
High-Performance FPGA Accelerator for SIKE
Rami El Khatib , Reza Azarderakhsh ,Member, IEEE,

and Mehran Mozaffari-Kermani , Senior Member, IEEE

Abstract—In this article, we provide improvements for the architecture of Supersingular Isogeny Key Encapsulation (SIKE), a post-quantum

cryptography candidate.We develop a new highly optimizedMontgomerymultiplication algorithmand architecture for prime fields. The

multiplier occupies less area and provide better timing results than the state-of-the-art.We also provide improvements to the scheduling of

SIKE in our programROM.We implement SIKE for all Round 3NISTsecurity levels (SIKEp434 for NISTsecurity level 1, SIKEp503 for NIST

security level 2, SIKEp610 for NISTsecurity level 3, and SIKEp751 for NISTsecurity level 5) on Xilinx Artix 7 andXilinx Virtex 7 FPGAs.Our

best implementation (NISTsecurity level 1) runs 38 percent faster and occupies 30 percent less hardware resources in comparison to the

leading counterpart available in the literature and implementations for other security levels achieved similar improvement.

Index Terms—Hardware architectures, isogeny-based cryptography, Montgomery multiplication, post-quantum cryptography, SIKE

Ç

1 INTRODUCTION

POST-QUANTUM cryptography (PQC) centers on identifying
and understanding new mathematical techniques upon

which cryptography can be built that are both resistant
against quantum attacks and feasible to be implemented on
today’s widely used computerized devices. In a seminal
paper [1], Peter Shor showed that both RSA and ECC would
be easily broken by employing a quantum computer. The five
main classes of quantum-hard problems are as follows [2]:
code-based cryptography, lattice-based cryptography, hash-
based cryptography, multivariate cryptography, and isogeny-
based cryptography. The second round of theNIST PQC stan-
dardization process features a greater emphasis on evaluating
the performance of candidates.NIST completedRound 2 eval-
uation and Supersingular Isogeny Key Encapsulation (SIKE)
stayed as an alternate candidate in Round 3 with a strong
hope of being standardized in Round 4 [2].

When considering quantum-safe alternatives to ECC, iso-
geny-based cryptography appears as an attractive replace-
ment. The security of isogeny-based cryptosystems such as
SIKE scheme is based on the problem of computing isogenies
between elliptic curves. Improving the performance of iso-
geny-based cryptography is critical to ensuring that it sur-
vives into subsequent rounds of standardization. Notably, the
SIKE [3] scheme features the smallest public key sizes [4], [5]
of known quantum-safe public key exchange algorithms.
Small public key sizes are extremely advantageous in many
different scenarios as it reduces the communication overhead

and storage necessary for secure communications. The only
concern is the performance of SIKE towards which this work
is another step forward.

SIKE offers four different security levels, as shown in
Table 1, with higher security levels utilizing larger primes. The
prime is used as themodulus formodular addition andmodu-
lar multiplication which together form a prime field Fp. The
prime field is then used to build the isogenies through a pyra-
mid scheme discussed in Section 2. SIKE’s prime has a special
form 2eA � 3eB � 1 where the least significant eA bits are all 1s.
This form can be exploited in Montgomery multiplication [6],
which is amethod formodularmultiplication. It is well known
that the main drawback of SIKE over other PQC candidates is
the high cost of modular multiplication which makes it few
orders ofmagnitude slower than other PQC schemes.

Recently researchers were able to improve the computation
time of SIKE by slightly over one order of magnitude [7], [8],
reducing the total time to under 20 milliseconds while adding
protection against active attacks. In this work, we show that
there is still room for improvement of intensive lower level
computations. This paper is another step forward in this direc-
tion which reduces the computation time to less than 10 milli-
seconds and cuts the occupied number of hardware resources
considerably when implemented in FPGA. The goal of this
paper is to develop efficient and high-performance hardware
architectures for SIKE. The contributions of this paper is item-
ized in the following:

1.1 Our Contributions

� Wedevelop a highly optimizedMontgomerymultipli-
cation algorithm and architecture that further utilizes
the special form of SIKE primes. We experimented
various configurations for our high-radix design to
find the best choice for area-time trade-offs.

� We improve the scheduler mechanism provided in
[9] and utilized it in our design. Which resulted in a
reduced number of clock cycles.

� We implement SIKE for NIST Round 2 primes;
SIKEp434, SIKEp503, SIKEp610, and SIKEp751 with
the developed Montgomery multiplier architecture.

� Rami El Khatib and Reza Azarderakhsh are with the Department of Com-
puter and Electrical Engineering and Computer Science, Florida Atlantic
University, Boca Raton, FL 33431 USA. E-mail: {relkhatib2015@fau.edu,
razarderakhsh}@fau.edu.

� Mehran Mozaffari-Kermani is with the Computer Science and Engineering
Department, University of South Florida, Tampa, FL 33620 USA.
E-mail: mehran2@usf.edu.

Manuscript received 23 July 2020; revised 20 Mar. 2021; accepted 1 May 2021.
Date of publication 10 May 2021; date of current version 10 May 2022.
(Corresponding author: Reza Azarderakhsh.)
Recommended for acceptance by J. C. Hoe.
Digital Object Identifier no. 10.1109/TC.2021.3078691

IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 6, JUNE 2022 1237

0018-9340 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of South Florida. Downloaded on May 11,2022 at 17:24:49 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-6398-3222
https://orcid.org/0000-0002-6398-3222
https://orcid.org/0000-0002-6398-3222
https://orcid.org/0000-0002-6398-3222
https://orcid.org/0000-0002-6398-3222
https://orcid.org/0000-0002-6921-6868
https://orcid.org/0000-0002-6921-6868
https://orcid.org/0000-0002-6921-6868
https://orcid.org/0000-0002-6921-6868
https://orcid.org/0000-0002-6921-6868
https://orcid.org/0000-0003-4513-3109
https://orcid.org/0000-0003-4513-3109
https://orcid.org/0000-0003-4513-3109
https://orcid.org/0000-0003-4513-3109
https://orcid.org/0000-0003-4513-3109
mailto:relkhatib2015@fau.edu@fau.edu
mailto:razarderakhsh@fau.edu
mailto:mehran2@usf.edu

� We evaluate time and area performance of the pro-
posed hardware architecture benchmarked on FPGA
and compare with counterparts.

