
2942 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 68, NO. 8, AUGUST 2021

Area-Time Efficient Hardware Architecture
for Signature Based on Ed448

Mojtaba Bisheh-Niasar , Reza Azarderakhsh , and Mehran Mozaffari Kermani , Senior Member, IEEE

Abstract—In this brief, we proposed a highly-optimized FPGA-
based implementation of the Ed448 digital signature algorithm.
Despite significant progress in elliptic curve cryptography (ECC)
implementations, Ed448 hardware architecture, to the best of our
knowledge, has not been investigated in the literature. In this
work, we demonstrate a high throughput while maintaining low
resource architecture for Ed448 by employing a new combined
algorithm for refined Karatsuba-based multiplier with precise
scheduling. Furthermore, a compact distributed memory unit is
developed to increase speed while keeping the area low. Our
variable-base-point Ed448 architecture performs 327 signatures
and 189 verifications per second at a notably higher security level
of 224 bits, using not more than 6,617 Slices and 16 DSPs on a
Xilinx Artix-7 FPGA. We also proposed possible countermeasures
and extensions to Ed448 to counter the physical attacks.

Index Terms—Elliptic curve cryptography, EdDSA, Ed448,
FPGA, side-channel.

I. INTRODUCTION

EDWARDS-CURVES Digital Signature Algorithm
(EdDSA) is a secure digital signature algorithm (DSA)

supporting unified addition formulas without exception.
EdDSA was first proposed by Bernstein et al. [1], includ-
ing two efficient Ed25519 and Ed448 schemes offering
127 and 224-bit security, respectively. EdDSA satisfies high-
performance and constant-time requirements for implementing
applications at a higher security level as a part of the TLS and
OpenSSH protocols. Moreover, Safe-Curve policies are con-
sidered in designing EdDSA to address existing weaknesses
in many ECDSA curves [2]. Since hybrid cryptosystems are
crucial to transition to post-quantum cryptography (PQC),
implementing a highly optimized EdDSA scheme is an active
research area. Nevertheless, Ed448 has not got sufficient
study, especially in the field of hardware implementation.

Most existing implementations of DSA bring into focus
on at most 128-bit security level curves, such as NIST P256
and Ed25519. However, [3] proposed a scalable architecture
in prime fields over NIST recommended field sizes up to

Manuscript received February 22, 2021; revised March 12, 2021; accepted
March 19, 2021. Date of publication March 23, 2021; date of current version
July 30, 2021. This work was supported in part by NSF under Grant 1801341,
and in part by NIST under Grant 60NANB16D246. This brief was recom-
mended by Associate Editor C. W. Sham. (Corresponding author: Mojtaba
Bisheh-Niasar.)

Mojtaba Bisheh-Niasar and Reza Azarderakhsh are with CEECS
Department, Florida Atlantic University, Boca Raton, FL 33431 USA (e-mail:
mbishehniasa2019@fau.edu; razarderakhsh@fau.edu).

Mehran Mozaffari Kermani is with the CSE Department, University of
South Florida, Tampa, FL 33620 USA (e-mail: address: mehran2@usf.edu).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TCSII.2021.3068136.

Digital Object Identifier 10.1109/TCSII.2021.3068136

521-bit, employing a hardware/software co-design approach.
Additionally, a multi-core FPGA scheme was presented in [4]
with an arbitrary prime modulus up to 528-bit. It was applied
over different curves, including NIST curves, Brainpool P512
r1, and SEC P256 k1. However, leakage exploitation using
horizontal attacks was not studied in these works.

Recently, few works implement Curve448 scalar multiplica-
tion on FPGA. The authors in [5] proposed a high-performance
architecture employing schoolbook multiplication. It has been
extended in [6] by adding some countermeasures to pro-
tect against side-channel analysis (SCA) attacks. The work
of [7] proposed a compact and fast point multiplication
targeting area-constrained and time-constrained applications.
Furthermore, [8] presented a LUT-based architecture employ-
ing the most significant digit multiplier. However, FPGA-based
implementations of Curve448 cannot be directly compared to
ours because Ed448 requires more computation units, e.g.,
hash core and modulo L reduction, and it takes more clock
cycles. In particular, some dedicated optimizations cannot be
applied to the Ed448 scheme since the architecture is reused to
perform non-modular multiplication and modulo L reduction.

