
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 68, NO. 4, APRIL 2021 1403

Fault Detection Architectures for Inverted Binary
Ring-LWE Construction Benchmarked on FPGA

Ausmita Sarker, Student Member, IEEE, Mehran Mozaffari Kermani , Senior Member, IEEE,
and Reza Azarderakhsh , Member, IEEE

Abstract—Ring learning with errors (RLWE) is an efficient
lattice-based cryptographic scheme that has worst-case reduction
to lattice problem, conjectured to be quantum-hard. Ring-
BinLWE is an optimized variant of RLWE problem using
binary error distribution, resulting in highly-efficient hardware
implementation. Efficient and low-complexity architectures in
hardware, thwarting natural and malicious faults, are essential
for lattice-based post-quantum cryptography (PQC) algorithms.
In this brief, we explore efficient fault detection approaches
for implementing the Ring-BinLWE problem. This brief, for
the first time, investigates fault detection schemes for all three
stages of RLWE encryption. Utilizing the stuck-at fault model,
we employ recomputing with encoded operands schemes to
achieve high error coverage. We simulate and implement our
schemes on a field-programmable gate array (FPGA) platform.
Our schemes provide low hardware overhead (area overhead
of 15.74%, delay overhead of 7.74%, and power consumption
overhead of 4.06%), with high error coverage, which can be suit-
able for resource-constrained as well as high-performance usage
models.

Index Terms—Field-programmable gate array (FPGA), ring-
binary learning with errors (Ring-BinLWE), key encapsulation
mechanisms (KEM), post-quantum cryptography (PQC).

I. INTRODUCTION

LATTICE-BASED cryptography has revolutionized post-
quantum cryptography (PQC) through realizable exe-

cution, efficiency, and low parameter size. Learning with
errors (LWE) is a highly-explored worst-case lattice problem
and provides an efficient scheme. Ring learning with errors
(RLWE) is a family of assumptions which lead to one of the
most versatile encryption schemes, compared to the standard
lattice problems. A new variant of RLWE is proposed in the
research presented in [1], involving a binary distribution to
choose binary coefficients instead of Gaussian, namely, Ring-
BinLWE. A hardware-optimized scheme of Ring-BinLWE

Manuscript received August 26, 2020; accepted September 18, 2020. Date
of publication September 22, 2020; date of current version March 26, 2021.
This work was supported by the U.S. National Science Foundation under
Award SaTC-1801488. This brief was recommended by Associate Editor B.-
H. Gwee. (Corresponding author: Mehran Mozaffari Kermani.)

Ausmita Sarker and Mehran Mozaffari Kermani are with the Department
of Computer Science and Engineering, University of South Florida, Tampa,
FL 33620 USA (e-mail: asarker@usf.edu; mehran2@usf.edu).

Reza Azarderakhsh is with the Department of Computer and Electrical
Engineering and Computer Science, Florida Atlantic University, Boca Raton,
FL 33431 USA (e-mail: razarderakhsh@fau.edu).

Digital Object Identifier 10.1109/TCSII.2020.3025857

proposed in [2] utilizes an inverted ring of Ring-BinLWE
(InvRBLWE) and 2’s-complement notation range.

In this brief, we introduce fault detection constructions on
Ring-BinLWE architecture, which can be tailored based on the
needs in terms of reliability and the restrictions in terms of
the added overhead in constrained applications. Past research
works have been performed for fault detection schemes on
several cryptosystems [3]–[10]. These include research works
on different public and symmetric-key cryptosystems, and
are mainly based on error-detecting codes on classical cryp-
tosystems. Very few works exist on fault detection of PQC,
e.g., hash-based secure signature [11], the number-theoretic
transformation of lattice-based cryptosystems [12], and ring
polynomial multiplication of RLWE [13]. Some examples
for error detection in general computations and classical
cryptography exist as well [14], [15].

The main contributions of this brief are as follows:
• We devise architectures for key-generation and encryption

of Ring-BinLWE problem. The construction clarifies the
gate-level architectures of these two stages and supports
the validity of the augmented fault detection modules.

• We introduce fault detection schemes for Ring-BinLWE
within the ring R = Zq[x]

xn+1 , for all three phases, i.e.,
key generation, encryption, and decryption. The proposed
fault detection schemes are based on encoding, recomput-
ing, and decoding the operands. We apply these schemes
to three stages of InvRBLWE architecture, which can be
tailored to apply on other RLWE architectures as well.

