
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 29, NO. 5, MAY 2021 1033

Transactions Briefs
CRC-Based Error Detection Constructions for FLT and ITA

Finite Field Inversions Over GF(2m)
Alvaro Cintas Canto , Mehran Mozaffari Kermani , and Reza Azarderakhsh

Abstract— Binary extension finite fields GF(2m) have received promi-
nent attention in the literature due to their application in many mod-
ern public-key cryptosystems and error-correcting codes. In particular,
the inversion over GF(2m) is crucial for current and postquantum cryp-
tographic applications. Schemes such as Fermat’s little theorem (FLT)
and the Itoh–Tsujii algorithm (ITA) have been studied to achieve better
performance; however, this arithmetic operation is a complex, expensive,
and time-consuming task that may require thousands of gates, increasing
its vulnerability chance to natural defects. In this work, we propose
efficient hardware architectures based on cyclic redundancy check (CRC)
as error detection schemes for state-of-the-art finite field inversion over
GF(2m) for a polynomial basis. To verify the derivations of the for-
mulations, software implementations are performed. Likewise, hardware
implementations of the original finite field inversions with the proposed
error detection schemes are performed over Xilinx field-programmable
gate array (FPGA) verifying that the proposed schemes achieve high
error coverage with acceptable overhead.

Index Terms— Cyclic redundancy check (CRC), fault detection,
field-programmable gate array (FPGA), finite field inversion.

I. INTRODUCTION

Finite fields and their hardware implementations have received
prominent attention due to their extensive use in cryptography and
error-correcting codes. The computation of inversion is the most
time-consuming one. To perform inversion over GF(2m), many
solutions have been proposed to increase the performance of such
operation for polynomial basis field element representation. Fermat’s
little theorem (FLT) and the Itoh–Tsujii algorithm (ITA) are two main
approaches to compute finite field inversion over GF(2m). The latter
approach was first intended to be applied over binary extension fields
with a normal basis [1]; however, in more recent studies, it has
been shown that it can be used for other field element represen-
tations [2], [3]. These approaches extensively use multiplication and
squaring, requiring thousands of gates. Constructions using such large
designs are vulnerable to side-channel attacks, where an adversary
exploits system leakages such as power consumption, electromagnetic
emissions, or acoustic emanations to reveal secret information to an
adversary [4]. It is a complex task to implement such architectures
resilient, not only do these structures need low overhead but the error
coverage needs to be acceptable. Deteriorated performance can lead
to catastrophic results for sensitive applications; accordingly, research
has focused on ways to eliminate errors and achieve greater reliability
with reasonable overhead [5]–[7].

In this brief, error detection schemes are proposed for both FLT
and ITA algorithms, which are used to perform finite field inversion
over GF(2m) with polynomial basis field element representation.

Manuscript received October 18, 2020; revised January 7, 2021 and
February 1, 2021; accepted February 21, 2021. Date of publication March 10,
2021; date of current version April 28, 2021. This work was supported by
the U.S. National Science Foundation (NSF) under Award SaTC-1801488.
(Corresponding author: Mehran Mozaffari Kermani.)

Alvaro Cintas Canto and Mehran Mozaffari Kermani are with the Depart-
ment of Computer Science and Engineering, University of South Florida,
Tampa, FL 33620 USA (e-mail: alvarocintas@usf.edu; mehran2@usf.edu).

Reza Azarderakhsh is with the Department of Computer and Electrical
Engineering and Computer Science, Florida Atlantic University, Boca Raton,
FL 33431 USA (e-mail: razarderakhsh@fau.edu).