The work of [9] presented an implementation of AVR
and MSP embedded processors for Ed448. It employed the
subtractive Karatsuba approach to implementing three-level
Karatsuba multiplication and the two-level Karatsuba squaring
on low-end Internet-of-Thing devices.

This brief proposes, to the best of our knowledge, the
first hardware implementation of the Ed448, while previous
works implemented ECDSA. The EdDSA provides a high-
secure scheme employing a hash function to generate a random
number in a secretly deterministic way which copes with the
well-known pitfall in implementing DSA and ECDSA. We
propose a new approach for implementing variable-base-point
Ed448 architecture employing refined Karatsuba multiplication
combined with computation of the restricted-X coordinates of
a point over its isogenous map to reduce the computation com-
plexity. Our proposed pure hardware implementation presents
a novel design of the Ed448 algorithm, with higher efficiency,
enhanced maximum frequency, and lower area costs, which
is an essential aspect of the embedded system’s architecture.
The previous works [3], [4] implemented a significant num-
ber of DSP and BRAM cores; this could seriously reduce
the efficiency. Our work utilizes only a few DSPs, employing
pipeline architecture with comparable cycle counts, advancing
the hardware implementation efficiency.

The compact structure of the proposed design over other
competitive designs can be used in embedded systems and
Internet-of-Things (IoT) devices where energy consumption is
critical as a hardware accelerator to offload computations from
the microcontroller units (MCU). In particular, our objective
is to create a system-on-chip (SoC) crypo-accelerator with an

1549-7747 c© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of South Florida. Downloaded on August 02,2021 at 22:52:27 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-1311-8679
https://orcid.org/0000-0002-6921-6868
https://orcid.org/0000-0003-4513-3109

BISHEH-NIASAR et al.: AREA-TIME EFFICIENT HARDWARE ARCHITECTURE FOR SIGNATURE BASED ON ED448 2943

MCU such as ARM processors that achieve high area-time
efficiency, rather than creating a very low area or ultra-high-
performance implementations at the high cost of the other.
Our implementation can also be integrated as an off-chip solu-
tion; however, other criteria, such as performance, are often
as important or more important than efficiency in the exter-
nal crypto-chip design, which is beyond of this work. Not only
does our architecture inherently provide protection against tim-
ing and SPA attacks, but also advanced security mechanisms
to avoid DPA attacks are included, which is missing in the
literature. We implement the proposed architecture in a Xilinx
Artix-7 FPGA and provide performance evaluations.

The rest of this brief is organized as follows: Section II
reviews the preliminaries. Our proposed architecture is
presented in Section III. Section IV presents the results and
comparison with previous work. Finally, we conclude this brief
in Section V.

II. PRELIMINARIES

Twisted Edwards curve E is defined by E : ax2 + y2 =
1 + dx2y2 where P = (x, y) ∈ Fp × Fp. Twisted Edwards
curve offers fast execution of high-security elliptic curve
cryptography employing a unified addition formula between
P3 = (x3, y3) = (x1, y1)+ (x2, y2) such that:

(x3, y3) =
(x1×y2+x2×y1

1+d×x1×x2×y1×y2
,

y1×y2−a×x1×x2

1−d×x1×x2×y1×y2

)
(1)

EdDSA provides a high-performance digital signature algo-
rithm, which is more resistant to side-channel attacks [10]. The
detailed schedule of the EdDSA algorithm can be described
into three major functions as follows:
• KeyGen(s): This algorithm takes a security parameter s as

input and outputs a secret (signing) key sk and a public
(verification) key pk with associated message space M.

• Sign(sk, m): This algorithm takes a secret key sk and a
message m ∈M as input and outputs a signature (R, S).

• Verify(pk, m, R, S): This algorithm takes a public key pk,
a message m ∈ M, and a signature (R, S) as input and
outputs an acceptance validation b ∈ {0, 1}.

For correctness, we require that for all s ∈ Fp, for all
(sk, pk)← keyGen(s), and for all m ∈M it holds that:

Verify(pk, m, sign(sk, m)) = 1 (2)

Ed448 is an equivalent to a Montgomery curve and an
untwisted Edwards curve called Ed448-Goldilocks introduced
by Hamburg [11]. The centerpiece of Ed448 is elliptic curve
point multiplication (ECPM) Q = [k]P including k times con-
secutive point addition over prime field p = 2448 − 2224 − 1.
Ed448 group operation can be performed efficiently using
homogeneous coordinates introduced in [12], [13].