• The assessed results of the proposed schemes show
acceptable error coverage. To assess the overhead, we
implement the proposed schemes on a Xilinx field-
programmable gate array (FPGA) family.

II. PRELIMINARIES

RLWE provides both encryption and portions of the signa-
ture scheme of ideal lattices, within a short keyspace, resulting
in faster algebraic operations. The cryptographic schemes
of RLWE problem perform addition and multiplication over
R = Z[x]

xn+1 , and Rq = Zq[x]
xn+1 , where q is a prime number

and n is power of 2. Using xn + 1 as modulus leverages
the efficiency during implementation of anti-circular rotation
through shift operation. Among multiple variants of RLWE,
the work in [16] proposes binary error distribution instead of
the Gaussian, namely, Ring-BinLWE, which led to smaller
key and ciphertext sizes and no expensive computations of
Gaussian distributions. Moreover, another improvement on

1549-7747 c© 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of South Florida. Downloaded on March 28,2021 at 18:48:04 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-4513-3109
https://orcid.org/0000-0002-6921-6868

1404 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 68, NO. 4, APRIL 2021

Ring-BinLWE was achieved in [2] using 2’s complement nota-
tion of the coefficients, namely, InvRBLWE, by selecting the
range of Rq = Zq[x]

xn+1 = (−� q
2�, � q

2� − 1) and eliminating the
need for modular reduction. In the following, we describe the
steps for InvRBLWE problem.

• Key Generation stage GEN(a): Let us assume two error
polynomials r1, r2 ∈ {0, 1}n and let p = r1 − ar2 ∈ Rq.
The public key is the polynomial pair (a, p) ∈ Rq and the
secret key is r2.

• Encryption stage ENC(a, p, m): The input message m ∈
{0, 1}n is encoded into a polynomial m̃ = encode (m) ∈
Rq, where encode is defined as follows: s

(m0, m1, . . . , mn−1) →
n−1∑

i=0

mi(−q

2
)xi. (1)

The ciphertext can be obtained as c1 = ae1 + e2 and
c2 = pe1 + e3 + m̃, where e1, e2 and e3 ∈ Rq are three
error polynomials, sampled from {0, 1}n.

• Decryption stage DEC(c1, c2, r2): To recover m from m̃,
first m̃ = c1r2 + c2 is computed. Decoding of m from m̃
can be performed using the following decode function:

DECODE : Rq → {0, 1}n

n−1∑

i=0

aix
i → (m0, m1, . . . , mn−1)

mi =
{

0 when |ai − i − � n−3
2 �| >

q
4

1 else.
(2)

III. PROPOSED FAULT DETECTION SCHEMES

From most recent attack [9], we get 73/84 bits and 140/190
bits of quantum/classical security from the parameter sets of
(n, q) = (256, 256) and (512, 256), respectively. Our schemes
are applicable to both security levels and we apply recomput-
ing schemes on three stages of InvRBLWE. Our motivation
is to achieve low-complexity schemes; thus, we ensure that
the augmented fault detection schemes lead to acceptable
overhead, compared to the original architecture.

A. Recomputing With Encoded (Shifted) Operands

In this brief, we adopt shifting the operands by doubling the
inputs and dividing the outputs by 2, which can be interpreted
as shifting the input to the left and right one place in binary,
respectively.

1) Key Generation: The multiplexer select input,
Norm/RESO, shown in Fig. 1, determines whether the
original or the recomputed operation (denoted as recomputing
with shifted operands (RESO)) will be performed. During
Norm/RESO = 0, i.e., the original operation, the NAND gate
produces a.r2, while the left adder of the top block, completes
the 2’s complement of a.r2 by adding 1 and produces −a.r2.
The right adder input is either −a.r2 or r1 during multiplexer
select S1=0 and 1, respectively. The anti-circular rotation is
implemented in hardware by adding the registers Res[i] to the
next adder, and the negative of Res[n−1] to the right adder of
the top block. The architecture performs multiplication when
the control signal S1 is set to zero, through the shift-and-add

Fig. 1. Hardware construction of recomputing with shifted operands for key
generation of InvRBLWE.

method, requiring n parallel adders of 8 bits. In such a cycle,
all the adders, except the top one, performs add operation
to find the product of a and r2. A shift register feeds each
bit of r1, r2, namely, r1[i], r2[i], during each clock cycle of
multiplication, while r1, r2 ∈ {0, 1}n. Each bit of n-bit length
vector, r1 and r2 is extended as 8-bit (log2q) as the results
are stored in registers of 8-bit length. Such notation, using
the index i, e.g., r2[i], has been used throughout this brief,
representing each bit of binary vector being stretched to 8-bit
using a shift register to maintain consistency.

