex-M4 based
on the ARMv7-M architecture. We performed our measurements
on the STM32F407VG microcontroller for benchmarking the
clock cycles and on Nucleo-F411RE attached to X-NUCLEO-
LPM01A (Power Shield) for measuring the energy consumption
of the protocol. The low-level finite field arithmetic operations
play main role in determining the efficiency of SIKE. Therefore,
we mainly focus on their optimization and apply them to all
NIST-required security levels. Our SIKEp434 implementation for
NIST security level 1 is about 22.97% faster than the counter-
parts appeared in Seo et al. (2020), where for the SIKEp503,
SIKEp610 and SIKEp751 the speedup reaches 21.10%, 19.21%
and 19.08%. Finally, we benchmark energy consumption and
report optimization of up to 11.9% depending on the NIST
security level implementation.

Index Terms— Supersingular isogeny key encapsulation
(SIKE), post-quantum cryptography (PQC), ARM Cortex-M4.

I. INTRODUCTION

THE increasing capabilities of quantum computers are the
motivation behind post-quantum cryptography (PQC) [2].

Due to their data unit - the q-bit, and the principle of
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superposition, they can solve the hard mathematical problems
underlying classical cryptography in a much shorter time than
today’s computers. Shor’s algorithm [3] proves that factoriza-
tion and elliptic curve discrete logarithm problems, the base
of the widely used cryptosystems RSA and ECC, can be
broken in polynomial time when quantum computers equipped
with enough q-bits are developed, instead of exponential when
classical computers are used.

Due to the rising threat of quantum computers, the National
Institute of Standards and Technology (NIST) [4] initiated a
standardization process for post-quantum secure algorithms
in 2016. Between the years 2017 and 2020 Round 1 and
Round 2 of the competition were completed and 7 finalists
were announced, which are further evaluated for initial stan-
dardization, and another 8 alternate candidates that are still
going through optimization process and will possibly form
part of the Round 3 finalists. The last round started in the
year 2020 and still assesses the candidates and their constant
improvements. The final round of the competition evaluates
two main groups - 9 Key Encapsulation Mechanisms (KEMs)
and 6 Digital Signature Algorithms (DSAs). The main advan-
tage of the supersingular elliptic curve-based cryptosystem,
forming part of the alternate group of KEMs, is the compact
size of the public keys and ciphertexts (i.e., 330 and 346 bytes
for the NIST security level 1 implementation), which ensures
insignificant communication latency. Taking into consideration
the total timing - the computation cost and the data trans-
mission, the size of the exchanged information results to be
crucial, especially for the IoT and low-end real-time systems,
where the traffic of data is enormous, and the fast information
transmission is crucial for the functionality of the system.

The Supersingular Isogeny Key Encapsulation (SIKE) [5]
scheme is based on the Supersingular Isogeny Diffie-Hellman
(SIDH) algorithm proposed in 2011 by Jao and De Feo [6].
Both protocols rely on computations over elliptic curves
similar, but more sophisticated, than the widely used Elliptic
Curve Cryptography (ECC). Although several performance
optimizations of ECC were proposed in the last years, targeting
software and hardware [7], [8]–[10] in the era of quantum
computers this cryptosystem is not going to ensure securely
transmitted information. To provide post-quantum resistance,
SIDH and SIKE schemes are based on secret isogeny maps
between supersingular elliptic curves, grouped in different iso-
morphic classes. These collections of curves are characterized
by the j−invariant value of their elements, which is used as a
unique identifier for each one of these classes. SIDH, however,
is vulnerable to active attacks when one of the parties uses a

1549-8328 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of South Florida. Downloaded on September 30,2021 at 00:07:04 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-6921-6868
https://orcid.org/0000-0003-4513-3109


4130 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 68, NO. 10, OCTOBER 2021

static key, allowing the recovery of the static key with minimal
computation effort [11], [12]. The attack makes SIDH hard
to adapt in the IND-CCA category, which leads to the SIKE
proposal [5], introduced as an IND-CCA algorithm, applying
a variant [13] of Fujisaki-Okamoto (FO) [14] transform which
gives up on the static settings of the protocol to make, at best,
semi-static settings possible, converting CPA-security public
key encryption (PKE) into CCA-security KEM.

Since the start of the NIST standardization effort, several
research groups have centered their work on the improvement
of SIKE, aiming to reach efficiency in the computational
time of the algorithm. In [1], [15], [16] and [17] the authors
propose several strategies, targeting ARMv7-M, ARMv7-A
and ARMv8 ARM-based architectures, reporting significant
speedup of the algorithm timing. Several hardware implemen-
tations were proposed as well in [18], [19], [20] targeting the
Xilinx Virtex 7 platform.

Contribution: In this work we report speed record results for
the implementation of SIKE, targeting the resource-restricted
processor ARM Cortex-M4. Our contributions are itemized as
follows:

• We propose an efficient implementation design for mod-
ular addition, based on continuous alternation between
addition/subtraction blocks, reducing the number of
carry/borrow catchers/activators. We propose the imple-
mentation of a carry/borrow catcher/activator using a
single register for both, by introducing new and reduced
instruction set for storing and activating the carry/borrow
flag. The newly proposed design releases one register,
which permits to increase the size of the computational
block. Moreover, we take advantage of the special form
of the primes used in SIKE by adding a constant to the
modulus value which converts it to a number ending by
several all-zero words, eliminating multiple subtraction
instructions per modular addition.

• We propose novel implementation designs for the
multi-precision multiplication, squaring and reduction
operations. We use the Floating-Point Register (FPR)
set as Level 1 (L1) cache memory, usually integrated
into the CPU, where we store partially computed results
or operand values. This allows us to considerably
reduce the expensive memory access instructions. More-
over, it allows us to introduce new designs for the
before-mentioned multi-precision operations, modifying
completely the instruction sequence of the inner mul-
tiplication loop, and the entire squaring and reduction
execution flow, providing new and significantly more
efficient implementation designs.