For group arithmetic based on Ed448, the computation
can be performed on projective coordinates [10]. A mapping
between affine coordinates (x, y) and projective coordinates
(X, Y, Z) for a point P is defined by x = X/Z and y = Y/Z.
Let P1 = (X1, Y1, Z1) and P2 = (X2, Y2, Z2), P3 = P1 + P2
can be computed using the following formula:

A = Z1 · Z2, B = A2, C = X1 · X2, D = Y1 · Y2,

E = d · C · D, F = B− E, G = B+ E,

X3 = A · F · ((X1 + Y1) · (X2 + Y2)− C − D),

Y3 = A · G · (D− C), Z3 = F · G (3)

Algorithm 1 Proposed Point Multiplication Over Ed448
Input: k, PEd_Base = (xEd_Base, yEd_Base)
Require: QEd = k · PEd_Base
Initial step: convert the base point from Edwards
curve to its isogenous Montgomery curve: PMont_Base =
isogenous_map(PEd_Base), kMont = k � 2, P0 = 0, P1 =
PMont_Base

1: for i from 445 downto 0 do //Montgomery Ladder

2: if kMonti = 0 then
3: P1 = P0 + P1
4: P0 = 2× P0
5: else
6: P0 = P0 + P1
7: P1 = 2× P1
8: end if
9: end for
10: YMont = y_recovery(P0 = (XMont, ZMont))
11: (XEd, YEd, ZEd) = dual_isogenous_map(XMont, YMont, ZMont)

12: (xEd, yEd) = (XEd/ZEd, YEd/ZEd)
13: return QEd = (xEd, yEd)

In [12], the authors introduced an efficient unified point
addition and a dedicated point doubling formula at the cost
of 10M+ 1S+ 1k+ 7A and 3M+ 4S+ 5A, where M, S, k,
and A are a multiplication, a squaring, a multiplication by a
constant, and an addition cost, respectively.

A. Side-Channel Protection

Since ECDSA is vulnerable against SCA shown in [14],
implementing the SCA-protected EdDSA algorithm gained
more attention. Implementing a resistant scheme for Ed448
signatures can be achieved easier due to the unified addition
formula. On the other hand, although ECDSA can be broken
in case of reusing nonce in only a few signatures, Ed448 does
not employ a unique random number for each signature.

A constant-time and secret-independent computation should
be performed to protect architecture against timing and simple
power analysis (SPA) attacks. Furthermore, point randomiza-
tion can be applied to the projective coordinate representa-
tion of the base point to prevent differential power analysis
(DPA) attacks [15]. The authors in [6] introduced point re-
randomization applied to the Montgomery ladder to enhance
architecture against horizontal attacks.

III. TARGET ARCHITECTURES FOR ED448

A. Proposed ECPM Algorithm

To reduce the computation complexity, we propose perform-
ing ECPM over Montgomery curve instead of the Edwards
curve. Algorithm 1 describes our proposed Ed448 point
multiplication, including four major steps:
• Step 1: The base point should be mapped from Edwards

domain to Montgomery domain such that:

xMont = y2
Ed/x2

Ed (4)

yMont = yEd · (2− x2
Ed − y2

Ed)/x3
Ed (5)

However, as the base point is constant, we assume the
Montgomery base point is available without any cost.

Authorized licensed use limited to: University of South Florida. Downloaded on August 02,2021 at 22:52:27 UTC from IEEE Xplore. Restrictions apply.

2944 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 68, NO. 8, AUGUST 2021

TABLE I
IMPLEMENTATION RESULTS ON ARTIX-7 FPGA

• Step 2: The efficient Montgomery ladder in projec-
tive coordinates should be performed to achieve the
Montgomery domain result.

• Step 3: Since computation is implemented using
restricted-X coordinate on the Montgomery curve, we
have to recover the Y-coordinate result proposed by [16].

• Step 4: A map from the Montgomery domain is imple-
mented to achieve a result in Edwards domain such
that:

xEd = 4 · (x2
Mont − 1) · yMont

(x2
Mont − 1)2 + 4 · y2

Mont

(6)

yEd = xMont · ((x2
Mont − 1)2 − 4 · y2

Mont)

2 · (x2
Mont + 1) · y2

Mont − xMont · (x2
Mont − 1)2

(7)

Since the dual isogenous map has a degree of 4, the
Montgomery ladder in step 2 should be performed for two
fewer iterations.