During run2, i.e., the recomputed operation, we multiply a
and r1 with 2, which can be represented as each being left
shifted one place and the output being Subrun2 = 2(r1 − ar2).
The left shift explains the size of the a and r2 becoming 9 bits
in RESO operation, instead of 8 in the Norm cycle. Afterward,
to compute the decoded operands, we discard the least signif-
icant bit of the output. In Fig. 1 and subsequent figures, the
gray-colored box represents the original architecture, whereas
the components outside the box, represent the fault detection
modules. For example, the multiplexers, the shifters, and the
comparator modules outside the gray-colored box in Fig. 1 are
our added circuitry for fault detection.

2) Encryption: The encryption operations provide two out-
puts, c1 and c2. Based on Fig. 2(a), the output c1 can be
computed using logic circuitry similar to that of key genera-
tion. The original architecture requires multiplication of a and
e1, which is performed during the S1=0 cycle of the mul-
tiplexer. The addition is complete through multiplexer when
S1=1. The anti-circular rotation is performed as described
above. In order to perform recomputing on c1, we set mul-
tiplexer select Norm/RESO to 1 for RESO operation. During
the encoding, the output of Fig. 2(a) adders provide Addrun2 =
2(ae1 + e2). We extract the most significant 8 bits of the out-
put and compare it with the Norm cycle output. To construct
the architecture computing c2 = pe1 + e3 + m, we assume
the m is pre-computed from (1). According to Fig. 2(b), dur-
ing multiplexer select S1=0, we multiply the p and e1, then
during S1=1, the addition of e3 and m is performed. During
RESO run, we encode twice of c2 by shifting p, e3, and m
one place to left each, which gives us the encoded output,
Addrun2 = 2(pe1 +e3 +m). The decoding operation halves the

Authorized licensed use limited to: University of South Florida. Downloaded on March 28,2021 at 18:48:04 UTC from IEEE Xplore. Restrictions apply.

SARKER et al.: FAULT DETECTION ARCHITECTURES FOR INVERTED BINARY RING-LWE CONSTRUCTION BENCHMARKED ON FPGA 1405

Fig. 2. Hardware construction of recomputing with shifted operands for encryption of InvRBLWE (a) fault detection for c1 and (b) fault detection for c2.

output, which is then compared with the Norm cycle output
to detect the presence of any faults.

3) Decryption: The decryption computes m = c1r2 + c2,

which we deduce by applying the same architecture of comput-
ing c1, as shown in Fig. 3. During the Norm run, we compute
the original m and compare it with the RESO cycle output.
The latter uses shifting one place to the right, that gives us
2.m, and the decoding takes the most significant 8 bits, in
order to find the half of the encoded output.

B. Recomputing With Encoded (Negated) Operands

While RESO has a high rate of fault detection, the increase
in bus size makes RESO relatively expensive to perform
the rigorous multiplication operation. Moreover, the compara-
tor unit requires the selective 8 bits ranging from LSB to
(MSB-1), further complicating the process. Hence, we explore
a less extensive alternative, namely, recomputing with negated
operands (RENO). The operands in InvRBLWE are already
in 2’s complement; thus, we can avoid the cost of performing
2’s complement externally, which eventually makes RENO a
highly-efficient fault detection scheme while maintaining high
error coverage.

1) RENO on Key Generation: To perform recomputing with
negated operands in the key generation stage, we insert a
multiplexer that controls the regular operation without error-
detection (NORM) and the RENO operations. While the
NORM operation computes the p = r1 − ar2, we negate both
operands a and r2, which provides p′ = r1 − (−a)(−r2), −a
and −r2 are denoted as a′ and r′

2 in Fig. 4(a). In a fault-free
scenario, the recomputed output of the adder, i.e., Sub′ will be
equal to the original output, i.e., Sub. RENO benefits in terms
of overhead in two ways: 1) there is no need for decoding, as
the negating two operands is self-decoding and 2) the repre-
sentation of the operands in 2’s complement discards the need
to compute negation with external circuitry.

2) RENO on Encryption: As encryption provides two out-
puts, we have to enforce fault detection schemes in both
computations. We compute RENO outputs of c1 as c1reno =
(−a)(−e1)+e2 , whose operation is identical to the decryption

Fig. 3. Hardware construction of recomputing with shifted operands for
decryption of InvRBLWE.

as described below, and c2 as c2reno = (−p)(−e1)+ e3 + m, as
shown in Fig. 4(b). Eventually, we compare the RENO outputs
(Add′) with their corresponding original round outputs (Add)
and any discrepancy will be detected.

