
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 29, NO. 7, JULY 2021 1297

Cryptographic Accelerators for Digital
Signature Based on Ed25519
Mojtaba Bisheh-Niasar , Reza Azarderakhsh , Member, IEEE,

and Mehran Mozaffari-Kermani , Senior Member, IEEE

Abstract— This article presents highly optimized implemen-
tations of the Ed25519 digital signature algorithm [Edwards
curve digital signature algorithm (EdDSA)]. This algorithm
significantly improves the execution time without sacrificing secu-
rity, compared to exiting digital signature algorithms. Although
EdDSA is employed in many widely used protocols, such as
TLS and SSH, there appear to be extremely few hardware
implementations that focus only on EdDSA. Hence, we pro-
pose two different field-programmable gate array (FPGA)-based
EdDSA implementations, i.e., efficient and high-performance
Ed25519 architectures applicable for a security level comparable
to AES-128. Our proposed efficient Ed25519 scheme achieves an
improvement of more than 84% compared to the best previous
work by reducing the required area. It also incorporates more
than 8× speedup. Furthermore, our proposed high-performance
architecture shows a 21× speedup with more than 6200 digital
signature algorithms per second, showing a significant improve-
ment in terms of utilized area × time on a Xilinx
Zynq-7020 FPGA. Finally, the effective side-channel counter-
measures are embedded in our proposed designs, which also
outperform the previous works.

Index Terms— Ed25519, Edwards curve digital signature
algorithm (EdDSA), elliptic curve cryptography, hardware
implementation, side channel.

I. INTRODUCTION

EDWARDS curve digital signature algorithm (EdDSA)
developed by Bernstein et al. [1] has gained prominent

attention among the existing digital signature algorithms due to
its fast operations without affecting the required security. The
Ed25519, as the most popular instance of EdDSA, is widely
used as a digital signature method to guarantee the validity
of the communications. On the other hand, the elliptic curve
digital signature algorithm (ECDSA) is no longer suitable for
embedded devices due to its vulnerability against side-channel
analysis (SCA) attacks [2], [3]. Hence, most HTTPS websites
are switching to Ed25519, suitable for higher level security

Manuscript received December 30, 2020; revised April 1, 2021; accepted
May 1, 2021. Date of publication May 20, 2021; date of current version
June 29, 2021. This work was supported in part by the National Insti-
tute of Standards and Technology (NIST) under Grant 60NANB16D246,
in part by NSF under Grant 1801341, and in part by the Army Research
Office (ARO) under Grant W911NF-17-1-0311. (Corresponding author:
Mojtaba Bisheh-Niasar.)

Mojtaba Bisheh-Niasar and Reza Azarderakhsh are with the Department
of Computer & Electrical Engineering and Computer Science (CEECS),
Florida Atlantic University, Boca Raton, FL 33431 USA (e-mail:
mbishehniasa2019@fau.edu; razarderakhsh@fau.edu).

Mehran Mozaffari-Kermani is with the Department of Computer Science
and Engineering (CSE), University of South Florida, Tampa, FL 33620 USA
(e-mail: mehran2@usf.edu).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TVLSI.2021.3077885.

Digital Object Identifier 10.1109/TVLSI.2021.3077885

requirements, which address some backdoor issues [4] in other
ECDSA constructions at the same time.

Although most current cryptosystems will be broken by
quantum computing based on Shor’s algorithm [5], the transi-
tion to postquantum cryptography (PQC) includes an emerging
field called hybrid systems [6], requiring both classic and PQC
[7]. Hence, designing high security ECC-based digital signa-
ture for different applications is crucial. EdDSA is notable
for high speed and constant-time implementations and was
quickly implemented as a part of the TLS and OpenSSH
protocols [8]. Hence, it has to be implemented in various
platforms subject to the performance requirement of the target
application, such as constrained IoT devices. However, EdDSA
has not got sufficient study, especially in the field of hard-
ware implementation based on field-programmable gate arrays
(FPGAs). Therefore, investigation of the hardware implemen-
tation of this algorithm is required considering the advantages
of FPGA-based designs to exploit parallelism, which leads to
improvements in the efficiency of the overall system.

There are two main solutions to enable the hardware-based
digital signature algorithm in the constrained IoT, including:
1) HW/SW approach to cope with embedded constraints and
2) pure HW method that includes all in hardware instruc-
tions. The HW/SW method makes the design smaller, slower,
and more controllable/programmable compared to pure HW
schemes. Although the pure HW approach leads to better
performance, HW/SW can be a better choice for IoTs since
it provides flexibility to switch security levels based on per-
formance targets. In [9], the comparison of the CryptoCell
API over nRF52840 as an internal HW/SW solution and the
external cryptochip ATECC608A as a pure HW is thoroughly
studied. Furthermore, to address higher security needs, new
NIST and IETF recommendations make Curve448 suitable for
higher level security requirements [10], [11]. Hence, imple-
menting HW/SW architecture brings the required flexibility
among different security levels, while a general architecture
can be implemented in HW and controlled by instruction set
processors such that the hardware remains flexible to a great
extent, which is beyond the scope of this work.

A. Related Work

As one of the first FPGA-based works in ECC-based
digital signature, Glas et al. [12] proposed architecture for
128-bit security to integrate into a vehicle-to-vehicle com-
munication system. Furthermore, Panjwani [13] presented a
scalable hardware implementation in prime fields over NIST
recommended field sizes up to 521 bit, employing hardware–
software codesign approach. The work of Vliegen et al. [14]
introduced a compact core over the NIST P-256 curve resis-

1063-8210 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of South Florida. Downloaded on June 29,2021 at 01:01:31 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-1311-8679
https://orcid.org/0000-0002-6921-6868
https://orcid.org/0000-0003-4513-3109

1298 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 29, NO. 7, JULY 2021

tant against simple power analysis (SPA) attacks. Moreover,
Zhang and Bai [15] proposed a core with a security level
128 bit over the SM2 curve.