B. Proposed Hardware Architecture

Although Ed448 is implemented over an extended field size
of 448-bit long, it provides impressive flexibility to design
an efficient architecture for different platforms. Moreover, its
special prime with golden ratio 2224 makes it suitable in many
security applications employing fast Karatsuba multiplication.

The proposed architecture consists of three stages: (i) the top
stage includes FSM, controller, and ROM, (ii) the lower stage
includes the field arithmetic logic unit, and (iii) the middle
stage includes hash function, reduction handlers, memory unit,
and secret key buffer. Redundant representation is employed
in the proposed Ed448 architecture. Hence, we decompose an
integer into four chunks in radix 2448/4 = 2112. Therefore,
the data path is considered 128-bit to allow several operations
before causing an overflow.

1) Modular Multiplication: Suppose A (and B) is decom-
pused such that A = A1 × 2224 + A0, Ai = a2i+1 × 2112 + a2i,
and ai = ai1 × 264 + ai0. Employing Karatsuba multiplication
for the top level results in:

C = A · B = (A10 · B10 − A0B0)2
224 + (A1B1 + A0B0) (8)

where A10 = (A1 + A0) and B10 = (B1 + B0).
The authors in [17] introduced the refined Karatsuba identity

formula to decrease the number of required addition. Applying
refined Karatsuba identity in middle-level can decompose
A0B0, A1B1, and A10B10 to reduce a 225×225-bit multiplica-
tion to three 114×114-bit multiplications. For example, A0B0
is decomposed such that:

A0B0 = (1− 2112) · (a0b0 − 2112a1b1)+ 2112(a10b10) (9)

Fig. 1. Modular multiplier in the proposed efficient Ed448 scheme. Ext.ai
and Ext.bi are read from, and ci are stored to the main memory unit. The Int.
RAM module is a dedicated RAM only for multiplier.

Fig. 2. Timing diagram of the proposed scheduling scheme for A×B, where A
(and B) is decomposed such that A = A1×2224+A0, Ai = a2i+1×2112+a2i,
and ai = ai1 × 264 + ai0.

We implement a pipelined schoolbook multiplier (PSM)
illustrated in Fig. 1. To control the execution sequence effi-
ciently, we design a specific controller and an internal memory
for multiplier using a dedicated ROM and RAM. In our
proposed architecture, the partial multiplications are computed
with PSM by selecting the operands from the input registers
with two multiplexers. Results of the partial multiplications
are accumulated into a 256-bit register. Triggering the enable
command starts the multiplier to read from the external
memory and write the intermediate data to its internal memory.
Eventually, applying the last reduction stage prepares the
product to store in the external memory.

We also design a precise scheduling to increase efficiency
presented in Fig. 2. Since PSM requires 4 cycles to read the
input registers, the next decomposed part in middle-level is
started each 4-cycle. The ith middle-level recombination can
be performed after i × 3 × 4 + 5 clock cycles. After per-
forming a0b0, a1b1, and a10b10, only 5 additions are needed
in middle-level recombination to compute A0B0 which are
pipelined with A1B1 computing. For example, in order to
compute a0b0 − 2112a1b1, only the second digit of a0b0 is
subtracted by the first digit of a1b1. The second digit of a1b1
should be subtracted from 0, which can be neglected in this

Authorized licensed use limited to: University of South Florida. Downloaded on August 02,2021 at 22:52:27 UTC from IEEE Xplore. Restrictions apply.

BISHEH-NIASAR et al.: AREA-TIME EFFICIENT HARDWARE ARCHITECTURE FOR SIGNATURE BASED ON ED448 2945

step. Therefore, at the end of this step, the result is repre-
sented in three digits. Then, we shift a0b0 − 2112a1b1 and
subtract from itself to compute (1 − 2112)(a0b0 − 2112a1b1).
Thus, two subtractions are executed which results in four dig-
its. To compute (1 − 2112)(a0b0 − 2112a1b1) + 2112(a10b10),
two additions are performed between the second and third
digits of the previous result and the first and second digits of
a10b10. Eventually, four digits are achieved to represent A0B0
with performing only five additions. The same procedure is
considered to produce A1B1 and A10B10.