The organization of the paper is as follows. In Section 2, we
give a literature review of SIKE. In Section 3, we discuss the
algorithm and architecture of our highly optimized Mont-
gomery multiplication. In Section 4, we discuss the improved
scheduler. In Section 5, we propose our SIKE implementation
and compare our results with counterparts available in the lit-
erature. Finally, in Section 6, we give our final thoughts and
discuss futurework.

2 PRELIMINARIES: SIKE PROTOCOL

In this section, we provide a brief overview of the SIKE pro-
tocol. SIKE mainly requires two operations: Isogeny and
Shake256. The latter is part of the NIST standardized hash-
ing algorithm SHA-3 [10]. Isogeny operations are done over
Montgomery curve [11], [12] using the efficient projective
isogeny formulas [3] for better performance. We point the
reader to [3] for a detailed overview of SIKE.

2.1 SIKE Operations

A prime p is chosen of the form 2eA3eB � 1 where 2eA � 3eB

(Check Table 1 for standardized primes). For public param-
eters, we have a starting curve E0, two points PA and QA of
order 2eA and two points PB and QB of order 3eB (standard-
ized parameters are in SIKE specs [3]). Each pair of points

with the same order must be chosen such that there is Weil
pairing so that P þ ½s�Q also has an order of ‘e (the order of
P and Q) for any s < ‘e.

Key Generation. In key generation, Bob chooses a random
secret key sB 2 ½0; 3eBÞ and computes the isogenous elliptic
curve EBusing the isogeny fB with kernel PB þ ½sB�QBh i.
The elliptic curve EB along with fBðPAÞ and fBðQAÞ make
up Bob’s public key pkB.

Key Encapsulation. In key encapsulation, Alice chooses a
secret message m 2 ½0; 2ss sizeÞ (where ss size is the shared
key size in Table 1) and hashes fm; pkBg using Shake256 to
generate her secret key r of size 2eA bits. She can then com-
pute her emphemeral public key fEA;fAðPBÞ;fAðQBÞg
using the isogeny fA : E0 ! EB ffi E0= PA þ ½r�QAh i. She
also generates a key to encrypt the message m by first com-
puting the elliptic curve EAB under the isogeny fAB : EB !
EAB ffi EB= fBðPAÞ þ ½r�fBðQAÞh i. Then she computes the
j-invariant jðEABÞ and hashes it with Shake256 to the same
size of the message. She encrypts the message m by XORing
it with the key to generate c. She shares the ciphertext ct ¼
fpkA; cg publicly and, finally, generates the shared secret
ssA of size ss size by hashing fm; ctgwith Shake256.

Key Decapsulation. In key decapsulation, Bob first computes
the key used to encrypt c by first computing the elliptic curve
EBA under the isogeny fBA : EA ! EBA ffi EA= fAðPBÞþh
½sB�fAðQAÞi usingAlice’s public key pkA. If he receivesAlice’s
correct ciphertext, EBA should be isomorphic to EAB, a.k.a.
equal j-invariant. Therefore, he can compute the key by hash-
ing the j-invariant jðEBAÞwith Shake256. Themessagem0 can
then be recovered by XORing c with the key. He can recover
Alice’s secret key r0 by hashing fm0; pkBg and then generate
Alice’s public key pk0A ¼ fE0

A;f
0
AðPBÞ;f0

AðQBÞg under the
isogeny f0

A ¼ E0 ! E0
A ffi E0= PA þ ½r0�QAh i. He checks that

Alice’s public key he computed is equal to Alice’s actual pub-
lic key. If they are equal, he outputs the correct shared secret
ssB by hashing fm;pkA; cg.

Isogeny Computations. The pyramid in Fig. 1 shows the
breakdown of isogeny computations. To compute the Isogeny
E= P þ ½s�Qh i, the kernel pointR ¼ P þ ½s�Q needs to be com-
puted first using a three point ladder algorithm. The fastest

TABLE 1
SIKE Primes for Post-Quantum Cryptography Based

on NIST Round 2 Standardization Process [3]

Security Prime Form Public Key Shared Key

Level Size (Bytes) Size (Bits)

NIST level 1 p434 ¼ 22163137 � 1 330 128

NIST level 2 p503 ¼ 22503159 � 1 378 192

NIST level 3 p610 ¼ 23053192 � 1 462 192

NIST level 5 p751 ¼ 23723239 � 1 564 256

Fig. 1. Breakdown of isogeny computations [8].

1238 IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 6, JUNE 2022

Authorized licensed use limited to: University of South Florida. Downloaded on May 11,2022 at 17:24:49 UTC from IEEE Xplore. Restrictions apply.

algorithm is in [13] which requires one point addition and one
point doubling per bit of the scalar s. For the large degree iso-
geny computation E= Rh i, we break it down into point multi-
plications and small isogeny evaluations and computations
following a specific strategy. When the kernel is of order 3eB ,
we perform point tripling and 3-isogenies. When the kernel is
of order 2eA , we perform point quadrupling and 4-isogenies
as their formulas are more efficient than point doubling and
2-isogenies. Note that for SIKEp610, since eA is odd, one 2-iso-
geny is performed at the beginning. The elliptic curve group
operations are built using Fp2 arithmetic which in turn is built
using Fp arithmetic.

3 PROPOSED EFFICIENT LOWER LEVEL
ARITHMETIC OPERATIONS

In this section, we are going to discuss our low level arith-
metic operations. For the modular adder, we reused the
modular adder in the leading hardware candidate of SIKE
[14], which utilizes the adder in [15], with more efficient
parameters. The parameter L indicates length of carry chain
before going to the next level compaction while the parame-
ter H indicates the maximum level of compaction. It is near
impossible to obtain the optimal parameters for the adder
as place and route greatly changes for different parameters.
However, going beyond H ¼ 3 will add a significant rout-
ing delay and roughly L ¼ ffiffiffi

p
p

is a good starting point to
test. We tested all L around

ffiffiffi

p
p

for H ¼ 1; 2; 3 for a� b first
and then for a� b	 p. Table 2 shows optimal parameters
for the modular adder we are using.