• We propose to cleverly exploit the special form of the
prime numbers used in SIKE for different NIST security
levels and propose new techniques for reducing the num-
ber of memory accesses along with completely modifying
the implementation design of the arithmetic operations,
therefore, significantly decreasing the clock cycles and
the energy consumption of the protocol. Using these novel
strategies, we provide implementation speedup between
19% and 23% for all the NIST security levels of SIKE,
where the maximum improvement is obtained for the

Fig. 1. SIKE algorithm [5]. H , K and J denote hash functions.

prime SIKEp434 with 22.97% better performance com-
pared to the counterparts in [1].

We have made our code available at the git hub repository
https://github.com/manastasova/SIKE_PhD/.

II. SUPERSINGULAR ISOGENY KEY ENCAPSULATION

AND TARGET ARCHITECTURE

This section presents a profound description of the steps
needed for the Supersingular Isogeny Key Encapsulation
mechanism. Additionally, we present an overview of the main
characteristics of the target architecture of our implementation
design.

A. Supersingular Isogeny Key Encapsulation

The Supersingular Isogeny Key Encapsulation mechanism
was classified as part of the alternate candidates after the
end of NIST Round 2 post-quantum standardization process,
thus it is yet to be further optimized besides the considerable
improvements so far.

Detailed graphical representation of the steps performed by
both parties during the execution of the cryptography protocol
is shown in Figure 1. To perform the protocol Alice and Bob
start from public supersingular elliptic curve E0/Fp2 , where
the prime number p has the form of �eA

A �eB
B · f ± 1. For

efficiency purposes, the values of �A and �B are set to 2 and 3,
respectively, and f = 1. Depending on the NIST security
level of the implementation, the value of eA and eB vary. The
basis points {PA, Q A} and {PB , QB} that generate E0[2eA ]
and E0[3eB ] form part of the public parameter set.

During the key generation phase Bob forms his pair of
public and private keys as a random integer (not multiple
of 3eB ) and a set of image elliptic curve EB and the image
points φB(PA), φB(Q A), respectively.
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During the key encapsulation phase Alice uses Bob’s public
key together with a random message m to generate her
secret key as r = H (m||pkB) mod2eA and applies it to
the public parameters to find her secret isogeny φA and an
image curve E A, enabling her to generate her public key
as pkA = {E A, φA(PB), φA(QB)}. Later, she uses Bob’s
projection points along with her secret key r to find a second
secret isogeny φ�

A and apply it on Bob’s image curve to finally
end up on EB A. Alice generates a ciphertext composed of
her public key and the random message m masked by the
j−invariant of the curve EB A. She finally computes the value
of the shared secret as the hash of the ciphertext appended to
the message m.

During the key decapsulation phase Bob attempts to com-
pute the value of the integer r and to reconstruct the same
isogeny map that Alice used to reach the second image curve
EB A. He starts by revealing the value of the masked secret
message m by finding the value of the masking j−invariant.
He uses Alice’s public key and his secret key to find an isogeny
map φ�

B leading him to the image curve E AB , belonging to
the same isomorphic class as EB A, thus featuring the same
j−invariant. Bob reverses the XOR masking function and uses
the value of m� to find Alice’s secret key. He then simulates
Alice’s isogeny map to construct her public key, which he uses
to confirm the secure communication with Alice by comparing
it with her original public key. Eventually, he calculates the
shared secret as J (m�||c) in the case of matching public keys
and using a random value, preventing further communication
with Alice, in case the keys did not coincide.

B. ARMv7-M Architecture

The high demand for ARM-based devices converts
it into the most widely used Reduced Instruction Set
Computer (RISC) design. Featuring highly optimized power,
performance, and area consumption, the ARMv7-M architec-
ture profile is quickly integrated into the industry, forming
main part of the Internet of Things world. The variety of sys-
tems based on ARMv7-M, requiring secure data transmission,
instigates NIST to announce the platform Cortex-M4 as the
main target for cryptographic optimizations in the scenario
of low-end devices, suiting the needs of embedded and real-
time systems. This work is targeting the NIST recommended
microcontroller STM32F4 with an integrated Floating-Point
Unit based on the FPU extension FPv4-SP.

The platform features 16 32-bit General Purpose Registers
(GPRs) – R0-R15, where 14 of them are accessible by the
programmer – R0-R12 and R14. The use of the register R13
and R15 is reserved for the value of the Stack Pointer (SP)
and the Program Counter (PC), respectively. The value of R14
which keeps the value of the Link Register (LR) may be used
when previously stored into the memory. Hence, there are
448 bits provided by the core register set, which given the
size of the cryptography operands of several hundreds of bits,
does not ensure the most optimal implementation, due to the
requirement of repetitive load/store instructions. The Cortex-
M4 instruction set requires one clock cycle per instruction
except for LDR and STR, which double that number if not

TABLE I

ARMV7-M INSTRUCTION SET FOR MEMORY ACCESS, DATA
TRANSFER BETWEEN GPR AND FPR SETS AND MAC INSTRUCTIONS.

THE REQUIRED CCS PER INSTRUCTION ARE EXPRESSED IN

FUNCTION OF THE NUMBER OF REGISTERS n INVOLVED IN

THE INSTRUCTION. FOR MORE DETAILS REFER TO [22]

properly scheduled. However the nature of the post-quantum
secure algorithm does not always allow to optimize the
scheduling of the instructions, thus we consider the worst-case
scenario where LDR and STR take 2 clock cycles.

The platform offers a larger set of Floating-Point Registers
(FPRs) which is entirely accessible by the programmer. The
32 32-bit registers S0-S31 ensure another 1024 bits which,
if used as a L1 cache, require a single clock cycle per
32-bit data access [21]. The data transfer between GPRs and
FPRs promises instant information retrieval, replacing the slow
memory accesses by data shift among different register types,
using the stall-free VMOV instruction. Table I shows in detail
the memory access and data relocation instructions used in this
work together with the number of clock cycles per instruction.