We also employ the interleaved reduction technique into the
top-level recombination. In this approach, the 2224×(A10B10−
A0B0) is reduced before adding with (A0B0+A1B1). In the top
level, the two most significant digits of A0B0 cancel themselves
considering the reduction algorithm.

2) Inversion: FLT-based inversion is used in the last stage
of ECPM to convert back to affine from projective coordinates.

3) Hash Unit: Generating a random number in Ed448 is con-
sidered by employing a highly secure hash function rather than
entrusting it to an implementer, such as in ECDSA. Although
SHAKE256 recommended by [10] is particularly defined not
to be a hash function, it can be employed considering (i) a
fixed-output size of 114-byte long, and (ii) its sufficient 256-bit
security level against collisions and preimages. In our design,
SHAKE256, based on Keccak[r = 1088, c = 512], takes an
arbitrary input in 1088-bit chunks and provides 912-bit output.
The SHA-3 was designed to be fast in hardware. Hence, its
latency is significantly smaller than the ECPM.

4) Mod L Reduction and Non-Modular Multiplication: A
912-bit scalar taken from SHAKE256 should be reduced by
modulus 446-bit value of L. We propose a constant-time exe-
cution to implement this reduction. Let x be x = x12456 + x0,
where x1 and x0 have 456-bit in four 114-bit chunks. The
group order can be presented by L = 2446 − l0, where l0 has
224-bit. Hence, the first round of reduction is performed as
follows:

x mod L ≡ x1210 × (L+ l0)+ x0 ≡ x1 · l0210 + x0 (10)

The product of 456×224-bit non-modular multiplication is
shifted by 10 bits and added with x0. The output is a 691-bit
long value shown by x′. For the next round, let x′ = x′12446+
x′0, hence, x′1 and x′0 have 245 and 446-bit, respectively. The
second and third round of the reduction can be performed to
achieve a 446-bit long result as follows:

x′ mod L ≡ x′12446 + x′0 ≡ x′1 × (L+ l0)+ x′0 ≡ x′1 · l0 + x′0 (11)

To implement non-modular multiplication, we reuse our
modular multiplication architecture while the modulo p is
excluded. This technique keeps the utilized area low.

5) Double-Point Multiplication: Verifying algorithm
requires two ECPMs, while double-point multiplication can
be used to reduce two scalar multiplications to only one and
results in improving efficiency significantly. We employ a
modified version of Strauss’ trick presented in [21]. Since
both scalars in the verifying operation are not secret, SCA
countermeasures are not required for the verifying.

6) SCA Countermeasures: As we implement constant-time
and secret-independent ECPM algorithms, e.g., Montgomery
ladder and FLT, our design is resistant against timing and SPA
attacks. To enhance our architecture against DPA attacks, we
randomize the base point in projective coordinates as follows:

Prandomized
Mont_Base = (λ · XMont_Base, λ · YMont_Base, λ) (12)

This technique provides basic protection against information
leakage through a DPA attack. Designing a random number
generator is not in the scope of this study, so we assume
Prandomized

Mont_Base are provided externally to be used in our variable-
base-point architecture. Point re-randomization against hori-
zontal attacks requires two additional multiplications in each
step of the Montgomery ladder, which results in extending
algorithm latency.

IV. EXPERIMENTAL RESULTS AND COMPARISON

We implement the proposed architecture on a Xilinx Artix-
7 (XC7A100TFGG484-3) using Xilinx Vivado 2018.2. The
implementation results for the protected scheme are presented
in Table I. Our design occupied 25k LUTs, 12.5k FFs, and 16
DSPs, while the required memory is implemented using the
distributed memory. The maximum frequency is 123 MHz;
hence, our efficient Ed448 scheme can generate 327 keys per
second. Moreover, it signs and verifies a 1088-bit message in
3.06 ms (327 OP/s) and 5.29 ms (189 OP/s), respectively.

With a variety of performance optimizations in hard-
ware implementations, the number of total clock cycles is
reduced notably compared with AVR implementation as well
as MSP results. Hence, our design achieves almost 1,000 times
speedup compared to [9].