For the modular multiplication (a
 bmod pÞ, Montgomery
multiplication is a fast modular multiplication algorithm that
transforms the expensive division by p into a cheap division
by power of 2 which is a simple shift right in software or hard-
ware. Montgomery multiplication has been used for high-per-
formance ECC applications extensively such as in [16], [17],
[18], [19], [20]. Word-by-word Montgomery multiplication
algorithms were proposed in [21], [22]. Some Montgomery
multiplication architecture for SIKE can be seen in [14], [23].

Finely Integrated Operand Scanning (FIOS) Montgomery
multiplication algorithm is a word-by-word algorithm first
proposed in [21]. The original implementation was suitable
for software. In [23], the FIOS algorithm was re-purposed for
hardware implementation suitable for SIKE primes. We had
two issues using that implementation directly in SIKE. The
first issue is that it was not fully interleaved (a.k.a unused
blocks in the multiplier unit can’t be used before the multipli-
cation is complete). Since SIKE has a lot of modular multipli-
cation computation that can be parallelized, the extra cycles
from non-interleaving slows down SIKE. The issue can be

easily resolved by pushing each chunk of the multiplicand (b
for example) into the corresponding processing element as
soon as it is needed instead of pushing all the chunks in one
go. This technique will have no impact on the total number of
cycles. The second issue is that when plugged in SIKE, the
operating frequency is around 200MHz. This frequency
makes the implementation non-competitive.

3.1 Proposed Montgomery Multiplication Algorithm

We further optimized the Montgomery multiplication algo-
rithm in [23] to minimize the number of operations in the
critical path and the total number of operations used specifi-
cally for SIKE primes. Our optimized algorithm is provided
in Algorithm 1. The algorithm performs the following s
(number of words) times: an initial step, s� 1 multiplica-
tion-reduction steps and a final step.

The initial step begins by adding the first result chunk
T ½0� with a½i�
 p½0�. The least significant word S is used to
compute the quotient m and the carry C is propagated to
the first multiplication-reduction step. Because of the special
form of SIKE primes where p½0� is all 1s for any word w <
eA, p

0 ¼ �p�1 mod 2w ¼ 1. This leads to m ¼ S � p0 mod 2w ¼
S. Finally, a second carry Cr is propagated to the first multi-
plication-reduction step. ðCr; SÞ ¼ S þm � p½0� ¼ mþ m �
p½0� ¼ ðm; 0Þ) Cr ¼ m. Our first change here is to keep the
carries separate instead of merging them together by adding
them.

Each of the multiplication-reduction steps consists of addi-
tion of current result chunk T ½j�, two parallel multiplications
(a½i� � b½j� and m � p½j�), and the carry from the previous step.
The least significant word is stored in the previous result

TABLE 2
Optimal Modular Adder Parameters

Prime a� b a� b	 p

SIKEp434 L ¼ 23; H ¼ 3 L ¼ 21; H ¼ 3

SIKEp503 L ¼ 20; H ¼ 3 L ¼ 26; H ¼ 3

SIKEp610 L ¼ 27; H ¼ 3 L ¼ 20; H ¼ 3

SIKEp751 L ¼ 25; H ¼ 3 L ¼ 20; H ¼ 3

EL KHATIB ETAL.: HIGH-PERFORMANCE FPGA ACCELERATOR FOR SIKE 1239

Authorized licensed use limited to: University of South Florida. Downloaded on May 11,2022 at 17:24:49 UTC from IEEE Xplore. Restrictions apply.

chunk T ½j� 1� and the carry is propagated to the next step.
Our approach was to split the multiplication-reductions steps
into two parts. In the first part where 1 � j < sA ¼ 2eA=wb c
(sA-Mult), we notice that all the bits of p½j� are 1. The reduc-
tion operationm
 p½j� can be skipped completely as ðCr; SÞ ¼
Cr þm
 p½j� ¼ ðm; 0Þ. Therefore, T ½j� 1� is independent of
the reduction operation and we are always propagating m to
the next step. In the second part where sA � j < s (sB-Mult
and sB-Red), all operations of the multiplication-reduction
step are performed. In the first reduction operation (sB-
Red0), we add the carry Cr ¼ m to the reduction operation
m
 p½sA�which will be added to the first multiplication oper-
ation in sB-Mult and merged with the carry C in subsequent
steps. This means that in subsequent reduction operations
only m
 p½j� is performed without adding Cr. Note that the
carryC is 1 bit larger (wþ 1 bits total) after themerging.

In the final step, the carry C of the last multiplication-
reduction step is pushed into the final result chunk T ½s� 1�.
If the radix R ¼ 2K ¼ 2s�w is chosen such that p < 2K�2,

then C < 2w can fit in the result chunk. Otherwise, if p ¼
2K�1, then an additional 1-bit register T ½s� is used to process
the extra bit of C.

The changes made to the algorithm cut sA � 1multiplica-
tions and sA � 2 additions. Furthermore, sB-Red operations
can be computed ahead of time which will reduce the criti-
cal path delay in our architecture.

3.2 Proposed Architecture for Montgomery
Multiplication

Fig. 2 shows our proposed architecture. Our design can per-
form two multiplications in parallel and each block in our
design is pipelined and performs one operation in the algo-
rithm. The first block PE initial computes the first multipli-
cation carry C and the quotient m, which is also the
reduction carry Cr for Montgomery multiplication with
SIKE primes. m is pushed to the reduction path (sA-
Red! sB-Red0! sB-Red) where the reduction operations
in the algorithm are performed. The first multiplication

Fig. 2. Proposed Montgomery multiplication architecture.