Digital Object Identifier 10.1109/TVLSI.2021.3061987

These error detection schemes are based on cyclic redundancy check
(CRC), providing high error coverage. Even though we work with
specific values of m, the proposed schemes for error detection are
applicable to different applications no matter how large m is. For
verification purposes, software implementations are performed to
derive the formulations. Additionally, we benchmark the overhead of
the proposed architectures by implementing the original finite field
inversion block with our schemes on field-programmable gate array
(FPGA), evaluating the error coverage obtained by integrating our
error detection schemes into the original architectures. Although the
proposed architectures are implemented on FPGA, similar results are
expected on application-specific integrated circuit (ASIC) platforms.
Moreover, we expect similar results for different FPGA families and
ASIC libraries.

Our work is structured as follows. Preliminaries are discussed
in Section II, where we introduce both FLT and ITA algorithms.
Section III presents finite filed inversion over GF(2m) for poly-
nomial basis field element representation, CRC schemes, and the
derivation of our proposed error detection schemes. In Section IV,
we implement the proposed architectures to show the overhead of the
derived signatures used with the original architectures. In this section,
by implementing our proposed architectures on FPGA, we benchmark
our presented work. Finally, our summary of findings is presented in
Section V.

II. PRELIMINARIES

In this work, we consider finite fields GF(2m) with m > 1. The
elements that the finite field inversion blocks use as inputs can be
represented as A = �m−1

i=0 ai xi , ai ∈ {0, 1}, where ai ’s are the
coordinates of the input. Each finite field inversion uses an irreducible
polynomial or field polynomial denoted by f (x). The inverse of an
element A �= 0 in the field GF(2m) is expressed as A−1 � GF(2m)
where A · A−1 = 1. To find the inverse of an element A, both FLT
and ITA schemes are studied in this work.

FLT specifies that the inverse of an element A can be derived as
follows: A2m−1 ≡ 1 mod f (x) �⇒ A2m−2 · A ≡ 1 mod f (x) �⇒
A2m−2 · A · A−1 ≡ A−1 mod f (x) �⇒ A2m−2 ≡ A−1 mod f (x).

For hardware implementations, this theorem leads to a total of 2m −2
finite field multiplications, and it may require additional memory to
store the precomputed values. Approaches to reduce the complexity of
inversions have been studied, e.g., square-and-multiply algorithm [8],
Kaliski inversion [9], and ITA algorithm [1]–[3].

The method introduced by Itoh and Tsujii achieves less amount
of multiplications by an efficient use of addition chains. The
inverse can be rewritten as A−1 = [βm−1(A)]2, where βk(A) =
A2k−1 ∈ GF(2m) and k ∈ N. To calculate an addition chain
C = {c1, c2, . . . , ct } with a field polynomial f (x) of m degree,
we have c1 = 1 and ct = m − 1. If ci is even, ci−1 = ci/2 and
if ci is odd, ci−1 = ci − 1. Moreover, the Multiplicative Inversion
Addition-Chain ITA is shown in Algorithm 1.

III. PROPOSED FAULT DETECTION ARCHITECTURES

Practical and low-complexity error detection approaches are
required to provide subblocks of inversion constructions with accept-

1063-8210 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of South Florida. Downloaded on July 30,2021 at 01:34:57 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-6800-3302
https://orcid.org/0000-0003-4513-3109
https://orcid.org/0000-0002-6921-6868

1034 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 29, NO. 5, MAY 2021

Algorithm 1 Multiplicative Inversion Addition-Chain ITA

able remedies against faults. The main operations to perform finite
field inversion of an element A in the field GF(2m) are GF(2m)
multiplication, GF(2m) squaring, and GF(2m) addition. To perform
GF(2m) multiplication, three modules are used: sum, α, and pass-
thru modules, which are described in [10]. The sum module adds two
elements in GF(2m); the α module multiplies an element of GF(2m)
by α and it reduces the result modulo f (x); and the pass-thru module
multiplies a GF(2m) element by a GF(2) element.