Recently, a number of hardware implementations have been
introduced to implement an elliptic curve point multiplication
(ECPM) core over Curve25519. Sasdrich and Güneysu [16]
proposed the first Curve25519 implementation using
a DSP-based single-core architecture. This work has
been extended by adding side-channel countermeasures
in [17] and [18] to provide an evaluation against common
physical attacks. In [19], fast and compact implementations
of ECPM were proposed. This architecture employs a
semisystolic bit-serial multiplier and carry-compact addition
to provide a high-performance architecture. The work of
Koppermann et al. [20], [21] presented a high-speed
prime field multiplier with a latency of 92 μs for a point
multiplication. In addition, in [22], a low-latency ECPM was
proposed employing a pipelined arithmetic architecture on
FPGA and ASIC platforms. It should be noted that FPGA
implementations of Curve25519 in the literature cannot be
directly compared to ours because the ECPM core in EdDSA
occupies more resources for implementing hash core and
module L reduction. Furthermore, it requires more time for
a point multiplication since this architecture is reused for
nonmodular multiplication and module L reduction.

A non-DSP-based Ed25519 point multiplication core was
presented by Mehrabi and Doche [23] using the double-and-
add algorithm. Hence, this architecture is a nonconstant-time
core vulnerable to SPA attacks. Notably, the reported area does
not include all the required modules for providing a digital
signature, such as hash function and modulus L reduction.
We explore that SHA-512 increases almost 25% utilized area
in Ed25519. Moreover, Turan and Verbauwhede [24] proposed
an Ed25519 architecture combined with the X25519 key
exchange. This design targets resource-constrained devices
on a Zynq SoC. Turan and Verbauwhede [24, Sec. 3.3]
claimed that the cost of computing using restricted-X coor-
dinates of a point on the Montgomery curve is more than
extended coordinates on the twisted Edwards curve due to
the complexity of coordinate conversion. Therefore, the core
works over the twisted Edwards curve. Besides, although side-
channel countermeasures are considered for the ECPM core,
the authors do not include a resistant SHA-512 core, allowing
vulnerability against SCA, as shown in [25].

Based on the aforementioned discussions, the tradeoff
explorations between resource utilization and performance to
implement an efficient Ed25519 implementation from dif-
ferent optimization perspectives have not been thoroughly
studied. Particularly, designing a unified architecture consist-
ing of physical protection against SCA in all submodules
to perform secure key generation, signature generation, and
signature verification is required. Besides, employing the fast
and efficient Karatsuba-based multiplier for designing a high-
performance Ed25519 architecture should be investigated.
Eventually, the signature computation cost over the Edwards
domain compared to the Montgomery domain for a highly
parallel design should be investigated.

B. Contributions
To the best of our knowledge, there appear to be very few

hardware implementations that focus only on Ed25519 and

make the best of all its features. In this work, we present
two different architectures, i.e., efficient and high-performance
design of Ed25519 implementation considering different per-
formance levels for time-constrained and area-constrained
applications.

Our contributions to this work are listed as follows.
1) We propose a new approach for implementing the

EdDSA accelerator on FPGA. We analyze the com-
putation of the restricted-X coordinates of a point on
the Montgomery curve with additional coordinate con-
version and design two novel, highly parallel hardware
architectures based on these algorithms. In this article,
we show how to leverage the advantages of computa-
tion over the Montgomery curve while implementing
Ed25519 accelerator circuits so that the true benefits of
the accelerator circuits can be achieved.

2) We explore the tradeoffs of area and performance
to accomplish different optimization perspectives.
We demonstrate various optimization techniques in order
to achieve an overall optimization in terms of effi-
ciency, including the parallelization, resource sharing,
redundant number presentation, adoption of distrib-
uted RAM and ROM blocks, and interleaved architec-
ture, which achieves above 84% efficiency improve-
ment of the area–time product compared to the leading
FPGA implementations.

3) We instantiate the proposed architecture in a Xilinx
Zynq-7020 FPGA and provide performance evaluations.
The effective countermeasures against SCA are embed-
ded to enhance the resistance of the proposed archi-
tectures against timing, SPA, and differential power
analysis (DPA) attacks.

The remainder of this article is organized as follows. Section II
presents the background. Section III conducts our proposed
architectures. The experimental results and comparison are
given in Section IV. We conclude this article in Section V.

II. PRELIMINARIES

A. Background

A point P = (x, y) lies on a twisted Edwards curve
E if E = {(x, y) ∈ Fp × Fp : ax2 + y2 = 1 + dx2y2}.
The Ed25519 is a type of Schnorr’s signature employing
(twisted) Edwards curves developed by Bernstein et al. [1].
Ed25519 includes three different phases, i.e., key generation,
signing, and verifying. In the key generation, KeyGen(s)
takes a parameter s and computes a signing key sk and a
public key pk with associated message space M. In sign-
ing, a signature (R, S) is generated by Sign(sk, m), taking
an sk and a message m ∈ M. The signature (R, S) can
be verified by Verify(pk, m, R, S) considering the public
key pk and message m ∈ M. The Appendix gives these
algorithms. For details, we refer interested readers to [26].
Moreover, Ed25519 is equivalent to a Montgomery curve
called Curve25519, introduced by Bernstein [27] in 2006.

For group arithmetic based on Ed25519, the computa-
tion can be performed on extended homogeneous coordi-
nates [1], [26]. A mapping between affine coordinates (x, y)
and extended coordinates (X, Y, Z , T) for a point P is
defined by x = X/Z , y = Y/Z , and x × y = T/Z .

Authorized licensed use limited to: University of South Florida. Downloaded on June 29,2021 at 01:01:31 UTC from IEEE Xplore. Restrictions apply.