1240 IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 6, JUNE 2022

Authorized licensed use limited to: University of South Florida. Downloaded on May 11,2022 at 17:24:49 UTC from IEEE Xplore. Restrictions apply.

carry C is pushed to the multiplication path (sA-Mult
! sB-Mult) where the multiplication operations in the algo-
rithm are performed and the result chunks are collected.
Finally, PE final receives the final carry from themultiplication
path and is used to process the final result chunk. Inside the
main path (PE initial!Multiplication path!PE final), carry C
is propagated forwardwhile S is propagated backward as S is
stored in previous result chunk T ½j� 1� in the algorithm.

a1 and a2, the first operands for the dual multiplier, are
pushed serially in odd and even cycles, respectively, into PE
initial and then propagated to the next block in the multiplica-
tion path. The second operands for the dual multiplier, b1 and
b2, are pushed directly to their respective block. However, to
achieve interleaving and increase throughput, b1 and b2 are
pushed in the first s cycles with one cycle delay for the next
word. On odd cycles, the odd blocks (1; 3; 5; . . .) compute
chunks for the first pair of operands (a1and b1) while the even
blocks (2; 4; 6; . . .) compute chunks for the second pair of oper-
ands (a2 and b2). On even cycles, the blocks switch places
where now the odd blocks work on the second pair of oper-
ands and the even blocks work on the first pair of operands. A
reset is required to the register S that stores the result chunks
during the first s cycles. The final result is collected word-by-
word over s cycles after 2s cycles have passed since the start of
themultiplier.

In the reduction path, sA-Red is completely eliminated in
our algorithm and therefore m is simply propagated to
sB-Red0 after a certain delay. To shorten the critical path,
sB-Red blocks are processed one cycle in advance before the
result is pushed into their corresponding sA-Mult block.

Table 3 gives a breakdown of the total number of blocks
required as well as the critical path and the number of arith-
metic operations used in comparison to [23] (used twice for
dual-multiplication). The critical path is shortened by one
addition and the design requires sA � 1 less multiplications
and sA � 2 less additions.

3.3 Implementation and Results

The FPGAs we are using in our SIKE implementation are the
Xilinx Virtex-7 and Xilinx Artix-7. The DSP unit in this series
of FPGA can perform fast multiply-and-add (a
 bþ cÞ or 3-

input addition (aþ bþ c). Chaining the DSPs allow for com-
plex arithmetic operations with a small additional delay per
DSP. Furthermore, DSPs support dual input for one of the
multiplicand (a
 b1 þ c or a
 b2 þ c) by exploiting the pre-
adder. This allows us to design a dual multiplier while fully
utilizing the DSP unit. Table 4 shows how to utilize a maxi-
mumof 2DSPs per block. In [23], the reduction andmultiplica-
tion operations are not separated and therefore require 3
chainedDSPs to compute themandmoreDSPs for a dual-mul-
tiplier design. Thus, our design requires less number of DSPs
in the critical path and less total DSPs.

A few additional optimizations can be exploited by the
DSP. The registers to store the second operands b0 and b1 are
used directly in the DSP. The DSP can select whether to add 0
or one of the operands in the addition step. This is used to
replace the reset signal of the registers that hold the result
chunks S. Another optimization that can be utilized is to store
a and b going to the multiplication of each block in the DSP’s
register. This will add one extra cycle but greatly shorten the
critical path. The start control signals and the even control sig-
nal for b1 and b2 are stored one cycle in advance in the DSP’s
control registers for improved performance. The registers
used to store C and S are stored in the fabric outside the DSP
as thiswill give the best performance.

Table 5 shows number of DSPs used and timing results of
our implementations for each of the SIKE primes. Our design
requires less DSP, has a higher frequency, but require more
clock cycles in comparison to [14]. However, the higher

TABLE 3
Breakdown of Our Proposed Montgomery Multiplication Architecture Compared to Previous Design (Dual Multiplier)

TABLE 4
DSP Breakdown of Our Proposed Montgomery

Multiplication Architecture (Dual Multiplier)

Block DSP 1 DSP 2 Total DSPs

PE initial T ½0� þ a½i�
 b½0� - 1
sA-Red - - -
sA-Mult a½i�
 b½j� DSP1þ T ½i� þ C 2ðsA � 1Þ
sB-Red0 mþm � p½j� - 1
sB-Red m � p½j� - sB � 1
sB-Mult U ½j� þ a½i�
 b½j� DSP1þ T ½i� þ C 2sB
PE final - - 0
Full design - - 2sþ sB � 1

EL KHATIB ETAL.: HIGH-PERFORMANCE FPGA ACCELERATOR FOR SIKE 1241

Authorized licensed use limited to: University of South Florida. Downloaded on May 11,2022 at 17:24:49 UTC from IEEE Xplore. Restrictions apply.

frequency dominates the increased cycle count and the overall
total time to perform an operation is lower. In [24], a huge part
of the computation is moved from DSP to fabric. Their LUT
usage for SIKEp434 is 6724 in comparison to our LUT usage of
1,157. In addition, the design is not very scalable as SIKEp751
uses more DSP and 5
 LUT in comparison to our design. We
reserve further comment until the design is plugged in SIKE.

4 SCHEDULING PRIME FIELD OPERATIONS

The most expensive operations for performing the isogeny
computation are the double-and-add to compute the three-
point-ladder, double/triple, get-isogeny and evalu-

ate-isogeny to compute the l-degree isogeny, and finally Fp

inversion for encoding and decoding the data (generating
public key, getting the elliptic curve equation, and computing
j-invariant). The inversion formulas has been optimized in [3]
for each prime and since it is Fermatt-Based, there is little
room for improving the scheduling as the algorithm is mostly
sequentional. For the three-point-ladder and the l-degree iso-
geny computation, a good scheduler can exploit the available
resources to reduce the time to compute them. In this section,
we look at the scheduler used by Farzam et al. [9] and try to
improve on it.

4.1 Scheduling Operations

In [9], the authors implement an efficient scheduler by utiliz-
ing an optimization programming language (OPL) instead of
implementing the optimization using a script as was done in
[14] (and its previous iterations in [7], [8], [25]). The main
advantage of using OPL is that the optimization techniques
are heavily scrutinized and will almost always outperform a
hard-coded optimizer without a lot of investment in it. To
implement the efficient scheduler using OPL, the authors start
by generating a dependency graph after expanding all opera-
tions to their Fp equivalent. For example, Fig. 3 shows the
dependency graph of a subroutine that performs an F2

p multi-
plication followed by anF2

p addition.
In addition to the data, a constraint set must be provided to

the scheduler depending on the available resources. We have

noticed one issue and one inefficient utilization of a resource
with the constraint the authors provided in [9]. Before discus-
sing the issues, we will briefly mention the constraints which
are also the same constraints used in the architecture of [14]

� No simulatenous RAM read, RAMwrite, or both.
� RAM read is 2 CCs.
� RAMwrite is 1 CCs
� The field adder/subtractor latency is 2 CCs. Conse-

cutive addition/subtraction are allowed as the sec-
ond cycle (reduction) utilizes a different unit from
the first cycle (addition).