Besides the load-store and move instructions, used to tem-
porarily store data, the ARMv7-M architecture features the
extremely optimal Multiply ACcumulate (MAC) instructions,
which perform several mathematical operations in a single
clock cycle. Even more, the size of the destination value length
is doubled by using two, instead of only one, GPRs, storing
the least and most significant 32-bits of the result, respectively.
Table I shows a detailed view of the MAC instructions and
their functionality.

III. PROPOSED FINITE FIELD ARITHMETIC

COMPUTATIONS

The arithmetic operations required for the execution of
SIKE are in a pyramid-like structure, where the topmost level
comprises SIKE complex isogeny computations, whereas the
bottom-most is composed of finite field arithmetic operations,
whose optimization ensures impact on the overall performance
of the cryptosystem.

In this section, we describe the new implementation strate-
gies that we applied to the finite field operations to consid-
erably decrease the number of clock cycles needed for the
execution of SIKE.

A. Modular Field Addition

Modular addition consists of adding two operands A
and B and reducing the result modulo p supposing it
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Algorithm 1 Modular Addition Algorithm With 4 Word
Operands, Presenting the Carry/Borrow Propagation When
Applying the Add/Sub Block Alternation Technique
1. (borrow0, T0) = A0 − p0
2. Result0 = T0 + B0
3. (carry0, T1) = A1 + B1
4. Result1 = T1 − p1 − borrow0
5. (borrow1, T2) = A2 − p2
6. Result2 = T2 + B2 + carry0
7. T3 = A3 + B3
8. (borrow2, Result3) = T3 − p3 − borrow1

exceeds the finite field. This arithmetic operation requires
one addition and one conditional subtraction. However,
the development of a cryptosystem that is secure against
side-channel attacks requires constant-time execution of
the operations independently of the operand values. For
robust schemes, the modular addition is hence formed
as (((A + B) − p) +(mask&p)). Supposing that the
value of A + B exceeds the finite field, it should be brought
back into Fp by subtracting p. Thus, the final addition of p
should be revoked which is achieved by equaling mask =
0 × 0. Otherwise, (A + B) − p will result in a negative
value and the subtracted p should be added back by making
mask = 0×FFFFFFFF. This masking strategy ensures the
constant time performance of the arithmetic operation.

The viability of modular addition of long integers into
cryptography instigates researchers to continuously propose
optimizations. In [23] the authors provide an efficient assem-
bly implementation of the modular addition and subtraction,
replacing the previous portable, however, slow C code imple-
mentation, and present an overall speedup of SIKE. Further,
in [1] the authors suggest a completely new design, introducing
the idea of operand blocks, each one consisting of four 32-bit
words. Using this technique, A + B − p is performed by
applying addition followed by subtraction to each 128-bit
block consecutively. The carry/borrow flag values produced
after each block operation is kept into (GPRs) so that it
can be later propagated to the following block, exploiting a
novel carry/borrow catcher/activator technique. In this work,
we propose three novel ideas for outperforming the previous
implementations of modular addition, while we keep the idea
of operand blocking.

First, we propose to alternate the sequence of additions
and subtractions through the operand blocks. This novel tech-
nique decreases the number of carry/borrow catcher/activator
operations. In particular, the implementation of A + B − p,
supposing A and B consist of four blocks each, where we
denote the least significant blocks as A0, B0 and the most
significant as A3, B3, is described in Algorithm 1. The consec-
utive execution of line 2, 3 and 6, 7 eliminates the need of carry
catcher and activator since the ADC(S) instructions ensure the
carry flag propagation, similarly to the consecutive execution
of line 4, 5 eliminating the need of borrow catcher and
activator using SBC(S). Figure 2 graphically illustrates the
carry/borrow propagation between consecutive add/sub blocks,

Fig. 2. Proposed modular addition design with optimized Carry/Borrow
Catcher (CBC) by an alternating sequence of add/sub blocks. The k least
significant subtractions (k depends on the prime), marked in gray, are
eliminated by replacing P = 2p with P’ = 2p + 2.

where we avoid the use of carry/borrow catcher/activator.
It is important to note that, despite the alternation of the
addition/subtraction operations, the last performed instruction
should be always a subtraction, since the final borrow deter-
mines the mask value for the last addition with mask&p.

The block operation alternations, in addition, allow freeing
one extra register, which we use to increase the size of
the block from 4 to 5 (or 6 if part of the most significant
block) 32-bit values, therefore, to reduce the number of
blocks. Figure 2 illustrates the modular addition performed
for p503 when our design is applied, where only 3 addi-
tion/subtraction blocks are needed, instead of 4 needed in [1].
Our design allows exploiting the advantage of consecutive
memory accessing using LDM which requires N + 1 clock
cycles, with N the number of loaded words, reducing the
overhead clock cycles from 4 to 3. Even though insignificant
to the modular addition, the invocation ratio of the operation
turns to have an effect on the overall SIKE execution time.

Second, we propose new instruction set for the implemen-
tation of the carry/borrow catcher/activator. We use the SBC
and RSBC instructions for carry/borrow catcher and activator,
respectively. For the implementation of the former, we subtract
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Fig. 3. Optimized instruction set for carry/borrow catcher/activator using
SBC and RSBC instructions.

the carry/borrow catcher register (CBC) registers from itself
with borrow propagation activated. Therefore, in case the flag
was active the result will be 0×FFFFFFFF, otherwise, will
equal 0 × 0. For the implementation of the latter, we subtract
this value from 0 × 0, where the flag will be activated if the
value of the carry/borrow catcher register was 0×FFFFFFFF
and deactivated if it was 0 ×0. Both, the carry/borrow catcher
and activator require a single instruction, therefore, contribute
to the speedup of the modular addition. The implementation
is presented graphically in Figure 3. Furthermore, we applied
the reduced carry/borrow catcher/activator instruction set to
the modular subtraction where we also report performance
improvement.