BISHEH-NIASAR et al.: CRYPTOGRAPHIC ACCELERATORS FOR DIGITAL SIGNATURE BASED ON Ed25519 1299

Let P1 = (X1, Y1, Z1, T1) and P2 = (X2, Y2, Z2, T2); P3 =
P1 + P2 can be computed using the following formula:

A = (Y1 − X1) · (Y2 − X2), B = (Y1 + X1) · (Y2 + X2)

C = 2d · T1 · T2, D = 2Z1 · Z2, E = B − A

F = D − C, G = D + C, H = B + A

X3 = E · F, Y3 = G · H, T3 = E · H, Z3 = F · G. (1)

Hisil et al. [28] introduced an efficient unified point addi-
tion and a dedicated point doubling formula. Hamburg [29]
suggested a method for mixed readdition using extended coor-
dinates. However, an efficient computation can be performed
using the restricted-X coordinate on the Montgomery curve.
In addition, the Y -coordinate result is required to recover,
proposed by Okeya and Sakurai [30]. Eventually, the achieved
point should be mapped to twisted Edwards space.

B. Side-Channel Protection

Although both EdDSA and ECDSA rely on an ephemeral
and secret random number to sign a message, generating this
random number is not determined in the ECDSA procedure.
Hence, the security of ECDSA is based on the quality of
random number generators (RNGs) and how to implement
them securely. Nevertheless, EdDSA employs a hash function
to generate a random number in a secretly deterministic way.

ECDSA vulnerability against SCA has been shown in sev-
eral research works [2], [3]. Recently, Aranha et al. [31] show
breaking ECDSA exploiting even less than one-bit leakage
against 192- and 160-bit elliptic curves. Several countermea-
sures, including Z -coordinate randomization and constant-time
implementation of group law, are suggested to avoid these
vulnerabilities [31].

Constant-time and secret-independent computations are
popular countermeasures against timing and SPA attacks,
respectively. Simple point randomization [32] provides pro-
tection against DPA attack using a random value, whereas the
scalar multiplication output is not changed. Let B = (X, Y, Z)
be the base point presentation in projective coordinates and
λ ∈ Zp\{0} be a random number. The base point can be altered
such that Br = (λ · X, λ · Y, λ · Z) = (λ · X, λ · Y, λ), which
yields to different point representations, due to the fact that
xB = (X/Z) = ((λ · X)/(λ · Z)) mod p and yB = (Y/Z) =
((λ · Y)/(λ · Z)) mod p.

A continuous point randomization approach can be applied
to the projective coordinate representation of points after
each iteration of the Montgomery ladder. This approach was
implemented in a research work presented in [18].

Samwel et al. [25] proposed an attack on Ed25519 by mea-
suring the power consumption of approximately 4000 traces.
This work also suggested a countermeasure that kills the
deterministic signature properties.

III. TARGET ARCHITECTURES FOR ED25519

This article introduces two different architectures for
Ed25519, i.e., high-performance and efficient schemes, and
discusses their primitives to achieve the considered opti-
mization objectives. The arithmetic multiplier unit in the
high-performance scheme is derived from our previous work
presented in [19].

A. Design I: High-Performance Architecture

To design a high-performance Ed25519 scheme, we need
to accelerate the scalar multiplication procedure as the more
time-consuming part of the signature algorithm, particularly its
modular multiplication unit. Hence, we design a low latency
modular multiplier followed by an interleaved reduction.
In this scheme, the full width of 255-bit is implemented to
minimize data transition latency and maximize parallelization
within the arithmetic logic unit (ALU). Therefore, loading
and storing data take only one cycle to accelerate ALU
throughput. Addition/subtraction between two operands is
performed in 255-bit data width in one clock cycle. Moreover,
the interleaved reduction is performed at the cost of one
additional cycle in a pipeline fashion.

1) Modular Multiplication: Different multiplication
approaches are investigated for resource and area optimization,
such as Schoolbook or Toom-3, while the Karatsuba
multiplication consumes fewer resources and less time
than other mentioned multipliers [22]. The Karatsuba
multiplication can be performed for n-bit integer A and B
such that C = A·B = (a1φ+a0)·(b1φ+b0) = a1b1φ

2+a0b0+
((a1 + a0) · (b1 + b0) − a1b1 − a0b0)φ, where A = (a1φ + a0),
B = (b1φ + b0), φ = 2(n/2), and A, B, C ∈ GF(p).

Hence, we implement different levels of the Karatsuba
multiplication to investigate their efficiency in terms of A · T ,
where A and T are the required resources and time, respec-
tively. By applying the k-level Karatsuba multiplication, an
n × n-bit multiplier is broken to 3k multipliers, while they
perform an (n/2k) × (n/2k)-bit multiplication. Therefore,
the maximum level of the consecutive Karatsuba multiplication
before decreasing performance can be four levels due to
DSP block specifications.

Our modular arithmetic units for the proposed high-
performance design are illustrated in Fig. 1. In this scheme,
a 255×255-bit multiplication is decomposed to 81 16×16-bit
multipliers in four consecutive levels. All partial products work
in one cycle simultaneously. An addition tree is designed in a
backward direction to merge the products and build the final
result. The pipelined multiplier has five stages, of which three
are required for the multiplication and the remaining ones for
the interleaved reduction in a pipeline fashion. Hence, the full
five cycles are taken only for the first multiplication, and then,
a 255 ×255-bit multiplication computation is becoming avail-
able with a latency of only one cycle. The proposed scheduling
for performing a Montgomery ladder step is depicted in Fig. 2.

2) Mod p Reduction: Employing the Karatsuba multipli-
cation in the first level can be also used for implementing
the fast modular reduction to optimize computations. This
multiplication includes two main stages: breaking inputs and
merging the results. Breaking stage decomposes A to a1, a0,
and a1 + a0 (B is decomposed similar to A), and the merging
stage computes addition between C2 = a1b1, C0 = a0b0, and
C1 = (a1 +a0) ·(b1 +b0), where φ = 2(256/2) = 2128 in the first
level. Due to the fact that 2 p ≡ 2256 − 38 mod p, the merging
stage in the first level of the Karatsuba multiplication can
be used for the fast reduction such that C = A · B =
(a12128 + a0) · (b12128 + b0) = a1b12256 + a0b0 + ((a1 + a0) ·
(b1 +b0)−a1b1 −a0b0)2128 = 38C2 +C0 +(C1 −C2 −C0)2128.