For the field multiplier, our multiplier is designed differ-
ently but the constraints are exactly the same as in [14]. If
the first multiplication is performed on an even cycle, then
the second multiplication is performed on an odd cycle,
then the third multiplication is performed on an even cycle
and so on. We have noticed an issue in the authors’ con-
straints as can be seen in their paper’s Fig. 5 where they
scheduled the third multiplication in their multiplier in an
odd cycle which means that the third multiplication is over-
writing the second multiplication. We are not sure how they
got correct results with such a scheduling without any mod-
ification to the field multiplier which is not mentioned in
the paper.

Each multiplier also has 2 stages; the interleave stage and
writing stage. During the interleave stage, the multiplier is
locked and doesn’t accept newmultiplication. Once the inter-
leave stage is complete, a newmultiplication can be processed
while simulatenously the current multiplier writes the result
chunk-by-chunk into a register. The authors here delayed the
next multiplication until after the RAM read and interleave
cycles. That is actually not necessary. The multiplication can
be scheduled 2 cycles before the interleave stage of the multi-
plier finishes since it takes two cycles to start the multiplica-
tion due to the RAM read latency. One downside to the
design in [14] is that the interleave stage is an odd number
whichmeans that themultiplication need to be scheduled one
cycle after that. In our multiplier design, the interleave stage
requires an even number of clock cycles and therefore no
additional cycle is required.

TABLE 5
Montgomery Multiplication DSP and Timing Analysis

� LUT usage is 5-6
 more than our design.
�� Interleave cycle is odd number which adds an addition cycle.

Fig. 3. Dependency graph showing F2
p multiplication [9] followed by F2

p
addition (d ¼ a � bþ c).

1242 IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 6, JUNE 2022

Authorized licensed use limited to: University of South Florida. Downloaded on May 11,2022 at 17:24:49 UTC from IEEE Xplore. Restrictions apply.

Once a dependency graph and constraint are set, the
OPL model is ready to be fed into the OPL scheduler. We
feed the OPL model to the constraint programming (CP)
engine of IBM’s CPLEX Studio and use the result to gener-
ate the program ROM.

4.2 Scheduler Results

We provide our results in Table 6 for NIST level 1 (SIKE p434)
with a multiplier that has an interleave cost of 52 cycles and
multiplication cost of 81 cycles as was obtained in Section 3.
The table also compares our current results to the results

TABLE 6
Comparison of Major Subroutine for NIST Level 1 (SIKEp434) Between Our Design and [14]

EL KHATIB ETAL.: HIGH-PERFORMANCE FPGA ACCELERATOR FOR SIKE 1243

Authorized licensed use limited to: University of South Florida. Downloaded on May 11,2022 at 17:24:49 UTC from IEEE Xplore. Restrictions apply.

obtained by using the scheduler in [14] with the same multi-
plier costs. We observed 5-32 percent improvement across the
board with an overall improvement of 10 percent. Similar per-
centage improvementwere observed across all SIKE primes.

Since our multiplier operates at a higher clock frequency
at the cost of more clock cycles, a direct comparison between
our scheduler and the one provided in [9] is not possible.
However, we ran our scheduler with an interleave cost of 69

TABLE 7
Comparison of Scheduling Major Subroutines Used in Computing the Isogeny With 69 Interleave CC and 100 Multiplication CC

1244 IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 6, JUNE 2022

Authorized licensed use limited to: University of South Florida. Downloaded on May 11,2022 at 17:24:49 UTC from IEEE Xplore. Restrictions apply.

and multiplication cost of 100 for SIKEp751. The results can
be observed in Table 7. At 2 multipliers, a very minor
improvement can be observed. However, when going to 8
multipliers, our improvements reaches 17 percent in some
places. The number increases at 12 multiplier reaching 40
percent improvement in some areas.

5 FPGA IMPLEMENTATIONS OF SIKE

The implementation is performed in Xilinx Vivado 2019.2 for
Xilinx Virtex-7 FPGA xc7vx690tffg1157-3 and Xilinx Artix-7
xc7a200tfbg676-2 to be able to fairly compare our proposed
scheme with the ones available in the literature. The Virtex-7
FPGA includes 108,300 Slices (most with four LUTs and eight
flip-flops), 3,600 DSP blocks and 1,470 36kb BlockRAMs. Each
DSP slice contains a pre-adder, a 25
18 multiplier, an adder,
and an accumulator. The Artix-7 FPGA includes similar
resources but less of available resources for each. Our design
is based on the design in the leading literature [14] with a
modifiedALUbased on Section 3 and an improvedprogram
generated from the scheduler from Section 4.

5.1 Proposed SIKE Architecture

The architecture for SIKE used in our design is illustrated
in Fig. 4 which is composed of field arithmetic logic unit
(ALU), main SIKE controller/ROM, program and strategy
controller/ROM, memory unit, message buffer to hold
Alice’s message and ciphertext and Bob’s message, secret

key buffer to hold Alice’s secret key and Bob’s secret key,
and hash unit based on Keccak-1088.

The ALU is the main core and performs operations in
Fp while interacting with the memory unit. Fp2 arithmetic is
done using Fp architectures. For instance, a Fp2 multiplication
requires three Fp multiplications, two Fp additions and three
Fp subtractions, whereas a Fp2 squaring requires only two
Fp multiplications, two Fp additions and one Fp subtraction.
The ALU consists of a Multiplication unit and adder/subtrac-
tor unit. The adder/subtractor unit computes modular addi-
tion and subtraction (mod 2p) as well as modular reduction
(mod p) over the specified primes for SIKE. The multiplication
unit consists of n Dual-Multipliers based on the design pro-
posed in Section 3. Since the multiplication unit is the critical
resource, we use as many Dual-Multipliers as is allowed for
parallelization while trying to minimize Time-Area cost. The
cycle counts for our design is reported in Table 8.