This brief proposes the first FPGA-based EdDSA archi-
tecture over Ed448. Moreover, complete signature and veri-
fication implementations with certificate handling are scarce.
Hence, a direct comparison of the area utilization and
performance is difficult since the implementations target dif-
ferent schemes and security levels, and they use different
platforms and technologies. Nevertheless, we compare our
design with previous DSA hardware designs with security
levels 81-bit to 260-bit. The comparison results are reported
in Table II, while the area-time product is used to eval-
uate efficiency. As far as different designs have different
security levels, we extrapolate their performance, assuming
time complexity is growing cubic in the field size [5]. To
have a fair comparison, we evaluate the performance of the
proposed design on the state-of-the-art targeted platforms,
which changes performance by a factor of 1.34×, 0.79×,
and 0.62× on Kintex-7, Virtex-5, and Virtex-6 compared to
Artix-7.

Compared with [3], our design reduces the required
resources and total time using refined Karatsuba multiplica-
tion in a pipelined architecture. Thus, we improve efficiency
by 87% and 92% compared with [3] at security level 192 and
260-bit, respectively. Furthermore, compared with [4], which
improves performance through homogeneous Co-Z coordi-
nate representation, our proposed architecture achieves faster
speed due to computing over restricted-X coordinates of a
point on the Montgomery curve. Our architecture achieves
74% and 53% improvement compared to [4] at security level
192 and 260-bit, respectively. As one can see, implementing a
highly-protected scheme reduces 15% efficiency due to adding
two additional modular multiplications at the end of each
Montgomery ladder iteration. The proposed design requires
21.4% less energy for generating a signature considering the
cubic time complexity compared to the best previous work.

The work of [6] implemented a Curve448 ECPM based
on [5] results. While a direct comparison is not possi-
ble, this architecture can operate at 2.8× higher frequency
since Curve448 requires smaller circuit compared to Ed448.

Authorized licensed use limited to: University of South Florida. Downloaded on August 02,2021 at 22:52:27 UTC from IEEE Xplore. Restrictions apply.

2946 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 68, NO. 8, AUGUST 2021

TABLE II
COMPARISON OF DIFFERENT DESIGNS FOR DIGITAL SIGNATURE ALGORITHM

However, this design needs almost 25% more cycles and heav-
ily relies on FPGA primitives occupying 14 BRAMs and 2×
more DSPs compared to ours. The work of [7] utilized 9
BRAMs, while needs 37% more cycles. However, the three
functions, i.e., keygen, signing, and verifying, are all realized
on a single hardware component in our design.

V. CONCLUSION

In this brief, we proposed a method for FPGA-based
implementation of the digital signature algorithm on Ed448
using optimized refined Karatsuba multiplication over its
isogenous map and high-throughput pipelined architecture.
Implementation results show that our architecture can signif-
icantly improve the efficiency in terms of area-time product,
which made it practical for resource constraint applications in
higher-level security requirements.

The trick of working on the isogenous twisted Edwards
curve introduced in [22] by Hamburg can reduce the cost of
point addition. A combination of this trick with a window-
based ladder can be employed to design a high-performance
Ed448 scheme. We keep this as future work.

ACKNOWLEDGMENT

The authors would like to thank the reviewers for their com-
ments. Also, they thank Mike Hamburg for his constructive
comments.

REFERENCES

[1] D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y. Yang,
“High-speed high-security signatures,” in Proc. 13th Int. Workshop
Cryptograph. Hardw. Embedded Syst. (CHES), Nara, Japan, 2011,
pp. 124–142.

[2] D. J. Bernstein and T. Lange. (May 2011). Security Dangers of the
NIST Curves. [Online]. Available: https://www.hyperelliptic.org/tanja/
vortraege/20130531.pdf

[3] B. Panjwani, “Scalable and parameterized hardware implementation of
elliptic curve digital signature algorithm over prime fields,” in Proc. Int.
Conf. Adv. Comput. Commun. Informat. (ICACCI), Udupi, India, 2017,
pp. 211–218.

[4] B.-Y. Peng, Y.-C. Hsu, Y.-J. Chen, D.-C. Chueh, C.-M. Cheng,
and B.-Y. Yang, “Multi-core FPGA implementation of ECC with
homogeneous Co-Z coordinate representation,” in Proc. 15th Int. Conf.
Cryptol. Netw. Security (CANS), Milan, Italy, 2016, pp. 637–647.

[5] P. Sasdrich and T. Güneysu, “Cryptography for next generation TLS:
Implementing the RFC 7748 elliptic Curve448 cryptosystem in hard-
ware,” in Proc. 54th Annu. Design Autom. Conf. (DAC), Austin, TX,
USA, 2017, pp. 1–6.