To perform GF(2m) addition, the sum module is used, where two
elements in GF(2m) are added by utilizing m XOR gates. For finite
field squaring, we utilize an architecture that only uses two modules,
i.e., the α2 and the sum modules. In α2 module, an element A is
multiplied by α2 to achieve

A(x) · x2 = am−1 · xm+1 + am−2 · xm + · · · + a0 · x2

where xm+1 ≡ fm−1 · xm + fm−2 · xm−1 +· · ·+ f0 · x mod f (x) and
xm ≡ fm−1 · xm−1 + fm−2 · xm−2 + · · · + f0 mod f (x). Moreover,
the output X coordinates are expressed as

xi =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

am−1 · fi−1 + (am−1 fm−1 + am−2) · fi + ai−2

2 ≤ i ≤ m − 1

am−1 + (am−1 · fm−1 + am−2) · f1, i = 1

am−1 · fm−1 + am−2, i = 0.

In this work, we propose efficient fault detection schemes based
on CRC. CRC is based on the theory of cyclic error-correcting codes.
A generator polynomial g(α) is required to implement CRC, which
becomes the divisor in a long division of polynomials. The message
becomes the dividend, the quotient is discarded, and the result is gen-
erated by the remainder. A fixed number of check bits is appended to
the data and these check bits are checked when the output is obtained
to detect any errors. The selection of the CRC scheme in our proposed
constructions has been done to leverage overhead-aware architectures,
providing a high error detection coverage. In this work, the National
Institute of Standards and Technology (NIST) field GF(2163) [11] is
used with CRC-10; however, the proposed fault detection schemes are
applicable to any field size and CRC signature. Additionally, the field
polynomial used is f (x) = x163 + x7 + x6 + x3 + 1. The choice of
the utilized CRC relies on the constraints of each system. In other
words, for applications such as game consoles in which performance
is critical (and power consumption is not because these are plugged
in), one can increase the size of CRC. However, for deeply embedded
systems such as implantable and wearable medical devices, smaller
CRC is preferred.

CRC signatures in the sum and pass-thru modules do not require
as much derivations as the ones needed for α and α2 modules. For
the sum module, the predicted CRC-1 signature p̂x is equal to the
sum of the parity bits of the input elements A and B in GF(2m),
p̂X = pA + pB . Moreover, for the pass-thru module, p̂X = b · pA,
where b is an element in GF(2). For any CRC-X scheme, instead of
summing all the parity bits (which is done in CRC-1), it checks X
bits at a time in the sum and pass-thru modules. In the following,
the NIST field GF(2163) is used with CRC-10; however, the proposed
fault detection schemes are applicable to any field size and CRC
signature.

A. α Module: Case Study for CRC-10

For m = 163 with CRC-10, the generator polynomial used is
g(x) = x10 + x9 + x5 + x4 + x + 1. To find its signatures, g(x)

is used as follows:
x10 ≡ x9 + x5 + x4 + x + 1 mod g(x)

x11 ≡ x9 + x6 + x4 + x2 + 1 mod g(x)

x12 ≡ x9 + x7 + x4 + x3 + 1 mod g(x)

...

x160 ≡ x9 + x8 + x7 + x6 + x5 + x + 1 mod g(x)

x161 ≡ x8 + x7 + x6 + x5 + x4 + x2 + 1 mod g(x)

x162 ≡ x9 + x8 + x7 + x6 + x5 + x3 + x mod g(x).

In the α module, the multiplication of any element in GF(2163)
by x gives

A(x) · x = a162 · x163 + a161 · x162 + · · · + a1 · x2 + a0 · x

where x163 = f162x162 + f161x161 + · · · + f1x + f0 mod f (x).
The irreducible polynomial f (x) = x163 + x7 + x6 + x3 + 1 is

applied to obtain

A(x) · x ≡ a162x7 + a162x6 + a162x3 + a162 + a161x162

+ a160x161 + a159x160 + · · · + a3x4 + a2x3 + a1x2

+ a0x mod f (x).