Fig. 4. Proposed hardware architecture for SIKE protocol.

TABLE 8
Number of Clock Cycles (in 106 CC) for the Key
Encapsulation Mechanism (KEM) in Our Design

Prime # Mults Keygen Key Encap Key Decap Total (E+D)

SIKEp434 6 0.541 0.974 1.019 1.994
SIKEp503 6 0.729 1.291 1.363 2.654
SIKEp503 6 1.056 2.144 2.112 4.256
SIKEp751 8 1.343 2.554 2.683 5.237

EL KHATIB ETAL.: HIGH-PERFORMANCE FPGA ACCELERATOR FOR SIKE 1245

Authorized licensed use limited to: University of South Florida. Downloaded on May 11,2022 at 17:24:49 UTC from IEEE Xplore. Restrictions apply.

The memory unit is implemented using BlockRAM
resources from the FPGA device. The memory unit, secret
key buffer, message buffer, and the hash unit can share data
with each other and can be accessed directly 64-bit at a time.
The SIKE controller/ROM includes main routines (fixed
sequence of instructions) for key generation, key encapsula-
tion, and key decapsulation. On the other hand, The strat-
egy and program controller/ROM includes hand-optimized
routines for all the operations required for computing an
isogeny (three-point ladder and large-degree isogeny). The
program ROM includes the new subroutines discussed in
Section 4. The ROM units, similar to the memory unit, are
implemented using the BlockRam resources. Our design
requires 32 BlockRAMs for SIKEp434.

The sizes for various component of the SIKE architecture
are different based on the required security level. For the
whole operation, first we pre-load public parameters into
the Memory unit. For the secret key and message, Random
values are generated in the host CPU since they have negli-
gible impact on performance. Following the SIKE protocol
discussed in Section 2.1, key encapsulation and decapsula-
tion are performed and ssA and ssB are generated.

5.2 Implementation Results and Comparison

The proposed SIKE architectures for all NIST security levels
were implemented and tested using Xilinx Vivado 2019.2 and
all the results were obtained after place-and-route. We report
area, timing and area-time trade-off (number of slices
time in
ms) results of the design in Table 9 for Virtex-7 and Table 10
for Artix-7. For the best performance, we chose 3 Dual-

Multipliers (6 multipliers total) for SIKEp434, SIKEp503 and
SIKEp610 and 4 Dual-Multipliers for SIKEp751. We tested the
functionality of the design using known answers tests (KATs)
available in SIKE submission toNIST.

We compare our architecture results to the previous lead-
ing one [14] as well as the Software-Hardware co-design [26]
(fast implementation only) and some of the previous Super-
singular IsogenyDiffie-Hellman (SIDH) implementations. In
addition, we compare our results with [9]. However, they
used the old public parameters from Round 1 where the
three-point-ladder operation for Alice Round 1 (Alice’s pub-
lic key isogeny) can be heavily optimized since xQ1

¼ 0. The
total latency is the summation of key encapsulation and key
decapsulation as key generation can be done offline. As one
can see, for NIST level 1 security (SIKEp434) in Virtex-7, our
design requires 5,458 Slices (17,557 flip flops, 12,999 LUTs),
195 DSPs, and 32 BlockRAMs. It also runs 249.6 MHz and
performs the whole SIKE protocol in 8.0ms. The drop in fre-
quency in comparison to the Montgomery multiplier in
Table 5 is caused by the strategy and program controller.
Our design is smaller (except for the BlockRAMs) and faster
with area-time trade-off being about 92 percent improved in
comparison to the leading counterpart [14]. For the remain-
ing security levels in Virtex-7, a similar improvement can be
observed. It is to be noted that the design in [26] is one design
for all SIKE security levels. In addition, the design targets
smaller area/lower performance device so a direct compari-
son is not fair. As for Artix-7, we can observe that the results
are better across the board.

The improvements made in the design makes SIKE a fea-
sible option for small embedded devices. Note that SIKE

TABLE 9
Area and Timing Results of SIKE Implementation in Xilinx Virtex-7

Area Time Area
 Time

Reference # Mults # FFs # LUTs # Slices # DSPs # BRAMs Freq Latency Total AT
 10�3

(MHz) (cc
 106) time (ms)

SIKEp434
Massolino et al.[26] (Fast) - - - 7,408 162 38.0 152.2 - 24.3 180
Koziel et al. [14] 6 23,819 21,059 8,121 240 26.5 168.4 1.91 11.3 92
This work 6 18,271 12,818 5,527 195 32.0 249.6 1.99 8.0 44

SIKEp503
Koziel et al. [8]� 6 30,031 24,499 10,298 192 27 177 5.97 33.7 347
Koziel et al. [25]� 6 26,659 19,882 8,918 192 40 181.4 3.80 20.9 186
Koziel et al. [7]� 6 24,908 18,820 7,491 192 43.5 202.1 3.34 16.5 124
Massolino et al.[26] (Fast) - - - 7,408 162 38.0 152.2 - 28.7 212
Koziel et al. [14] 6 27,609 23,746 8,907 264 33.5 165.9 2.35 14.1 126
This work 6 19,935 13,963 6,163 225 34.0 243.7 2.65 10.9 67

SIKEp610
Massolino et al.[26] (Fast) - - - 7,408 162 38.0 152.2 - 51.8 384
Koziel et al. [14] 6 33,297 28,217 10,675 312 39.5 165.8 3.59 21.6 231
This work 6 26,757 16,226 7,461 270 38.5 239.0 4.26 17.8 133

SIKEp751
SIKE Team [3]** 8 51,914 44,822 16,756 376 56.5 198.0 6.60 33.4 560
Massolino et al.[26] (Fast) - - - 7,408 162 38.0 152.2 - 60.8 450
Koziel et al. [14] 8 50,079 39,953 15,834 512 43.5 163.1 4.55 27.8 440
Farzam et al. [9]** 8 - - 15336 512 45 160.9 3.877 24.10 369
This work 8 39,339 20,207 11,136 452 41.5 232.7 5.24 22.5 251

� SIDH.
�� SIKE Round 1 Parameters.