Third, we propose even further optimization for the modular
addition by considering the special form of the prime numbers
used in SIKE. The prime p has the form of 2eA 3eB −1 where,
due to the value of the exponents, it forms a number with
multiple 32−bit all-one least significant words. Furthermore,
the modular reduction value in SIKE is P = 2 p (with the
purpose of saving the last subtraction when Montgomery
reduction is performed), where the ×2 operation simply results
in shifting the number 1 bit to the left. Therefore, the last
words of P consist of multiple 1�s and a 0 at the end.
We noticed that if we add 2 to the value of P, P’ =
P + 2, we obtain multiple all-zero least significant words.
Thus, when performing (A + B) − P’ several SBC(S)
instructions may be skipped, significantly reducing the number
of instructions per modular addition. We apply this strategy by
performing the following steps:

1) T = (A + B) − P’
2) T + ((MASK&P) + 2)

The proposed design is graphically represented in Figure 2,
where the least significant k skipped subtractions are marked
by gray color, where k depends on the SIKE security level
implementation. For step 2) the value of P’ should be added
back to the partial result supposing T is negative, otherwise
we need to add back the value of 2 that we have added
to P. By first masking P, we obtain P or 0 × 0 to which
we accumulate the value of 2 to get the final result.

Our three novel proposals for the implementation of modu-
lar addition, which we apply to the subtraction when possible,
result in outperformance of the previous development designs
and significantly improve the overall execution time of SIKE.
Moreover, since the proposed implementation is completely
scalable, it is adapted to all the four SIKE primes. The results
obtained are shown in Table II in clock cycles, where we show
the improvement in percentage. We report 28.46%, 27.37%,

TABLE II

COMPARISON BETWEEN THE SIKE FINITE FIELD ARITHMETIC
OPERATIONS MEASURED ON STM32F407VG CPU@24MHz

28.4% and 28.42% of speedup, respectively for p434, p503,
p610 and p751 compared to the previous best-reported results.
We applied the optimizations to the modular subtraction where
we obtained up to 19.18% speedup for the different SIKE
security implementations.

B. Multi-Precision Multiplication, Squaring, and Reduction

The friendly form of the SIKE primes allows the use of
Montgomery multiplication, which performs the multiplication
and the reduction, in an efficient and optimized way. It consists
of two multi-precision multiplications and addition, where the
sequence of instructions and the reduction of memory accesses
play crucial role in optimizing the execution time. The mirror
shape of the squaring allows even further improvements of the
design which was first suggested in [1].

In this section we propose novel implementation strategies
for minimizing the number of clock cycles required for the
multi-precision multiplication, squaring and reduction func-
tions. The scalability of our design allows the adaption of
the implementation to different lengths; therefore, we imple-
mented all the four different security levels of SIKE and
observed a significant speedup for all of them.

1) Multi-Precision Multiplication: The multi-precision mul-
tiplication invocation rate inside the cryptographic protocol is
distinguishable high since the computationally expensive oper-
ations (i.e., inversion) are replaced by several multiplications.
As a result, several research groups focus on optimization
strategies lessening the execution time of the subroutine.

The implementation shown in [23] is based on the Karatsuba
multiplication [26], with time complexity of O(nlog23), where
instead of performing one multiplication of operand sizes n,
three half-size multiplications are completed together with
several additions/subtractions. Furthermore, in [27] the authors
implement a 2-level Karatsuba multiplication resulting in
several 64×64-bit multiplications instead of one 256×256-bit
operation. Later, given the architecture of the target processor,
the use of the low-cost Multiply ACcumulate (MAC) instruc-
tions is proposed in [28] and is integrated into the multi-
precision multiplication design. The use of MAC instructions,
combined with a reduced number of memory accesses, leads
to the most efficient implementation algorithms for the target
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TABLE III

INSTRUCTIONS AND CLOCK CYCLES FOR MEMORY ACCESS AND
REGISTER MOVE OPERATIONS, CONSIDERING DIFFERENT

IMPLEMENTATION DESIGNS – OPERAND SCANNING (OS),
OPERAND CACHING (OC) AND REFINED-OPERAND CACHING

(R-OC). FOR (V)LDM AND (V)STM THE NUMBER OF
ACCESSED REGISTERS IS SHOWN IN PARENTHESES

platform ARM Cortex-M4, named Operand Caching (OC) [28]
and its variants. As the name stands, it is focused on the reuse
of operands once they are loaded into the register set. This
strategy reduces the load and store instructions by introducing
the concept of rows, where the size of the row is defined
as the number of consecutive accumulative multiplications
performed per column. Further improvements of the algorithm
are presented by Seo and Kim [29] and et al. [30], where the
Consecutive Operand Caching and the Full Operand Caching
implementations are proposed, aiming to further optimize the
memory accesses by re-configuring the instruction flow.

In [7] the use of the MAC instruction UMAAL is evalu-
ated aiming to eliminate the need of carry bit propagation
through the limbs of the partial result value. The set of MAC
instruction is also considered in [31], where the combination
of UMLAL and UMAAL instructions is presented. However,
the use of UMLAL requires the initialization of the register
that keeps the high 32 bits, which introduces one additional
clock cycle. In [25] the authors propose an optimized strat-
egy, integrating the instruction UMULL, which handles the
initialization of the register while the 32×32-bit accumulative
multiplication is performed. Later, the design is even further
improved in [1], where the authors implement an efficient
multiplication strategy for all SIKE primes. They propose
novel management of the register set for caching four words
per operand, naming it Refined-Operand Caching (R-OC)
where they increase the size of the rows in comparison to
the previous OC implementations.

This work integrates the FPR set to store the partial results
or the value of the operands, depending on the length of
the prime number used in a given SIKE security level. The
idea for using FPRs was first integrated into the context of
post-quantum cryptography by Alkim et al. in [32], however,
was focused on NTRU lattice-base polynomial multiplication.
We apply the use of FPRs inside the context of SIKE and the
multi-precision multiplication, squaring and reduction, which

allowed the implementation of a new design of the arithmetic
operations, reordering the instruction flow and changing the
execution pattern.