Then, the generator polynomial g(x) is applied to calculate the
predicted CRC-10 for GF(2163) in the α module (PCRC10163)

A(x) · x ≡ a162(x7 + x6 + x3 + 1) + a161

× (x9 + x8 + x7 + x6 + x5 + x3 + x) + a160

× (x8 + x7 + x6 + x5 + x4 + x2 + 1)

+ a159(x9 + x8 + x7 + x6 + x5 + x + 1)

+ · · · + a3x4 + a2x3 + a1x2 + a0x mod g(x)

or denoting XOR operations with sum symbol for brevity

PCRC10163

=
⎛
⎝a161 +

159	
i=158

ai +
154	

i=153

ai +
151	

i=148

ai

+
145	

i=143

ai +
141	

i=138

ai +
136	

i=129

ai +
127	

i=125

ai +
123	

i=121

ai

+
118	

i=117

ai +
115	

i=113

ai + a109 + a107 + a105 + a102

+
99	

i=97

ai +
93	

i=91

ai +
89	

i=88

ai + a86 + a84 +
82	

i=80

ai

+ a77 +
74	

i=73

ai +
67	

i=66

ai +
61	

i=59

ai + a57 + a54 +
50	

i=49

ai

+ a47 +
45	

i=44

ai +
42	

i=38

ai +
36	

i=35

ai +
32	

i=31

ai + a27

+
25	

i=23

ai + a17 +
12	

i=8

ai

⎞
⎠ x9

+ · · · +
⎛
⎝a162 +

160	
i=159

ai +
155	

i=154

ai +
152	

i=149

ai +
146	

i=144

ai

Authorized licensed use limited to: University of South Florida. Downloaded on July 30,2021 at 01:34:57 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 29, NO. 5, MAY 2021 1035

+
142	

i=139

ai +
137	

i=130

ai +
128	

i=126

ai +
124	

i=122

ai

+
119	

i=118

ai +
116	

i=114

ai + a110 + a108 + a106 + a103

+
100	

i=98

ai +
94	

i=92

ai +
90	

i=89

ai + a87 + a85

+
83	

i=81

ai + a78 +
75	

i=74

ai +
68	

i=67

ai +
62	

i=60

ai + a58

+ a55 +
51	

i=50

ai + a48 +
46	

i=45

ai +
43	

i=39

ai +
37	

i=36

ai

+
33	

i=32

ai + a28 +
26	

i=24

ai + a18 +
13	

i=9

ai

⎞
⎠ .

We rename the coefficients to calculate the actual CRC-10 for
GF(2163) in the α module (ACRC10163): a161 as γ162, . . ., a0 as γ1

A(x) · x ≡ γ162x162 + γ161x161 + γ160x160

+ · · · + γ4x4 + γ3x3 + γ2x2 + γ1x1 + γ0 mod g(x)

and the generator polynomial is applied as follows:

A(x) · x ≡ γ162(x9 + x8 + x7 + x6 + x5 + x3 + x)

+ γ161(x8 + x7 + x6 + x5 + x4 + x2 + 1) + γ160

× (x9 + x8 + x7 + x6 + x5 + x + 1) + · · · + γ4x4

+ γ3x3 + γ2x2 + γ1x1 + γ0 mod g(x)