1246 IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 6, JUNE 2022

Authorized licensed use limited to: University of South Florida. Downloaded on May 11,2022 at 17:24:49 UTC from IEEE Xplore. Restrictions apply.

already offers smallest key sizes which reduces communica-
tion overhead in comparison to the other PQC submissions.
Although all of our computations and implementations in
this paper are secure (based on [14]) and constant-time, it is
worth mentioning that this work mainly focuses on the
high-performance implementations of the isogeny-based
candidate SIKE in FPGA and investigating side-channel
analysis attacks will be in our future work.

6 CONCLUSION

Post-quantum crypto accelerator hardware cores offer chip-
makers an easy-to-integrate technology-independent solu-
tion, offering various NIST recommended security levels. In
this paper, we optimized the Montgomery multiplication
algorithm and architecture targeting SIKE primes. We also
improved the scheduler for SIKE subroutines. We also pre-
sented FPGA implementations of supersingular isogeny
key encapsulation (SIKE) for all NIST Round 2 security lev-
els. The designs are the fastest FPGA implementations of
SIKE over large prime characteristic fields for various NIST
security levels. More specifically, our design utilizes 36 per-
cent less hardware area and is 12-20 percent faster than the
leading FPGA implementations. For NIST level 1, our pro-
posed hardware accelerator performs the SIKE protocol in
8.8 ms. We verified our architectures by using the Known
Answer Tests (KATs) from the SIKE submission and our
code will be available online for further improvements and
evaluations.

Minimizing public key sizes are critical for reducing
transmission and storage requirements for internet applica-
tions as well as IoTs. Our future work will involve imple-
menting the key compression mechanism and bench-
marking the whole design with compressed keys for vari-
ous security level required by NIST.

ACKNOWLEDGMENTS

This work was supported in part by the U.S. National Sci-
ence Foundation under Grant CNS-1801341 and in part by

the U.S. National Institute of Standards and Technology
under Grant 60NANB16D246.

REFERENCES

[1] P. W. Shor, “Algorithms for quantum computation: Discrete loga-
rithms and factoring,” in Proc. 35th Annu. Symp. Foundations Com-
put. Sci., 1994, pp. 124–134.

[2] The National Institute of Standards and Technology, “Post-quan-
tum cryptography standardization,” 2017. [Online]. Available:
https://csrc.nist.gov/projects/post-quantum-cryptography/
post-quantum-cryptography-standardization

[3] R. Azarderakhsh et al., “Supersingular isogeny key encapsulation,”
2019. [Online]. Available: https://sike.org/

[4] R. Azarderakhsh, D. Jao, K. Kalach, B. Koziel, and C. Leonardi,
“Key compression for isogeny-based cryptosystems,” in Proc. 3rd
ACM Int. Workshop ASIA Public-Key Cryptogr., 2016, pp. 1–10.

[5] C. Costello, D. Jao, P. Longa, M. Naehrig, J. Renes, and
D. Urbanik, “Efficient compression of SIDH public keys,” in Proc.
Annu. Int. Conf. Theory Appl. Cryptogr. Techn., 2017, pp. 679–706.

[6] P. L. Montgomery, “Modular multiplication without trial divi-
sion,”Math. Comput., vol. 44, no. 170, pp. 519–521, 1985.

[7] B. Koziel, R. Azarderakhsh, and M. Mozaffari-Kermani, “A high-
performance and scalable hardware architecture for isogeny-
based cryptography,” IEEE Trans. Comput., vol. 67, pp. 1594–1609,
Nov. 2018.

[8] B. Koziel, R. Azarderakhsh, M. Mozaffari-Kermani, and D. Jao,
“Post-quantum cryptography on FPGA based on isogenies on
elliptic curves,” IEEE Trans. Circuits Syst. I: Regular Papers, vol. 64,
pp. 86–99, Jan. 2017.

[9] M.-H. Farzam, S. Bayat-Sarmadi, and H. Mosanaei-Boorani,
“Implementation of supersingular isogeny-based Diffie-Hellman
and key encapsulationusing an efficient scheduling,” IEEE Trans.
Circuits Syst. I: Regular Papers, vol. 67, no. 12, pp. 4895–4903, Dec.
2020.

[10] The National Institute of Standards and Technology, “SHA-3 stan-
dard: Permutation-based hash and extendable-output functions,”
Inf. Technol. Lab, Comput. Secur. Resour. Center, Nat. Inst. Stand-
ards Technol, Gaithersburg, MD, USA, Tech. Rep., TR-FIPS.202,
2015.

[11] L. De Feo, D. Jao, and J. Plût, “Towards quantum-resistant crypto-
systems from supersingular elliptic curve isogenies,” J.Math.
Cryptol., vol. 8, pp. 209–247, 2014.

[12] P. L. Montgomery, “Speeding the pollard and elliptic curve meth-
ods of factorization,”Math. Comput., vol. 48, pp. 243–264, 1987.

[13] A. Faz-Hern�andez, J. L�opez, E. Ochoa-Jim�enez, and F. Rodr�ıguez-
Henr�ıquez, “A faster software implementation of the supersingu-
lar isogeny Diffie-Hellman key exchange protocol,” IEEE Trans.
Comput., vol. 67, no. 11, pp. 1622–1636, Nov. 2018.