Hence, the computed C can be presented in 387 bit.
Thus, the first reduction stage optimizes the obtained result

Authorized licensed use limited to: University of South Florida. Downloaded on June 29,2021 at 01:01:31 UTC from IEEE Xplore. Restrictions apply.

1300 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 29, NO. 7, JULY 2021

Fig. 1. Highly parallel modular multiplier in the high-performance scheme.

width from 512 to 387 bit, which increases our expected
performance. Suppose that C is presented in two parts: Cl

and Ch , which are its first 255-bit and rest 132 bit such
that C = Ch2255 + Cl . Therefore, the subsequent reduction
stage is applied to C such that C � = 19Ch + Cl . In addition,
C �� = C � − p is computed in the case of C � > p, and the
output is chosen between C � and C �� considering subtraction
borrow flag.

B. Design II: Efficient Architecture

Fig. 3 shows the lower level arithmetic operations for our
proposed efficient architecture. In this architecture, we con-
sider decreasing the required resources as the main opti-
mization objective, while the area–time factor is simultane-
ously improved. Furthermore, DSP components as the critical
resource in FPGA significantly affect architecture perfor-
mance. Therefore, improvement of Ad × T metrics should be
considered as another vital factor to describe efficiency, where
Ad is the number of employed DSPs.

In this scheme, the data width of 128-bit is implemented
within ALU to decrease the CPD. However, in the modular
reduction unit, redundant representation providing more 8 bits,
i.e., 136-bit is implemented to avoid the cost of carry propa-
gation between digits. Moreover, addition/subtraction between
two operands, i.e., C = A ± B , is performed in 128-bit
data width, which takes two clock cycles. Hence, the carry is
propagated between digits employing a register. Furthermore,
the reduction stage performs C � = C ∓ p at the cost of two
additional cycles. Both C and C � are stored in the memory
unit, and the correct result is determined by a flag obtained
from the previous carry/borrow.

1) Modular Multiplication: Modular multiplication can be
computed by four 128 × 128-bit partial products, i.e., a0b0,
a0b1, a1b0, and a1b1. Operands can be read from memory unit
in a cycle to feed two input registers. Then, four multiplica-
tions are consecutively performed for these required products.
For example, a0b0 is computed by a00b00, a00b01, a01b00, and
a01b01, where a0 = a01264 + a00 and b0 = b01264 + b00.

The centerpiece of the modular multiplication unit is a 64×64
pipelined schoolbook multiplier implemented by 16 DSPs.

The architecture of our proposed multiplication core is
illustrated in Fig. 3. In order to accumulate the partial products,
a 256-bit register and a 128-bit adder are designed. Thus,
the partial product is accumulated with the upper half of
the register. Furthermore, according to the sequence of mul-
tiplications, i.e., start from a00b00, then a00b01, a01b00, and
eventually a01b01, the register is shifted downward by 64 bit
before accumulating the second and fourth partial products.
Thus, when the pipeline stages are full, 64 × 64-, 128 × 128-,
and 255×255-bit multiplications are becoming available with
a throughput of one, four, and 16 cycles, respectively. The
proposed scheduling for performing a Montgomery ladder step
is depicted in Fig. 4.

Furthermore, the field inversion is considered based on
Fermat’s little theorem (FLT) together with the addition
chain method executing 254 squaring and 11 multiplications.
We also utilize an additional dedicated ROM for performing
inversion to decrease the required size in the main ROM.

2) Mod p Reduction: Modular multiplication is interleaved
by a reduction unit, which accumulates partial products to
perform a fast reduction. As mentioned earlier, modular mul-
tiplication performs a 255 × 255-bit multiplication in four
sequential partial products, which takes 16 clock cycles. Thus,
the modular reduction unit is fed by the multiplier every four
cycles to implement a fast reduction as follows:

C = A · B = (a12128 + a0) · (b12128 + b0)
= a1b12256 + a0b0 + a0b12128 + a1b02128

= 38C3 + C0 + C12128 + C22128 (2)

where C3 = a1b1, C2 = a1b0, C1 = a0b1, and C0 = a0b0.
In order to diminish the cost of carry propagation, redun-

dant representation is employed in the proposed reduction
architecture. This unit uses several registers and adders with
a 136-bit datapath providing more 8 bits for each digit.
Single-pair registers, i.e., R1 and R2, take partial products
from the multiplier, and the accumulated data are computed
using the second pair, i.e., S1 and S2. According to the
sequence of multiplications, i.e., start from C3, then C0,
C1, and, eventually, C2, multiplication with a small integer
38 = (100110)2 is performed using the shift and addition
approach in the first four-cycle period. Then, the accumulated
data are stored in the second register pair to add with C0. After
that, the S-registers are shifted downward by 136-bit, and the
accumulation is continued until adding the last partial product.
Hence, the result represented in S-registers is computed to
perform the last stage of reduction.

The accumulated result is prepared in S-registers for the
last stage of reduction by applying a shift such that C =
S22255 + S12128 + S0 = 19S2 + S12128 + S0. In order to
have an efficient implementation, again, a multiplication with
a small integer 19 = (10011)2 is performed using the shift
and addition approach, which takes three additional cycles.
According to the described scheduling, 16 cycles are required
to perform these operations. Hence, the rest of the operations
taking four additional cycles are stored in the T -registers that
utilize R and S for new arrival data. The next two cycles are
considered to accumulate 19S2 with S12128 + S0. Then, two
cycles are required for modulus p computation.

Authorized licensed use limited to: University of South Florida. Downloaded on June 29,2021 at 01:01:31 UTC from IEEE Xplore. Restrictions apply.

BISHEH-NIASAR et al.: CRYPTOGRAPHIC ACCELERATORS FOR DIGITAL SIGNATURE BASED ON Ed25519 1301

Fig. 2. Proposed Montgomery ladder scheduling in the high-performance architecture.

Fig. 3. Lower level arithmetic operations in the proposed fully pipelined
efficient Ed25519 scheme. ai and bi are read from memory unit, and ci or (ci1,
ci0) is stored to memory unit.

Fig. 4. Proposed Montgomery ladder scheduling in the efficient architecture.