For representing the multiplication we use rhombus notation
as shown in Figure 4, where each diagonal line shows a 32-bit
limb from the operand A or B. The limbs from both operands
are shown as A[ k ], B[ k ], where k ∈ {n − 1, . . . , 2, 1, 0}
with 0 being the least significant 32-bit word. The number of
limbs n varies based on the number of bits needed to represent
an integer m and the processor word size w, thus n = �m/w�.
The number of words needed for the multiplication result is
double, where R = (R[ 2n − 1 ],…,R[ 1 ],R[ 0 ]) =
A · B. In the multiplication rhombus notation every dot shows
a 32 × 32-bit multiplication, where the operands are the two
32-bit limbs, represented by the crossing diagonals. Finally,
the bold vertical lines show the addition of all the partial 32×
32-bit multiplication products.

In this work, we use of FPR set for the storage of partial
results or the operand values, which allows new combinatorics
solution to the sequence of performed operations during the
multiplication, squaring and reduction and results in decreased
execution time of the algorithm. Based on the length of the
operands, however, we use two distinct multi-precision multi-
plication optimization strategies, where the former introduces
a completely new multiplication design and the latter keeps
the instruction flow presented in [1], however integrating the
use of FPRs. The changes applied, depending on the prime
size of SIKE, are described as follows:

a) SIKEp503: The prime p503 requires 512 bits per
operand, where the formula n = �m/w� indicates the need
for 16 words to keep them, consequently, both multiplication
operands A and B can fit in 32 32 − bi t registers. We have
noticed that the register requirement coincides with the number
of FPRs, thus we decided to keep the operand values inside
the FPR set for instant access to the data where in Figure 4
we present the operand values stores into the register set in
black color and the actual FPRs used to tore these values in red
color. This strategy eliminates all memory accesses for loading
the operands and transforms the idea of Operand Caching
since we place the entire operand values into the emulated
L1 cache memory region, where they are accessed by the
VMOV instruction taking a single clock cycle.

The scarce GPR set of the processor ARM Cortex-M4
allows a maximum of 4 words per operand cached in the
register set. Therefore, constant reload is needed, accessing
the memory which introduces an overhead cycle. By storing
operands into the FPR set, the access to the needed data
becomes cheaper and the size of the row (the size of the inner
loop of the multi-precision multiplication) can be increased
without increasing the cost of data access. In the implementa-
tion design proposed in [1], each column inside a row requires
one new operand limb to be loaded into the GPRs. In our
design, we propose to increase the row size by re-accessing
a limb and then accessing the newly required one, therefore,
we access two operand limbs per partially computed column.
Even though we double the number of accessed 32-bit words,
the cost per partial column remains the same since the data is
previously stored in the emulated L1 memory, replacing the
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Algorithm 2 Management of the GPRs When the VMOV
Instruction Is Used for the Increased Row Size in the Case of 5
Consecutive Accumulative Multiplications
VLDM R0, {S0-S15} //S0-S15 <– A0-A15
VLDM R1, {S16-S31} //S16-S31 <– B0-B15
….
UMAAL R0, R14, R2, R6 //A2*B9
UMAAL R0, R12, R3, R7 //A3*B8
UMAAL R0, R11, R4, R8 //A4*B7
VMOV R8, S22 //R6 <– B6
UMAAL R0, R10, R5, R8 //A5*B6
VMOV R8, S26 //R6 <– B10
UMAAL R0, R9, R1, R8 //A1*B10
STR R0, [SP, #4*11]
LDR R0, [SP, #4*12]
UMAAL R0, R14, R2, R8 //A2*B10
UMAAL R0, R12, R3, R6 //A3*B9
UMAAL R0, R11, R4, R7 //A4*B8
VMOV R7, S23 //R7 <– B7
UMAAL R0, R10, R5, R7 //A5*B7
VMOV R7, S27 //R7 <– B11
UMAAL R0, R9, R1, R7 //A1*B11
….

load instruction with a data transfer (move) between the two
different register sets.

Algorithm 2 shows the instruction flow managing the previ-
ously displaced data re-access and the access to the new 32-bit
word. We reserve 5 GPRs for the operand A, therefore, we only
have 3 left for the operand B. For row size of 5, we need to
perform 5 accumulative multiplications among 5 words from
both operands and store the partial result. To obtain the missing
2 words from B we constantly switch the GPR values, where
the access of the newly needed word of B replaces a value
that should be re-accessed in the next column computation.
Thus, each iteration of the inner multiplication loop requires
to access one new limb of B and to re-access the previously
displaced one. This imposes a constant of 2 CCs per column
for data accessing when using the VMOV instruction. Therefore,
our new 5 × 5-limb multiplication referred as multiplication
p503 in Figure 4 has the same cost as the 4×4 multiplication,
proposed in [1], where the LDR instruction is used.

The optimization observed is a result of the increased row
size, thus, decreased number of rows, leading to fewer partial
results which have to be stored/loaded to/from the stack due to
the processor architecture and the limited number of registers.
Figure 4 shows the implementation of our new implementation
strategy, where the row size is increased from 4 to 5, therefore
ends up with only 3 rows and therefore 2 partial results – after
row number one and after row number 2. Thus, we reduce the
number of accesses to the stack. The proposed implementation
significantly outperforms the previous designs.

b) SIKEp434, SIKEp610 and SIKEp751: Given the
length of the prime numbers p434, p610 and p751,
the operands are either too short or too long to fit inside
the FPR set, which imposes either unused registers or lack

Fig. 4. Rhombus representation of SIKE multiplication for all four primes.
The implementations of p434, p610 and p751 use FPR set as L1 cache for
the partial results, avoiding the use of the stack. The p503 multiplier uses the
FPR set to store the operands A and B and hence reduces the cost of accesses
to their limbs, resulting in reduction of the number of rows.

of them where additional access to the memory is required.
Therefore, for the multiplication implementation of the given
primes, we decided to use the FPR set as a L1 cache, storing
the partial values, produced after the row computation.