[6] P. Sasdrich and T. Güneysu, “Exploring RFC 7748 for hardware imple-
mentation: Curve25519 and Curve448 with side-channel protection,” J.
Hardw. Syst. Security, vol. 2, no. 4, pp. 297–313, 2018.

[7] M. Bisheh Niasar, R. Azarderakhsh, and M. Mozaffari Kermani,
“Efficient hardware implementations for elliptic curve cryptography
over Curve448,” in Proc. 21st Int. Conf. Cryptol. India (Indocrypt),
Dec. 2020, pp. 228–247.

[8] Y. A. Shah, K. Javeed, M. I. Shehzad, and S. Azmat, “LUT-based high-
speed point multiplier for Goldilocks-Curve448,” IET Comput. Digit.
Techn., vol. 14, no. 4, pp. 149–157, Jul. 2020.

[9] H. Seo, “Compact implementations of curve Ed448 on low-end IoT
platforms,” ETRI J., vol. 41, no. 6, pp. 863–872, 2019.

[10] S. Josefsson and I. Liusvaara, “Edwards-curve digital signature algo-
rithm (EdDSA),” IETF, RFC 8032, 2017.

[11] M. Hamburg, “Ed448-goldilocks, a new elliptic curve,” IACR Cryptol.
ePrint Archive, Lyon, France, Rep. 2015/625, 2015.

[12] D. J. Bernstein and T. Lange, “Faster addition and doubling on elliptic
curves,” IACR Cryptol. ePrint Archive, Lyon, France, Rep. 2007/286,
2007.

[13] H. Hisil, K. K.-H. Wong, G. Carter, and E. Dawson, “Twisted
edwards curves revisited,” IACR Cryptol. ePrint Archive, Lyon, France,
Rep. 2008/522, 2008.

[14] K. Ryan, “Return of the hidden number problem. A widespread and
novel key extraction attack on ECDSA and DSA,” IACR Trans. Cryptogr.
Hardw. Embed. Syst., vol. 2019, no. 1, pp. 146–168, 2019.

[15] J.-S. Coron, “Resistance against differential power analysis for ellip-
tic curve cryptosystems,” in Cryptographic Hardware and Embedded
Systems (CHES), Ç. K. Koç and C. Paar, Eds. Heidelberg, Germany:
Springer, 1999, pp. 292–302.

[16] K. Okeya and K. Sakurai, “Efficient elliptic curve cryptosystems from
a scalar multiplication algorithm with recovery of the y-coordinate
on a Montgomery-form elliptic curve,” in Proc. 3rd Int Workshop
Cryptograph. Hardw. Embedded Syst. (CHES), Paris, France, May 2001,
pp. 126–141.

[17] D. J. Bernstein, “Batch binary Edwards,” in Proc. 29th Annu. Int.
Cryptol. Conf. Adv. Cryptol. (CRYPTO), Santa Barbara, CA, USA,
Aug. 2009, pp. 317–336.

[18] E. Wajih, B. Noura, M. Mohsen, and T. Rached, “Low power elliptic
curve digital signature design for constrained devices,” Int. J. Security,
vol. 6, no. 2, pp. 1–14, 2012.

[19] A. Sghaier, M. Zeghid, C. Massoud, and M. Mahchout, “Design
and implementation of low area/power elliptic curve digital signature
hardware core,” Electronics, vol. 6, no. 2, p. 46, 2017.

[20] M. Bisheh Niasar, R. El Khatib, R. Azarderakhsh, and
M. Mozaffari-Kermani, “Fast, small, and area-time efficient archi-
tectures for key-exchange on Curve25519,” in Proc. 27th IEEE
Symp. Comput. Arithmetic (ARITH), Portland, OR, USA, Jun. 2020,
pp. 72–79.

[21] P. Schwabe. (Sep. 2013). Scalar-Multiplication Algorithms. [Online].
Available: https://cryptojedi.org/peter/data/eccss-20130911b.pdf

[22] M. Hamburg, “Twisting Edwards curves with isogenies,” IACR Cryptol.
ePrint Archive, Lyon, France, Rep. 2014/027, 2014.

Authorized licensed use limited to: University of South Florida. Downloaded on August 02,2021 at 22:52:27 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