C. Ed25519 Design Considerations

1) Hash Unit: According to RFC 8032 [26], SHA-512 is
recommended by the standard to use in Ed25519. It takes
arbitrary inputs in 1024-bit chunks and provides 512-bit out-
put. In general, hash computation does not take considerable
latency compared to ECPM. Therefore, lightweight hardware
architecture is implemented for efficient architecture, which
utilizes minimum resources.

Fig. 5 illustrates message-digest creation for N-block mes-
sage. As one can see, the main part of SHA-512 is the com-
pressor core, which works iteratively, i.e., 80 times repeated
compressing for each 1024-bit chunk of input.

In order to minimize CPD, the entire data path is designed
64-bit. In addition, we use the optimal number of registers
employing a dedicated finite state machine and resource shar-
ing approach to decrease the utilized resources and complexity.

Fig. 5. Message digest creation for SHA-512.

2) Mod L Reduction and Nonmodular Multiplication: A
512-bit scalar achieved from hash function should be reduced
by modulus L, where L is a 253-bit value. In order to
implement a constant-time reduction, we design consecutive
rounds, which is repeated three times to make sure that result
is reduced completely. Let x have 512-bit length, which can be
shown by x = x12256 + x0. The group order can be presented
by L = 2252 + l0, where l0 has 125 bit. The first round of
reduction is performed such that

x mod L ≡ x12256 + x0 ≡ x124 × (L − l0) + x0

≡ −x1 · l024 + x0. (3)

In (3), a 256 × 125-bit nonmodular multiplication should
be performed, which utilizes the already provided modular
multiplier. Then, the product is shifted by 4 bits and subtracted
from x0.

For the next round, let x � = x �
12252 + x �

0; hence, x �
1 and

x �
0 have 134 and 252 bit, respectively. The reduction can be

performed as follows:

x � mod L ≡ x �
12252 + x �

0 ≡ x �
1 × (L − l0) + x �

0

≡ −x �
1 · l0 + x �

0. (4)

Performing (4) results in a 260-bit-long value. Therefore,
the third round must be performed similar to the second round,
leading to a 253-bit-long value.

3) Double-Point Multiplication: Two scalar multiplications
are required for a verification procedure. The verifying algo-
rithm can be revised to improve efficiency, including two main

Authorized licensed use limited to: University of South Florida. Downloaded on June 29,2021 at 01:01:31 UTC from IEEE Xplore. Restrictions apply.

1302 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 29, NO. 7, JULY 2021

advantages: 1) employing double-point multiplication to halve
total latency and 2) skipping a decompression. In addition,
both scalars in the verifying algorithm are not secret. Hence,
a nonconstant-time execution can be used for fast verification.

We use a modified version of Strauss’ trick, a special case
referred to as “Shamir’s trick,” presented in [33].

4) SCA Countermeasures: Different SCA countermeasures
are embedded in the proposed designs to provide enhanced
architecture against SPA and DPA. Designing an RNG is not
in the scope of this study, so we assume that the randomized
numbers are provided externally. Besides, since the scalar in
the verifying procedure is not secret, the SCA countermeasures
are not applied in this phase.

Each iteration of the ECPM algorithm requires one point
addition and one point doubling per ladder step independent
of the current key bit value. Furthermore, other executed
operations are performed in a constant number of clock
cycles. Therefore, considering a constant-time and secret-
independent execution for designing our proposed schemes,
our architectures are inherently resistant to timing and
SPA attacks.

Base point randomization is achieved using the randomized
base point Br = (λ · X, λ · Y, λ) in projective coordinates.
We assume that Br is externally delivered to the ECPM
core. Moreover, implementing variable-base-point architecture
leads to achieving base point randomization without any cost.
We can perform two more modular multiplications to reran-
domize the Montgomery ladder outputs. Hence, the continuous
point randomization increases the Montgomery ladder latency
and, consequently, the total latency.

DPA-resistant SHA-512 can be achieved by padding the
key proposed in [25]. In this method, the design requires
128 bits of fresh random for padding the key such that the
first 1024-bit block is composed of the random value. It is
to be noted that this algorithm is not compatible with the
existing definition of EdDSA and destroys the deterministic
signature properties. However, since a full arithmetic/Boolean
masked architecture for SHA-512 is too costly, the future
implementations might actually use SHA-3 with much robust
and easier countermeasures [25].

IV. IMPLEMENTATION, RESULTS, AND COMPARISON

The FPGA used in our implementation is the Xilinx Zynq-
7020 synthesized and implemented with Xilinx Vivado 2018.2.
All given results are obtained post-place-and-route (PAR).

Table I shows the different implementations of the Karat-
suba multiplier and the performance comparison results.
Applying the Karatsuba multiplication has a significant effect
on efficiency in terms of A · T , where A and T are the
utilized area and total time, respectively. According to this
table, the first Karatsuba multiplication has an efficiency equal
to 1166 slice × sec. Moreover, increasing the number of
applied levels of the Karatsuba multiplication augments the
CPD of architecture due to expanding its followed addition
tree. Applying the second level to the fourth level improves
20%, 5%, and 3% efficiencies compared to its previous level,
respectively. Furthermore, the four-level Karatsuba multipli-
cation achieves a speedup factor of 3.6×, 2×, and 1.4×
compared to one to three levels, respectively.

TABLE I

IMPLEMENTATION RESULTS FOR DIFFERENT LEVELS OF KARATSUBA

Fig. 6. Proposed architecture for high-performance and efficient Ed25519.

A. Top-Level Architecture

The top-level architecture used in our schemes is illustrated
in Fig. 6, composed of three stages: 1) the top stage includes
FSM, controller, and ROM; 2) the lower stage consists of the
field ALU; and 3) the middle stage includes hash function,
reduction handlers, memory unit, and secret key buffer.

FSM determines the state of the core and the required
address number for the controller. The controller/ROM
includes the main routines (fixed sequence of instructions)
for point multiplication, double-point multiplication, inversion,
and modulus L according to the architecture. Furthermore,
the controller includes hand-optimized routines for all the
operations required for computing a signature algorithm,
such as enabling/disabling the modules, setting their required
address, and handling their interfaces.