Depending on the resulting size, where the number of FPRs
is not enough to store the result, the stack is used to store the
last 8 and 16 limbs, for p610 and p751, respectively.

The length of p434 requires n = �m/w� = �434/32� = 14
words to store each operand and using maximum row size
of 4 × 4 results in 4 rows – 1 of size 2 × 2 and 3 of size
4 × 4. Therefore, the idea of increasing the size of the rows
and decreasing their number would eliminate only the first-row
partial result which is of length 4 and will have an insignificant
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impact of only 8 clock cycles. Thus, we use the emulated cache
for the partial result, where we noticed that the multi-precision
multiplication result is a 28-word value with another 4 FPRs
which remain free. We have proposed to store the memory
address of the operand A and B into 2 of these registers so
that we completely eliminate the stack accesses.

The length of the primes requires n = 20 and n = 24 words,
for p610 and p751, respectively. The large size of the operands
does not allow to store them into the FPR set like the
p503 implementation, therefore we are not able to eliminate all
LDR instructions that access the operands and thus would not
obtain the best performance when loading the operands into
the FPRs. For the large primes p610 and p751 we use the FPR
set to store the partial result, similarly to p434 implementation,
which reduces the stack usage. However, the resulting values,
consisting of 40 and 48 words respectively cannot fit into the
FPR set entirely. We propose a solution that uses the FPRs for
the storage of the partial results of the first four rows for both
primes and then uses the stack for the last 8 or 16 words,
computed in the last row(s), as presented in Figure 4. For
further improvement, we store the least significant 32 words
of the result into the FPRs and most significant n − 32 words
into the stack, where n = �m/w�, which optimizes the stack
usage, since the following reduction uses the least significant
n words as an operand for the second multiplication operation
and these limbs should be loaded much more often, while the
n most significant words are accessed fewer times.

2) Multi-Precision Squaring: Squaring is a special case of
multiplication where the operands A and B are the same,
therefore, for the implementation of this arithmetic operation
several further optimizations can be applied. Since the two
operands have the same value the number of memory access
instructions can be significantly reduced if the limbs are prop-
erly reused. The rhombus representation of the multiplication
can be split into three parts: upper part, where the operands
of the multiplication are different (i.e., A[i ]A[ j ]), middle part,
where the operands of the multiplications are the same (i.e.,
A[i ]A[i ]), and bottom part, which produces the same results as
the upper part with reverse indexes (i.e., A[ j ]A[i ]). Therefore,
while performing the squaring, the computation of the bottom
part can be eliminated by doubling the result of the upper part.

The previous squaring strategies include the Scott and
Szczechowiak’s [33] implementation, which applies Operand
Scanning multiplication technique to the inner squaring loop
dividing the procedure into 2 blocks – one performing only
doubled multiplications and another performing doubled mul-
tiplication accumulated to a square product in each column of
operation. Later, in [34] the design is improved by separating
the execution of the latter block type – square accumulation
is performed after the multiplication is completed. Later,
in [35] Seo et al. introduce the Sliding Block Doubling (SBD),
replacing the underlying multiplication by Product Scanning
and eliminating the operand doubling by left shifting. Further
improvement is introduced in [7] by applying the Operand
Caching strategy to the inner multiplication loop, therefore
reducing the register pressure of the former implementation
designs. In [31] the authors propose a new execution sequence,
which is particular for 256−bit integers, therefore, cannot be

Fig. 5. Squaring implementations for all the SIKE primes. The sub-squaring
blocks are denoted with iF and iB and the sub-multiplications blocks – with
iM-F and iM-B.

adopted to the SIKE operand sizes. In [1] the authors propose
an efficient implementation, defining 2 block types – sub-
multiplication type, following their Refined-Operand Caching
multiplication optimizations and sub-squaring type, where they
use the SBD technique. Moreover, they precompute the double
of the operand and use the stack to save its value.

In this work, we propose a new implementation strategy
for multi-precision squaring which reorders the instructions
to optimize the memory accesses. Our design, similar to the
proposed multiplication, uses the FPR set to store the partial
values after the computation of each row. Moreover, we load
words of operand A in the FPR set like the p503 multiplication
strategy, which saves several memory accesses for the load of
the operand and reduces the stack usage.

We separate our implementation into 2 different block
types – sub-squaring and sub-multiplication type similar to [1].
We perform the sub-squaring implementation block at the
beginning and at the end of each row, where its middle part
consists of sub-multiplication blocks. In Figure 5 we repre-
sent the sub-squaring blocks as iFront (iF) and iBack (iB),
with i being the number of the row. We denote the sub-
multiplication block, which follows the multiplication tech-
nique, described in [1] and referred to as a Refined-Operand
Caching (R-OC), as iMiddle-Front (iM-F) and iMiddle-Back
(iM-B). These rows are not computing words with equivalent
indexes, therefore, the only difference from the multiplication
R-OC technique is the operand doubling. However, since the
doubled values in iM-B are reused from the iM-F block,
the ×2 operations in iM-B there are avoided, optimizing the
implementation.

Our main contribution related to the squaring function is
the new design of the row shapes and the reordering of the
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execution flow. We start our implementation from the bottom
of the half-rhombus, as shown in Figure 5. Every row starts
with a sub-squaring block, which like the design in [33]
accumulates the squared values with the multiplication product
column-by-column. We first calculate the doubled operand
2 × A[i ], then the multiplication of the limbs (2× A[i ])× A[ j ]
and last compute the value of the squaring A[i ] × A[i ].
We reuse the doubled limbs for the computation of the follow-
ing columns and keep these doubled values inside the GPR set.
Therefore, we need to reload the value of the limbs to use them
in their non-doubled form. However, due to our implementa-
tion strategy, using the FPR set as a L1 cache, the reloading
requires 1 clock cycle. We observed that, opposite to the
implementation in [1], it is cheaper to load the non-doubled
value inside the GPR set than to compute the doubled values,
store them into the stack and later obtain them back from
the memory due to the memory access instructions overhead.
The sub-multiplication block implements the Refined-Operand
Caching multiplication strategy. In Figure 5 the squaring
implementation of all SIKE primes can be observed.