TABLE 10
Area and Timing Results of SIKE Implementation in Xilinx Artix-7

Area Time Area
 Time

Reference # Mults # FFs # LUTs # Slices # DSPs # BRAMs Freq Latency Total AT
 10�3

(MHz) (cc
 106) time (ms)

SIKEp434
Koziel et al. [14] 6 24,328 21,946 8,006 240 26.5 132.2 1.91 14.4 115
This work 6 17,557 12,999 5,458 195 32.0 184.8 2.04 11.0 60

SIKEp503
Koziel et al. [14] 6 27,759 24,610 9,186 264 33.5 129.9 2.35 18.1 166
This work 6 19,952 13,552 5,985 225 34.0 172.3 2.71 15.7 94

SIKEp610
Koziel et al. [14] 6 33,198 29,447 10,843 312 39.5 125.3 3.59 28.6 310
This work 6 25,004 16,502 7,525 270 38.5 168.7 4.26 25.2 190

SIKEp751
Koziel et al. [14] 8 49,982 40,792 15,794 512 43.5 127.0 4.55 35.8 565
This work 8 38,950 20,154 11,114 452 41.5 155.0 5.24 33.8 375

EL KHATIB ETAL.: HIGH-PERFORMANCE FPGA ACCELERATOR FOR SIKE 1247

Authorized licensed use limited to: University of South Florida. Downloaded on May 11,2022 at 17:24:49 UTC from IEEE Xplore. Restrictions apply.

https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://sike.org/

[14] B. Koziel, A. Ackie, R. El Khatib, R. Azarderakhsh, and M. M.
Kermani, “SIKE’d up: Fast hardware architectures for supersingu-
lar isogeny key encapsulation,” IEEE Trans. Circuits Syst. I: Regular
Papers, vol. 67, no. 12, pp. 4842–4854, Dec. 2020.

[15] T. B. Preußer, M. Zabel, and R. G. Spallek, “Accelerating computa-
tions on FPGA carry chains by operand compaction,” in Proc.
IEEE 20th Symp. Comput. Arith., 2011, pp. 95–102.

[16] A. Mrabet et al., “High-performance elliptic curve cryptography
by using the CIOS method for modular multiplication,” in Inter-
national Proc. Conf. Risks Secur. Internet Syst., 2016, pp. 185–198.

[17] H. Alrimeih and D. Rakhmatov, “Fast and flexible hardware sup-
port for ECC over multiple standard prime fields,” IEEE Trans.
Very Large Scale Integration Syst., vol. 22, no. 12, pp. 2661–2674,
Dec. 2014.

[18] H. Eberle, N. Gura, S. C. Shantz, V. Gupta, L. Rarick, and S. Sun-
daram, “A public-key cryptographic processor for RSA and
ECC,” in Proc. 15th IEEE Int. Conf. Appl.-Specific Syst., Architectures
Process., 2004, pp. 98–110.

[19] M. Imran, M. Rashid, A. R. Jafri, andM. Kashif, “Throughput/
area optimised pipelined architecture for elliptic curve crypto
processor,” IET Comput. Digit. Techn., vol. 13, no. 5, pp. 361–368,
2019.

[20] M. Imran, S. Pagliarini, and M. Rashid, “An area aware accelera-
tor for elliptic curve point multiplication,” in Proc. 27th IEEE Int.
Conf. Electron., Circuits Syst., 2020, pp. 1–4.

[21] C. KayaKoc, T. Acar, and B. S. Kaliski, “Analyzing and comparing
montgomery multiplication algorithms,” IEEE Micro, vol. 16,
no. 3, pp. 26–33, Jun. 1996.

[22] H. Orup, “Simplifying quotient determination in high-radix mod-
ular multiplication,” in Proc. 12th Symp. Comput. Arith., 1995,
pp. 193–199.

[23] R. El Khatib, R. Azarderakhsh, and M. Mozaffari-Kermani,
“Optimized algorithms and architectures for montgomery multi-
plication for post-quantum cryptography,” in Proc. Int. Conf. Cryp-
tology Netw. Secur., 2019, pp. 83–98.

[24] W. Liu, Z. Ni, J. Ni, C. Rafferty, and M. O’Neill, “High perfor-
mance modular multiplication for SIDH,” IEEE Trans. Comput.-
Aided Des. Integr. Circuits Syst., vol. 39, no. 10, pp. 3118–3122, Oct.
2020.

[25] B. Koziel, R. Azarderakhsh, and M. Mozaffari-Kermani, “Fast
hardware architectures for supersingular isogeny diffie-hellman
key exchange on FPGA,” in Proc. Int. Conf. Cryptol. India, 2016,
pp. 191–206.

[26] P. M. C. Massolino, P. Longa, J. Renes, and L. Batina, “A compact
and scalable hardware/software co-design of SIKE,” IACR Trans.
Cryptographic Hardware Embedded Syst., vol. 2020, pp. 245–271,
2020.

Rami El Khatib received the bachelor’ s degree in
electrical and computer engineering from the
American University of Beirut, the MSc degree
with a focus on implementations of post-quantum
cryptography from Florida Atlantic University,
where he is currently working toward the PhD
degree in computer engineering. He has authored
or coauthored several published papers in the
areas of cryptography and hardware engineering.
His research interests include diverse background
in cryptography, programming, andmathematics.

Reza Azarderakhsh (Member, IEEE) received
the PhD degree in electrical and computer engi-
neering from Western University in 2011. He was
the recipient of the NSERC postdoctoral research
fellowship while working with the Center for
Applied Cryptographic Research and the Depart-
ment of Combinatorics and Optimization, Univer-
sity of Waterloo. He is currently an associate
professor with the Department of Electrical and
Computer Engineering, Florida Atlantic Univer-
sity. His research interests include finite field and

its applications, elliptic curve cryptography, pairing-based cryptography,
lattice-based cryptography, and post-quantum cryptography. He is an
associate editor for the IEEE Transactions on Circuits and Systems.

Mehran Mozaffari-Kermani (Senior Member,
IEEE)) received the BSc degree from the Univer-
sity of Tehran, Iran, and the MESc and PhD
degrees from the University of Western Ontario,
London, Canada, in 2007 and 2011, respectively.
In 2012, he joined the Electrical Engineering
Department, Princeton University, NJ, as an
NSERC postdoctoral research fellow. From 2013
to 2017, he was an assistant professor with the
Rochester Institute of Technology, and starting
2017 he joined the Department of Computer Sci-

ence and Engineering, University of South Florida, where he is currently
an associate professor. He is currently an associate editor for the IEEE
Transactions on Very Large Scale Integration Systems, the ACM Trans-
actions on Embedded Computing Systems, and the IEEE Transactions
on Circuits and Systems - Part I: Regular Papers. He has been the guest
editor for the IEEE Transactions on Dependable and Secure Computing.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

1248 IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 6, JUNE 2022

Authorized licensed use limited to: University of South Florida. Downloaded on May 11,2022 at 17:24:49 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