B. Implementation Results and Comparison

Table II summarizes the resource utilization for our pro-
posed Ed25519 architectures broken down to the required
components for our unprotected scheme. Our proposed high-
performance Ed25519 architecture utilizes 9.7k slices and
81 DSPs, while the efficient Ed25519 architecture reduces
70% and 80% utilized slices and DSPs compared to our
Design I, respectively. Thus, Design II requires only 2.8k slices
and 16 DSPs to perform the Ed25519 signature algorithm.
Both designs do not occupy any Block RAM, and they are
implemented using the distributed memory.

The latency requirements of all operations are reported
in Table III. Since the architecture works in a parallel fashion,
the total latency is less than the summation between the latency
of individual modules. To compare with the state-of-the-art
modular multiplier in GF(p25519), as listed in Table IV, our

Authorized licensed use limited to: University of South Florida. Downloaded on June 29,2021 at 01:01:31 UTC from IEEE Xplore. Restrictions apply.

BISHEH-NIASAR et al.: CRYPTOGRAPHIC ACCELERATORS FOR DIGITAL SIGNATURE BASED ON Ed25519 1303

TABLE II

IMPLEMENTATION RESULTS IN TERMS OF UTILIZATION REQUIREMENTS

TABLE III

FPGA IMPLEMENTATION RESULTS IN TERMS OF CLOCK CYCLES

TABLE IV

IMPLEMENTATION RESULTS FOR POINT MULTIPLIER IN GF(p25519)

high-performance and efficient modular multiplication requires
five and 32 cycles occupying 81 and 16 DSPs, respectively.
However, our parallel designs can significantly compensate for
the required clock cycles such that a modular multiplication
can be performed in one and 16 cycles in our Designs I and II,
respectively. In [22], a low-latency multiplier was proposed
for key exchange requiring three cycles taking advantage of
occupying register bank and 182 DSPs. We also introduced
a low-latency architecture in our previous work [19] using
the register bank requiring three cycles for key exchange.
However, to develop the Ed25519 scheme in this article,
we use the RAM module since the controller, hash, ALU, and
module l reduction work with the memory unit. The designed
architecture in [20] and [21] requires ten and eight cycles
utilizing 260 and 175 DSPs. The proposed multiplier in [24]
needs 33 cycles, of which 16 cycles for multiplications and
the rest of it for the reduction utilizing 15 DSPs.

Our proposed high-performance architecture follows the
reduction algorithm of [22] using one level of the Karatsuba
multiplication, however applying the following modifications.
First, we make use of the true dual-port capabilities of the
RAM modules instead of register bank to decrease the required
resources and avoid high fan-out circuits. Second, we imple-
ment four consecutive levels of the Karatsuba multiplication,
enabling our design to save 55.5% of utilized DSP in [22]
and, thus, still allowing processing in a pipeline fashion.
Third, our architecture performs both modular and nonmodular

TABLE V

PERFORMANCE RESULTS FOR UNPROTECTED AND PROTECTED
SCHEME AGAINST DPA (RESULTS ARE REPORTED

FOR A 1024-bit MESSAGE)

multiplication in order to avoid any additional resources for
performing signature algorithms.

Besides, our efficient scheme can be used in 136 MHz,
while the maximum operating frequency for our high-
performance design is dropped as expected to 73 MHz due
to the increasing level of the Karatsuba multiplication. Hence,
an unprotected ECPM can be performed in almost 126 and
356 μs in our proposed high-performance and efficient archi-
tecture. Thus, our Design II provides a tradeoff between time
and area by decreasing almost 75% of occupied resources at
the cost of nearly three times more required time.

Table V reports the performance results for three algorithms
in EdDSA: key generation, signing, and verifying. For the
unprotected scheme, Designs I and II can generate 6276 and
2279 keys/s. Furthermore, they can sign 6293 and 2293
128-byte messages/s. Moreover, 5112 and 1507 messages with
128-byte wide can be verified every second employing our
high-performance and efficient architecture, respectively. Note
that increasing the size of the message increases the total
latency such that each 1024-bit chunk adds 80 cycles. The
proposed protected Designs I and II require 0.18 and 0.50 ms,
respectively, to sign a message, while the verification does not
need to be protected.

Complete signature and verification implementations with
certificate handling are scarce in the literature. Hence, a direct
comparison of the area utilization and performance is difficult.
Nevertheless, we intend to put our results in the context with
other relevant works to allow the reader a quick overview of
other designs and architectures.

Table VI reports area and performance results for several
digital signature schemes. As one can see, our proposed
high-performance architecture achieves 27×, 21×, and 19×
better performances for key generation, signing, and verify-
ing operations compared to [24], respectively. However, our
Design I is larger than this work and utilizes 3× and 5× more
slice and DSP resources, respectively. Furthermore, Turan and
Verbauwhede [24] have 10×, 8×, and 6× more delays than
our efficient Ed25519 scheme for key generation, signing,
and verifying, respectively, while ours occupies similar DSP
counts and reduces 11% utilized slices. Hence, the superiority
of computation over the Montgomery domain compared to
the Edwards domain is shown despite coordinating conversion
overheads.

Therefore, Design I has 89%, 86%, and 84% improvements
in terms of A·T (Slice_count × Time) for key generation, sign-
ing, and verifying algorithm compared to [24], respectively.

Authorized licensed use limited to: University of South Florida. Downloaded on June 29,2021 at 01:01:31 UTC from IEEE Xplore. Restrictions apply.

1304 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 29, NO. 7, JULY 2021

TABLE VI

COMPARISON OF DIFFERENT DESIGNS FOR THE DIGITAL SIGNATURE ALGORITHM

TABLE VII

EDDSA PARAMETERS FOR ED25519 [26]

Algorithm 1 EdDSA Key Generation Operations [26]

Moreover, Design II shows a significant improvement in terms
of A ·T , i.e., 91%, 88%, and 84% for key generation, signing,
and verifying algorithm compared to [24], respectively.