or

ACRC10163

=
⎛
⎝γ162 +

160	
j=159

γ j +
155	

j=154

γ j +
152	

j=149

γ j

+
146	

j=144

γ j +
142	

j=139

γ j +
137	

j=130

γ j +
128	

j=126

γ j +
124	

j=122

γ j

+
119	

j=118

γ j +
116	

j=114

γ j + γ110 + γ108 + γ106 + γ103

+
100	

j=98

γ j +
94	

j=92

γ j +
90	

j=89

γ j + γ87 + γ85 +
83	

j=81

γ j

+ γ78 +
75	

j=74

γ j +
68	

j=67

γ j +
62	

j=60

γ j + γ58 + γ55

+
151	

j=150

γ j + γ48 +
46	

j=45

γ j +
43	

j=39

γ j +
37	

j=36

γ j

+
33	

j=32

γ j + γ28 +
26	

j=24

γ j + γ18 +
13	
j=9

γ j

⎞
⎠ x9

+ · · · +
⎛
⎝

161	
j=160

γ j +
156	

j=155

γ j +
153	

j=150

γ j +
147	

j=145

γ j +
143	

j=140

γ j

+
138	

j=131

γ j +
129	

j=127

γ j +
125	

j=123

γ j +
120	

j=119

γ j

+
117	

j=115

γ j + γ111 + γ109 + γ107 + γ104 +
101	

j=99

γ j

+
95	

j=93

γ j +
91	

j=90

γ j + γ88 + γ86 +
84	

j=82

γ j + γ79

+
76	

j=75

γ j +
69	

j=68

γ j +
63	

j=61

γ j + γ59 + γ56

+
52	

j=51

γ j + γ49 +
47	

j=46

γ j +
44	

j=40

γ j +
38	

j=37

γ j

+
34	

j=33

γ j + γ29 +
27	

j=25

γ j + γ19 +
14	

j=10

γ j + γ0

⎞
⎠ .

The entire finite field multiplier with our error detection schemes is
presented in Fig. 1, where Actual Cyclic Redundancy Check (ACRC)
and Predicted CRC (PCRC) stand for actual CRC signatures and
predicted CRC signatures, respectively. In Fig. 1, only one error
flag (EF) is shown for clarity; however, for CRC-10, which is the case
study proposed in this brief, ten EFs are computed on each module.
Next, for α2 module, the NIST field GF(2163) is used with CRC-10;
however, the proposed fault detection schemes are applicable to any
field size and CRC signature.

B. α2 Module: Case Study for CRC-10

In the α2 module, the multiplication of any element in GF(2163)

by x gives

A(x) · x2 = a162 · x164 + a161 · x163 + · · · + a1 · x3 + a0 · x2

where x164 = f162x163 + f161x162 + · · · + f1x2 + f0x mod f (x)

and x163 = f162x162 + f161x161 + · · · + f1x + f0 mod f (x).
The irreducible polynomial f (x) = x163 + x7 + x6 + x3 + 1 is

applied to obtain

A(x) · x2 ≡ a162x8 + a162x7 + a162x4 + a162x + a161x7

× a161x6 + a161x3 + a161 + a160x162 + a159x161

+ · · · + a3x5 + a2x4 + a1x3 + a1x2 mod f (x).

Then, the generator polynomial g(x) is applied to calculate the
predicted CRC-10 for GF(2163) in the α2 module (PCRC10163)

A(x) · x2 ≡ a162(x8 + x7 + x4 + x) + a161(x7 + x6 + x3 + 1)

+ a160(x9 + x8 + x7 + x6 + x5 + x3 + x)

+ a159(x8 + x7 + x6 + x5 + x4 + x2 + 1)

+· · · + a3x5 + a2x4 + a1x3 + a0x2 mod g(x)

or

PCRC10163

=
⎛
⎝a160 +

158	
i=157

ai +
153	

i=152

ai +
150	

i=147

ai

+
144	

i=142

ai +
140	

i=137

ai +
135	

i=128

ai +
126	

i=124

ai +
122	

i=120

ai

+
117	

i=116

ai +
114	

i=112

ai + a108 + a106 + a104 + a101

+
98	

i=96

ai +
92	

i=90

ai +
88	

i=87

ai + a85 + a83 +
81	

i=79

ai

Authorized licensed use limited to: University of South Florida. Downloaded on July 30,2021 at 01:34:57 UTC from IEEE Xplore. Restrictions apply.

1036 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 29, NO. 5, MAY 2021

Fig. 1. Finite field multiplier with the proposed error detection schemes based on CRC.