3) RENO on Decryption: Here, we compare the non-
recomputed round output of decryption, m with the recom-
puted output mreno = (−c1)(−r2) + c2, as shown in Fig. 4(c).
The Norm round output of each byte Add is compared with
the RESO round output of the same byte, Add′.

IV. ERROR COVERAGE AND FPGA IMPLEMENTATIONS

A. Fault Simulation

Our proposed fault detection schemes can detect both per-
manent and transient faults. An attacker may not be successful
in flipping exactly one bit to collect sensitive information
due to technological constraints, which leads to considering
schemes that can detect multiple stuck-at faults (stuck-at 0 and
stuck-at 1), in addition to single faults. Our fault model consid-
ers stuck-at faults, whose effect time can range from multiple
clock cycles (transient faults) throughout a full operation

Authorized licensed use limited to: University of South Florida. Downloaded on March 28,2021 at 18:48:04 UTC from IEEE Xplore. Restrictions apply.

1406 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 68, NO. 4, APRIL 2021

Fig. 4. Hardware construction of recomputing with negated operands (RENO) for (a) key generation (b) encryption (c2) and (c) decryption of InvRBLWE
(the gray-colored box denotes the module on the corresponding scheme in the RESO figures.)

(permanent faults). We consider the cases of faulty wires, even
the cases where such a wire does not affect the other con-
nected wires. Hence, our fault model encompasses the events
which are excluded by the assumptions of the multivariate fault
model of the work in [5]. Our redundancy based schemes can
thwart the fault injections presented in the work of [6], which
includes zeroing ciphertext and zeroing secret key. Such fault
attacks can be counted as CCA2 (adaptive chosen-ciphertext
attacks), where redundancy can protect against skipping faults
in the context of RLWE. In the same line of logic, our schemes
can thwart the faults presented in [7] which assumes injec-
tion of a single random fault, ranging from skipping faults
to glitches in storage, which is evident from our simulation
results of permanent and transient faults. A software-based
fault resilient approach was presented in the work of [9],
whose fault model states zeroing, skipping, and randomization
faults, which can be thwarted based on the above discussion.

We evaluated the fault detection capability of the proposed
work based on fault-injection simulation coded in VHDL.
We injected three types of stuck-at faults, i.e., a) single-bit
upset (SBU), b) single-byte double-bit upset (SBDBU), and
c) multiple bit (MB) faults for over 65, 000 cases, all injected
at the input state of the decryption algorithm. The faults that
we consider are stuck-at 0 and stuck-at 1. In each case, we
attained that our schemes can achieve high fault detection
rates (worst case error coverage 99.9991%), for both perma-
nent and transient faults. Moreover, the comparator circuits
can be compromised, which can be resolved by hardening
them using triple modular redundancy (TMR) and other fault-
tolerant techniques as a solution to faulty voter conditions.
We incorporated the TMR circuit, where a module is repli-
cated three times, and a majority voter, which is immune to
faults, extracts the output. To further enhance the simulation,
we injected faults in three locations, a) the inputs, b) the adder
outputs, and c) one of the TMR voter inputs of the key gen-
eration scheme. Our schemes show worst-case error coverage
of 99.9968% for such cases, confirming that they can detect
faults with high error coverage even when the comparators
are compromised. Our simulations show that recomputing can
detect cryptographically impactful faults which can break the
security of unprotected implementations, detecting faults with
different multiplicities.

Our fault detection schemes are algorithm-oblivious, hence,
the faults injected and the errors introduced in the algorithm
of RLWE do not coincide. The errors added during the three
stages of RLWE do not tolerate the malicious or natural faults
of our fault model, because the faults cause malfunction in the
site of injection, i.e., the module or the wire. On the contrary,
the errors are injected to ensure that the RLWE problem is the
worst-case lattice problem. It is evident from our simulation
results that our schemes strengthen the security of the RLWE
architecture, as they are prone to hardware fault injection.