Considering the importance of utilized DSP in the FPGA-
based architecture, we present a comparison in terms of
Ad · T (DSP_count × Time). Thus, our Design I improves
81%, 76%, and 73% efficiencies in terms of Ad · T for
key generation, signing, and verifying algorithm compared
to [24], respectively. Furthermore, our proposed Design II
improves 90%, 87%, and 82% efficiencies in this term for key
generation, signing, and verifying algorithm compared to [24],
respectively.

Moreover, the work in [23] proposed a nonconstant-time
point multiplication core for Ed25519. Although it can com-
pute 1838 ECPM per second, the architecture is vulnerable
to SPA. Notably, the reported area does not include all the
required modules for providing a digital signature, such as
hash function and modulus L reduction. We explore that
SHA-512 increases almost 25% utilized area in Ed25519.

Algorithm 2 EdDSA Signing Operations [26]

Algorithm 3 EdDSA Verifying Operations [26]

Applying DPA countermeasures decreases efficiency due to
executing more operations. However, our protected Design I
(and II) improves almost 95% (96%) and 89% (94%) effi-
ciency in terms of A · T and Ad · T for signing a message.

To compare different implementation approaches,
some software-based and heterogeneous configurations of
Ed25519 are listed in Table VI. With a variety of performance
optimizations in hardware implementations, the throughput
is significantly increased compared with software-based

Authorized licensed use limited to: University of South Florida. Downloaded on June 29,2021 at 01:01:31 UTC from IEEE Xplore. Restrictions apply.

BISHEH-NIASAR et al.: CRYPTOGRAPHIC ACCELERATORS FOR DIGITAL SIGNATURE BASED ON Ed25519 1305

implementation and heterogeneous computing. Hence, our
design achieves almost 40 times speedup compared to [36].

V. CONCLUSION

In this article, we have proposed hardware design strategies
for recently proposed Edwards curve digital signatures
Ed25519 on Xilinx Zynq-7020 FPGA, including advanced
protection against side-channel attacks. The proposed
architectures achieve above 84% efficiency improvement
of the area–time product using pipelined architecture and
interleaved multiplication. Our high-performance and efficient
architectures compute more than 6200 and 2200 signings and
5100 and 1500 verifications per second, respectively. We also
show the design can outperform recently presented works
using only moderate resource requirements.

APPENDIX

Ed25519 has some critical parameters shown in Table VII.
EdDSA algorithms are described in Algorithms 1–3, respec-
tively. According to [26], an encoded integer S = enc(S) can
be shown in its little-endian convention. In addition, when
an element P = (x, y) is encoded, its y-coordinate should be
encoded first, and then, its most significant bit is substituted by
the least significant bit of its x . The dom(x, y) string function
is blank for Ed25519.

ACKNOWLEDGMENT

The authors would like to thank the reviewers for their
comments.

REFERENCES

[1] D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B. Yang, “High-
speed high-security signatures,” in Proc. 13th Int. Workshop, Nara,
Japan, Sep./Oct. 2011, pp. 124–142.

[2] A. C. Aldaya, C. P. García, and B. B. Brumley, “From A to Z:
Projective coordinates leakage in the wild,” Cryptol. ePrint Arch.,
Tech. Rep. 2020/432, 2020.

[3] K. Ryan, “Return of the hidden number Problem: A widespread and
novel key extraction attack on ECDSA and DSA,” Trans. Cryptograph.
Hardw. Embedded Syst., vol. 2019, no. 1, pp. 146–168, Nov. 2018.

[4] D. J. Bernstein and T. Lange. (2011). Security Dangers of the
Nist Curves. [Online]. Available: https://www.hyperelliptic.org/tanja/
vortraege/20130531.pdf

[5] P. W. Shor, “Algorithms for quantum computation: Discrete logarithms
and factoring,” in Proc. 35th Annu. Symp. Found. Comput. Sci., Santa Fe,
NM, USA, Nov. 1994, pp. 124–134.

[6] N. Bindel, U. Herath, M. McKague, and D. Stebila, “Transitioning to
a quantum-resistant public key infrastructure,” in Proc. IACR, 2017,
p. 460.

[7] M. Bisheh-Niasar, R. Azarderakhsh, and M. Mozaffari-Kermani,
“High-speed NTT-based polynomial multiplication accelerator for
CRYSTALS-Kyber post-quantum cryptograsphy,” Cryptol. ePrint Arch.,
Tech. Rep. 2021/563, 2021.

[8] (2020). Things That Use Ed25519. [Online]. Available: https://ianix.
com/pub/ed25519-deployment.html

[9] P. Kietzmann, L. Boeckmann, L. Lanzieri, T. C. Schmidt, and
M. Wählisch, “A performance study of crypto-hardware in the low-end
IoT,” in Proc. IACR, 2021, p. 58.

[10] M. Bisheh Niasar, R. Azarderakhsh, and M. Mozaffari Kermani, “Effi-
cient hardware implementations for elliptic curve cryptography over
Curve448,” in Proc. 21st Int. Conf. Cryptol. India, Bangalore, India,
Dec. 2020, pp. 228–247.

[11] M. Bisheh-Niasar, R. Azarderakhsh, and M. Mozaffari-Kermani, “Area-
time efficient hardware architecture for signature based on Ed448,” IEEE
Trans. Circuits Syst. II, Exp. Briefs, early access, Mar. 23, 2021, doi:
10.1109/TCSII.2021.3068136.

[12] B. Glas, O. Sander, V. Stuckert, K. D. Müller-Glaser, and J. Becker,
“Prime field ECDSA signature processing for reconfigurable embed-
ded systems,” Int. J. Reconfigurable Comput., vol. 2011, Oct. 2011,
Art. no. 836460.

[13] B. Panjwani, “Scalable and parameterized hardware implementation of
elliptic curve digital signature algorithm over prime fields,” in Proc.
Int. Conf. Adv. Comput., Commun. Informat. (ICACCI), Sep. 2017,
pp. 211–218.