+ a76 +
73	

i=72

ai +
66	

i=65

ai +
60	

i=58

ai + a56 + a53

+
49	

i=48

ai + a46 +
44	

i=43

ai +
41	

i=37

ai +
35	

i=34

ai

+
31	

i=30

ai + a26 +
24	

i=22

ai + a16 +
11	

i=7

ai

⎞
⎠ x9

+· · · +
⎛
⎝a161 +

159	
i=158

ai +
154	

i=153

ai +
151	

i=148

ai +
145	

i=143

ai

+
141	

i=138

ai +
136	

i=129

ai +
127	

i=125

ai +
123	

i=121

ai +
118	

i=117

ai

+
115	

i=113

ai + a109 + a107 + a105 + a102 +
99	

i=97

ai

+
93	

i=91

ai +
89	

i=88

ai + a86 + a84 +
82	

i=80

ai + a77

+
74	

i=73

ai +
67	

i=66

ai +
61	

i=59

ai + a57 + a54 +
50	

i=49

ai

+ a47 +
45	

i=44

ai +
42	

i=35

ai +
32	

i=31

ai + a27 +
25	

i=23

ai

+ a17 +
12	

i=8

ai

⎞
⎠ .

We rename the coefficients to calculate the actual CRC-10 for
GF(2163) in the α2 module (ACRC10163), obtaining the same
formulations as for the α module, not presented for the sake of
brevity.

IV. ERROR COVERAGE AND FPGA IMPLEMENTATIONS

To calculate the error coverage provided by the differ-
ent error detection schemes presented in this brief, the total
number of operations need to be taken into account. For
the finite field GF(2163), the addition chain C obtained is

TABLE I

STEPS NEEDED TO PERFORM THE INVERSE OF

A ∈ GF(2163) USING ADDITION CHAIN

C = {1, 2, 4, 5, 10, 20, 40, 80, 81, 162}. The computational steps to
calculate the inverse of A ∈ GF(2163) using such an addition chain
are illustrated in Table I, where Vi ’s are the integers in the addition
chain, Vj = Vi−1, and Uk = Vi − Vj .

As is shown in Table I, 9 finite field multiplications and 162 finite
field squarings are required. Each multiplication in GF(2163) uses
162 sum modules, 162 α modules, and 163 pass-thru modules; on
the other hand, each squaring in GF(2163) uses 162 sum modules
and 162 α2 modules. Therefore, the total number of operations
and signatures is 9 · (162 + 162 + 163) + 162 · (162 + 162) or
close to 5.7 × 104. The error coverage percentage is calculated by
performing 100 ·(1−(1/2)sign)%, where sign denotes the number of
signatures. For the case of GF(2163), the error coverage percentage is
100(1 − (1/2)5.7×104

)% or very close to 100%. The proposed error
detection schemes target embedded systems where low-complexity
realizations are highly important. Therefore, we have implemented
our error detection schemes for the entire inversion architecture of the
NIST field GF(2163) with CRC-10 for Xilinx FPGA family Kintex
Ultrascale+ device xcku15p-ffve1760-1LV-i using the Vivado tool
and Verilog as the hardware design entry. The proposed schemes in
this brief have an area overhead of 25.51% in terms of configurable
logic blocks (CLB) look-up tables (LUTs) (198 402 CLB LUTs for
the inversion architecture without any error detection schemes and
248 807 when CRC-10 is applied to the original inversion block).

Authorized licensed use limited to: University of South Florida. Downloaded on July 30,2021 at 01:34:57 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 29, NO. 5, MAY 2021 1037

The choice of the utilized signature relies on the constraints of each
system. For applications where performance is critical, the signature
size can be increased while for deeply embedded systems, smaller
signatures are preferred. The overhead achieved is acceptable taking
into account the high error coverage obtained.

No previous research has been performed on this type of scheme
for detecting errors in finite field inversions using FLT and ITA archi-
tectures to the best of our knowledge. Reyhani and Hasan [10] derived
formulations for parity signatures in GF(2m) for multiplication (not
inversion), providing one EF on each module. The major drawback
of parity signatures is that their error coverage is approximately 50%,
i.e., if the number of faults is even, the approach would not be able
to detect the faults. This highly predictable countermeasure can be
circumvented by intelligent fault injection. With the CRC signatures
derived in this brief, each module outputs ten EFs, making each
module practicable immune to fault analysis attacks.