3) Modular Reduction: SIKE uses Montgomery multi-
plication since the reduction step takes advantage of the
Montgomery-friendly prime numbers, used for the four
different NIST security levels. The operation is impacted by
the techniques used in the design of the multi-precision mul-
tiplication since the reduction requires another multiplication
together with an addition operation. The Montgomery-friendly
form of the primes ensures that the least significant k opera-
tions from the multiplication and accumulation are skipped,
since they consist of ×0 multiplications, with k = {6, 7,
9, 11} for NIST security levels 1, 2, 3, and 5, respectively,
pointed out by Costello et al. in [36]. The Montgomery
reduction algorithm is described in Algorithm 3, where the
Montgomery-friendly SIKE primes make P � = 1, the division
results – right shifting, since R is power of 2 and the last
subtraction – omitted, since SIKE is implemented in mod 2 p,
specifically to avoid the given operation.

Optimizations considering the design of the reduction
implementation were proposed in [37] by the Hybrid
Montgomery multiplication method, targeting small 8-bit
AVR microcontroller, showing significant improvement in the
timing results. In [15], Seo et al. proposed even further
acceleration of the Hybrid Scanning method, benefiting from
the MAC instructions in the SISD implementation of the
algorithm. In [1], the authors propose further improvements,
increasing the row size up to 4, similar to the multiplication,
where they report performance records.

In this work, we propose a novel implementation of the
reduction algorithm, which optimizes the number of rows
and, therefore, significantly reduces the number of memory
accesses. Our reorganization of the sequence of instructions
along with the usage of the FPR set considerably outperforms
the previous best implementation. In continuation, we describe
the two optimization strategies that allowed us to retrieve the
mentioned results.

First, we apply a novel instruction flow design shown
in Figure 6. Our proposal approaches the multiplication M · Q
starting from the least significant non-zero values of M and

Fig. 6. Reduction for the primes p434, p503, p610 and p751. The front part
of a row calculation is denoted by iF and the back with iB.

Algorithm 3 Montgomery Multiplication [38]

INPUT: M, R, M’ = -M−1 (mod R), A, B
OUTPUT: A · B · R−1 (mod M)
1. T = A · B
2. Q = T · M’ (mod R)
3. T = (T + Q · M) / R
4. IF (T > Q) RETURN T − M
5. RETURN T

multiplies them with the values of Q, where M is the modulus
value and Q denotes the least significant n words from the
result T = A · B as shown in Algorithm 3. The Montgomery
reduction requires the accumulation of T with the resulting
value from M · Q, before a word from Q can be used for the
following multiplications. Therefore, the values of Q[0]-Q[k]
can be directly used due to the M all-zero words, where k is
the index of the most significant all-zero word of M . The
first m computed words of the reduction, where m is the
size of the first row, accumulated with the previous value of
T [k + 1]-T [k + m], allow the use of Q[0]-Q[k + m] during
the computation of the first row. Therefore, we reconfigured
the execution flow of the rows by modifying the direction of
computation. Starting with the first row, shown in Figure 6,
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TABLE IV

COMPARISON BETWEEN THE SIKE FINITE FIELD ARITHMETIC
OPERATIONS MEASURED ON STM32F407

we use m words from M and load words from Q until we
reach the (k +m)th limb. After we reach T [k +m], we change
the direction of the execution flow and start loading words
from M , while we reuse the last loaded m words from Q.
The following rows implement the same idea, where although
it appears that the rows are interrupted in the middle, the
same row size is conserved as well as the same number
of operand words are required and loaded. We mark these
rows as iF and iB in Figure 6, where i is the number of
the row, where the tail iF and the beginning iB form m
accumulative 32 × 32-bit multiplications. Implementing the
proposed strategy we decrease the number of rows with 2
(4 → 2), 2 (4 → 2), 2 (5 → 3) and 3 (6 → 3), respectively
for p434, p503, p610 and p751 which significantly optimizes
the design.

Second, we exploit the FPR set similarly to the multiplica-
tion. We reduce the row size if needed by using the described
technique in Section III-B.1, where for NIST security level 1
and 3 primes we have kept the row size to 4 (where for
p610 we observed more efficient implementation when we
decrease one of the row sizes to 3), however, for NIST level 2
and 5 we have modified them as presented in Figure 6.
Furthermore, since the Montgomery reduction requires the
accumulation of the Q · M multiplication result to the value of
the temporary T = A · B multiplication, we carefully choose
where to store the value of T . The value of Q is the least
significant n words from T , therefore the value of the low
part of T is accessed significantly more times than its high
part required only for accumulating the result. To increase the
performance result we have placed the least significant value
of T into the FPRs which ensures one clock cycle per VMOV
instruction, whereas we have placed the extra 8 or 16 words
for p610 and p751, respectively in the stack, due to their low
access rate.

We present the obtained number of clock cycles per modular
multiplication and squaring and report the percentage improve-
ment in Table IV. We observe 23.94%, 22.03%, 19.42%
and 18.39% of speedup for the modular multiplication and
33.18%, 28.32%, 23.41% and 25.31% of improvement for
the modular squaring operations for SIKEp434, SIKEp503,
SIKEp610 and SIKEp751, respectively. It should be noted that

the improvement of the multi-precision operations is impacted
by the length of the operands since it determines the size and
the length of the rows that can be formed in the multiplication,
squaring and reduction functions. Thus, the most significant
speedup is observed for the primes which allow the most
maximized partition of the rows for all the multi-precision
operations.

IV. PERFORMANCE EVALUATION

In this section, we present the results that we obtained after
applying the proposed optimization strategies. We performed
our experiments, targeting the processor Cortex-M4 using the
boards STM32F407 Discovery Kit, recommended by NIST
as a low-end device, for benchmarking the clock cycles and
the memory usage. We use the benchmarking framework
pqm4 [39], running it @24MHz, which sets the processor
to zero wait state, eliminating the instruction fetching stalls.
We used the NUCLEO-F411RE and X-NUCLEO-LPM01A
for measuring the energy consumption, basing our experiment
on the PQPS [40] benchmarking framework. We present the
first work of the NIST PQC standardization process Round
3 on SIKE, thus the comparison includes SIKE Round 2 per-
formance. However, the similarities between both SIKE rounds
implementations ensure no impact on the performance.