[14] J. Vliegen et al., “A compact FPGA-based architecture for elliptic curve
cryptography over prime fields,” in Proc. 21st IEEE Int. Conf. Appl.-
Specific Syst., Architectures Processors, 2010, pp. 313–316.

[15] D. Zhang and G. Bai, “High-performance implementation of SM2 based
on FPGA,” in Proc. 8th IEEE Int. Conf. Commun. Softw. Netw. (ICCSN),
Jun. 2016, pp. 718–722.

[16] P. Sasdrich and T. Güneysu, “Efficient elliptic-curve cryptography
using curve25519 on reconfigurable devices,” in Proc. 10th Int. Symp.,
D. Goehringer, M. D. Santambrogio, J. M. P. Cardoso, and K. Bertels,
Eds., Vilamoura, Portugal, 2014, pp. 25–36.

[17] P. Sasdrich and T. Güneysu, “Implementing Curve25519 for side-
channel-protected elliptic curve cryptography,” ACM Trans. Reconfig-
urable Technol. Syst., vol. 9, no. 1, pp. 1–15, Nov. 2015.

[18] P. Sasdrich and T. Gäneysu, “Exploring RFC 7748 for hardware imple-
mentation: Curve25519 and Curve448 with side-channel protection,”
J. Hardw. Syst. Secur., vol. 2, no. 4, pp. 297–313, Dec. 2018.

[19] M. Bisheh Niasar, R. El Khatib, R. Azarderakhsh, and
M. Mozaffari-Kermani, “Fast, small, and area-time efficient
architectures for key-exchange on Curve25519,” in Proc. IEEE 27th
Symp. Comput. Arithmetic (ARITH), Jun. 2020, pp. 72–79.

[20] P. Koppermann, F. DeSantis, J. Heyszl, and G. Sigl, “X25519 hard-
ware implementation for low-latency applications,” in Proc. Euromicro
Conf. Digit. Syst. Design, P. Kitsos, Ed., Limassol, Cyprus, 2016,
pp. 99–106.

[21] P. Koppermann, F. De Santis, J. Heyszl, and G. Sigl, “Low-
latency X25519 hardware implementation: Breaking the 100 microsec-
onds barrier,” Microprocessors Microsyst., vol. 52, pp. 491–497,
Jul. 2017.

[22] R. Salarifard and S. Bayat-Sarmadi, “An efficient low-latency point-
multiplication over Curve25519,” IEEE Trans. Circuits Syst. I, Reg.
Papers, vol. 66, no. 10, pp. 3854–3862, Oct. 2019.

[23] M. A. Mehrabi and C. Doche, “Low-cost, low-power FPGA implemen-
tation of ED25519 and CURVE25519 point multiplication,” Information,
vol. 10, no. 9, p. 285, Sep. 2019.

[24] F. Turan and I. Verbauwhede, “Compact and flexible FPGA implemen-
tation of Ed25519 and X25519,” ACM Trans. Embedded Comput. Syst.,
vol. 18, no. 3, pp. 1–21, 2019.

[25] N. Samwel, L. Batina, G. Bertoni, J. Daemen, and R. Susella, “Breaking
Ed25519 in WolfSSL,” Cryptol. ePrint Arch., Tech. Rep. 2017/985,
2017.

[26] S. Josefsson and I. Liusvaara, Edwards-Curve Digital Signature Algo-
rithm (EdDSA), document RFC 8032, 2017, pp. 1–60.

[27] D. J. Bernstein, “Curve25519: New Diffie-Hellman speed records,” in
Proc. 9th Int. Conf. Theory Pract. Public-Key Cryptogr., M. Yung,
Y. Dodis, A. Kiayias, and T. Malkin, Eds., New York, NY, USA, 2006,
pp. 207–228.

[28] H. Hisil, K. K.-H. Wong, G. Carter, and E. Dawson, “Twisted edwards
curves revisited,” Cryptol. ePrint Arch., Tech. Rep. 2008/522, 2008.

[29] M. Hamburg, “Fast and compact elliptic-curve cryptography,” in Proc.
IACR, 2012, p. 309.

[30] K. Okeya and K. Sakurai, “Efficient elliptic curve cryptosystems from
a scalar multiplication algorithm with recovery of the Y-coordinate on a
montgomery-form elliptic curve,” in Proc. Int. Workshop, Paris, France,
May 2001, pp. 126–141.

[31] D. F. Aranha, F. R. Novaes, A. Takahashi, M. Tibouchi, and Y. Yarom,
“Ladderleak: Breaking ECDSA with less than one bit of nonce leakage,”
Cryptol. ePrint Arch., Tech. Rep. 2020/615, 2020.

[32] J. Coron, “Resistance against differential power analysis for ellip-
tic curve cryptosystems,” in Proc. Cryptograph. Hardw. Embedded
Syst., Ç. K. Koç and C. Paar, Eds., Worcester, MA, USA, 1999,
pp. 292–302.

[33] P. Schwabe. (Sep. 2013). Scalar-Multiplication Algorithms. [Online].
Available: https://cryptojedi.org/peter/data/eccss-20130911b.pdf

[34] M. Bisheh Niasar, R. Azarderakhsh, and M. Mozaffari Kermani, “Opti-
mized architectures for elliptic curve cryptography over Curve448,” in
Proc. IACR, 2020, p. 1338.

[35] M. Scott, “On the deployment of curve based cryptography for the
Internet of Things,” in Proc. IACR, 2020, p. 514.

[36] H. Fujii and D. F. Aranha, “Curve25519 for the cortex-M4 and beyond,”
in Proc. 5th Int. Conf. Cryptol. Inf. Secur. Latin Amer., Havana, Cuba,
Sep. 2017, pp. 109–127.

[37] D. Bernstein and T. Lange. EBACS: ECRYPT Benchmarking of Cryp-
tographic Systems. Accessed: Mar. 22, 2021. [Online]. Available:
https://bench.cr.yp.to

Authorized licensed use limited to: University of South Florida. Downloaded on June 29,2021 at 01:01:31 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TCSII.2021.3068136

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