V. CONCLUSION

Finite field inversion is a complex, expensive, and time-consuming
task that may require thousands of gates. In this brief, error detection
schemes are proposed for both FLT and ITA algorithms, which are
used to perform finite field inversion over GF(2m) with polynomial
basis field element representation. Such error detection schemes are
based on CRC signatures and they can be used in any application
that utilizes finite field inversions. We have derived closed formula-
tions for CRC-10 signatures over GF(2163) and implemented these
signatures on FPGA to benchmark the overhead and show their
suitability for constrained embedded systems. The proposed schemes
in this brief have an area overhead of 25.51% in terms of CLB
LUTs (198 402 CLB LUTs for the inversion architecture without
any error detection schemes and 248 807 when CRC-10 is applied
to the original inversion block). As the results show, the proposed
error detection architectures achieve very high error coverage at the
cost of acceptable overhead. We would also like to note that the

proposed approaches are oblivious of the hardware platform and
indifferent in error coverage with respect to permanent, transient, and
long transient faults, making them suitable for different applications
ranging from classical/postquantum cryptography to error detecting
codes.

REFERENCES

[1] T. Itoh and S. Tsujii, “A fast algorithm for computing multiplicative
inverses in GF(2m) using normal bases,” Inf. Comput., vol. 78, no. 3,
pp. 171–177, Sep. 1988.

[2] J. Guajardo and C. Paar, “Itoh-Tsujii inversion in standard basis and its
application in cryptography and codes,” Des., Codes Cryptogr., vol. 25,
pp. 207–216, Dec. 2002.

[3] F. Rodriguez-Henriquez, N. A. Saqib, and N. Cruz-Cortes, “A fast
implementation of multiplicative inversion over GF(2m),” in Proc. Int.
Symp. Inf. Technol., pp. 574–579, Apr. 2005.

[4] J. S. Coron, A. Roy, and S. Vivek, “Fast evaluation of polynomials over
binary finite fields and application to side-channel countermeasures,” in
Proc. CHES, 2014, pp. 170–187.

[5] S. Subramanian, M. Mozaffari Kermani, R. Azarderakhsh, and
M. Nojoumian, “Reliable hardware architectures for cryptographic block
ciphers LED and HIGHT,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 36, no. 10, pp. 1750–1758, Oct. 2017.

[6] M. Mozaffari-Kermani and A. Reyhani-Masoleh, “Reliable hardware
architectures for the third-round SHA-3 finalist Grostl benchmarked
on FPGA platform,” in Proc. IEEE Int. Symp. Defect Fault Tolerance
VLSI Nanotechnol. Syst. (DFT), Vancouver, BC, Canada, Oct. 2011,
pp. 325–331.

[7] M. Mozaffari Kermani and R. Azarderakhsh, “Reliable hash trees for
post-quantum stateless cryptographic hash-based signatures,” in Proc.
DFT, Oct. 2015, pp. 103–108.

[8] A. Menezes, P. Van Oorschot, and S. Vanstone, Handbook of Applied
Cryptography. Boca Raton, FL, USA: CRC Press, 1997.

[9] B. S. Kaliski, “The Montgomery inverse and its applications,” IEEE
Trans. Comput., vol. 44, no. 8, pp. 1064–1065, Aug. 1995.

[10] A. Reyhani and M. Hasan, “Error detection in polynomial basis multi-
pliers over binary extension fields,” in Proc. CHES, 2002, pp. 515–528.

[11] D. Hankerson and A. Menezes, “NIST elliptic curves,” in Encyclopedia
of Cryptography and Security. Boston, MA, USA: Springer, 2011,
pp. 843–844.

Authorized licensed use limited to: University of South Florida. Downloaded on July 30,2021 at 01:34:57 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