The pyramid-like computational structure of the SIKE
operations ensures that the improvement of the underlying
finite field operations will result in a speedup of the entire
algorithm. In Table II and Table IV we present the clock
cycles required for the execution of each one of the finite
field operations reported before and after our proposed design.
We improved the field addition by around 28% for all the SIKE
primes the subtraction from 16% to 19%. The improvements
show the importance of careful instruction management when
hand-coded assembly implementation is designed. The alter-
nating add/sub blocks, the new carry/borrow catcher/activator
reduced instruction set and the constant added to the prime
resulting in all-zero least significant words resulted in consid-
erable improvements of the execution timing of the modular
addition and subtraction operations. Despite that the invocation
rate of these functions cannot be compared to the multipli-
cation and reduction impact on the protocol performance, the
considerable improvements in the before-mentioned finite field
operations resulted in significant overall speedup. In Table IV
we show that the multi-precision multiplication outperforms
the previous implementation by 18.39% up to 23.94%, and
the multi-precision squaring shows up to 33.18% better results,
in comparison to the best previously reported results.

Our implementations show significantly better results in
comparison to the previous fastest implementation strate-
gies [1]. In Table V, we have measured and reported the
clock cycles required for the execution of the SIKE algo-
rithm. We have obtained a speedup of 22.97%, 21.10%,
19.21% and 19.08% for the primes SIKEp434, SIKEp503,
SIKEp610 and SIKEp751, respectively. Furthermore, we
observe slight improvement of the memory usage reported
in Table V, due to the FPR set integration into the implemen-
tation design which reduces the pressure on the stack. The
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TABLE V

REPORT OF SIKE MEMORY USAGE (GREEN DENOTES MEMORY USAGE
DECREASE AND RED – MEMORY USAGE INCREASE), TIMING

AND SPEEDUP ON STM32F407

observed performance and memory improvements are based
on the optimizations of the low-level underlying finite field
operations, where the speedup of the modular addition, multi-
precision multiplication, squaring and reduction along with
their memory usage result in an overall improvement of the
protocol. The impact of the operations on the performance
depends mainly on their invocation rate. The modular mul-
tiplication has the most significant effect on the algorithm
execution time whereas the squaring shows less impact. How-
ever, the considerable optimization results for all the arithmetic
operations compensate in the case of low invocation rate, thus,
the overall performance of the protocol is a result of the
cumulative effect of the execution timing of all routines. The
observed performance speedup is most considerable for NIST
security level 1 and slightly decreases with each following
level with smallest improvement rate of 19.08% for SIKEp751.
When considering the implementation design proposed in [25]
we observe an improvement of 44.68%, 44.43% and 35,25%
for SIKEp434, SIKEp503 and SIKEp751, respectively.

Low energy consumption is main objective of the low-
end processors, dedicated to the IoT world. They aim to be
efficient not only in execution time but also to show small
use of resources. We measured the energy consumption using
the NUCLEO-F411RE board running at 96 MHz. Table VI,
reports the results we have obtained. The energy consumption
is decreased with 15 m J , 14 m J , 20 m J and 34m J for
the SIKEp434, SIKEp503, SIKEp610 and SIKEp751, respec-
tively. The results correspond to 11.9%, 7.8%, 5.7% and 5.9%
of improvement of the energy consumption for the four prime
numbers, where it should be noted that for battery-powered
devices energy consumption is the most critical parameter.

After the integration of the proposed arithmetic operations
into SIKE, we have compared the NIST PQC finalists and
alternate candidates in Table VII, measuring the performance

TABLE VI

SIKE ENERGY CONSUMPTION MEASURED ON
NUCLEO-F4 AND X-NUCLEO-LPM

TABLE VII

STM32F407 REPORT OF PQC ROUND 3 FINALISTS AND ALTERNATE

CANDIDATES TIMING RESULTS (IN CLOCK CYCLES), MEMORY

USAGE AND TRANSMITTED DATA (IN BYTES)

of the protocols, their memory consumption and the length
of the key size and ciphertext, which compose the transmitted
information between the parties. The isogeny-based cryptosys-
tem shows minimal memory usage which makes it suitable
scheme for integration into resource-constrained IoT devices
being the third most memory efficient protocol after the lattice-
based Kyber and Saber. In terms of performance SIKE is still
not comparable with these protocols even though significantly
improved compared to the counterparts. However, the compact
public key and ciphertext used in SIKE promise insignificant
impact on communication latency, which is crucial in real-time
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systems where it can become a bottleneck in the scenario of
limited bandwidth.

V. CONCLUSION

In this work, we presented a highly optimized implementa-
tion of the SIKE underlying finite field arithmetic operations.
Our target platform is the low-end processor Cortex-M4,
recommended by NIST for benchmarking the PQC algorithms.

We propose novel implementation strategies for the:
(1) modular addition and (2) multi-precision multiplication,
squaring and reduction. For (1) we take advantage of the spe-
cial form of the prime number, we introduce a new instruction
set for the carry/borrow catcher/activator and new add/sub
block alternation technique. For (2) we integrate the use of FP
register set emulating L1 cache, which allows us to introduce
new designs, modifying completely the instruction sequence
of the inner multiplication loop, and the entire squaring and
reduction execution flow, increasing the size of the operation
rows and thus decreasing their number optimizing the memory
accesses.

We hope to push SIKE further in the PQC NIST competition
after the implemented optimizations, since it is the candidate
with the smallest key sizes, therefore, ensures insignificant
communication latency. We are going to continue our effort to
constantly improve the timing of the post-quantum algorithm,
where we are willing to perform a side-channel analysis of
our implementations as a future project.
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