A subset of fault attacks that can obtain biased fault models
is presented in the work of [3], with the idea of a higher proba-
bility for fault injected in both original and redundant architec-
tures. The fault categories presented in [3] are single-bit upset
(SBU), single-byte double-bit upset, single-byte triple-bit
upset (SBTBU), single-byte quadruple-bit upset (SBQBU),
other single byte (OSB) faults, and multiple byte (MB) faults.
The redundancy based fault detection schemes presented in
this brief, along with other parity-based approaches, e.g., sig-
natures and interleaved parity, can prevent the aforementioned
faults fully [18]. While the presented redundancy based fault
detection schemes may fail to detect attacks where the adver-
sary can inject the same fault in both the input and output,
i.e., bypassing the fault detection computation, cascading the
encoding schemes based on fault space transformation [4] can
nullify the effect of bias and thwart the biased attacks.

B. FPGA Comparison for Error Detection

We perform the benchmark for fault detection on the RESO
and RENO schemes as well as part of the original implemen-
tation from [2] on Virtex-7 and Kintex UltraScale+ FPGAs.
We note that we have implemented just a subset of the
work in [2] which helps us in comparisons. We note that
the entire architecture is much larger as seen in [2], but in
order to have fair overheads, just a subset on which error
detection is applied has been implemented here. Table I rep-
resents hardware implementations for n = 256, performing
a complete encryption/key-generation operation, as shown in
Fig. 1 and Fig. 2. In our implementation, the key genera-
tion and decryption stages provided identical results, hence
we are tabulating both in one category. Our results incorporate

Authorized licensed use limited to: University of South Florida. Downloaded on March 28,2021 at 18:48:04 UTC from IEEE Xplore. Restrictions apply.

SARKER et al.: FAULT DETECTION ARCHITECTURES FOR INVERTED BINARY RING-LWE CONSTRUCTION BENCHMARKED ON FPGA 1407

TABLE I
IMPLEMENTATION RESULTS FOR FPGA THROUGH KINEX-ULTRASCALE+
AND VIRTEX-7 FOR ENCRYPTION (ENCKin AND ENCVir, RESPECTIVELY)

AND KEY GENERATION/DECRYPTION (GENKin AND GENVir,
RESPECTIVELY). WE CHOSE (n, q) = (256, 256) TO REFLECT MODERATE

SECURITY AND THE OVERHEADS INCLUDE THE COST OF TMR MODULE

TMR as well as subpipelining for throughput degradation alle-
viation. Subpipelining does reduce the data path delay by
doubling the frequency, with the expense of higher area over-
head. For fair comparison, we have utilized medium area
and performance efforts for both synthesis and implementa-
tion phases in Vivado across the implementations. In absence
of any compensation, the total time of recomputing archi-
tectures that do not embed throughput alleviation approaches
will be twice the original, i.e., 2n cycles. This drastic deterio-
ration of the throughput can be improved by incorporating
subpipelining. The design throughput will be close to the
original architecture as subpipelining increases the frequency.
While subpipelining introduces slight area overhead, the over-
all low throughput degradation of the error detection approach
highly compensates for the former. One can insert registers
in locations that will eventually break the timing paths into
approximately equal halves.

From Table I, for both cases, the area overhead, i.e., lookup
table (LUT) and flip-flop (FF), delay and power overheads are
significantly lower for RENO, compared to RESO, proving
that the lack of decoding stage and implementing the inputs
as 2’s complement form. The overheads are also acceptable,
with the highest overhead in RENO being 15.74%. The source
of overheads is the modules outside the gray-colored box in
all the figures.

V. CONCLUSION

This brief presents two fault detection schemes on three
separate stages of InvRBLWE architectures in the ring R =
Z/pZ[x]

xn+1 . The schemes add low overhead with high error cov-
erage. The low hardware overhead is beneficial to compact

and deeply embedded system applications. We assess the
implementation and performance metrics of our fault detec-
tion schemes by implementing the schemes on Virtex-7 and
Kintex-UltraScale+ FPGA. With the high error coverage and
low overhead, our schemes can be tailored in terms of fault
detection and overhead to be tolerated.

REFERENCES

[1] A. Aysu, M. Orshansky, and M. Tiwari, “Binary ring-LWE hard-
ware with power side-channel countermeasures,” in Proc. IEEE Design
Autom. Test Europe Conf. Exhibit. (DATE), Mar. 2018, pp. 1253–1258.

[2] S. Ebrahimi, S. Bayat-Sarmadi, and H. Mosanaei-Boorani, “Post-
quantum cryptoprocessors optimized for edge and resource-constrained
devices in IoT,” IEEE Internet Things J., vol. 6, no. 3, pp. 5500–5507,
Jun. 2019.

[3] S. Patranabis, A. Chakraborty, P. H. Nguyen, and D. Mukhopadhyay, “A
biased fault attack on the time redundancy countermeasure for AES,”
in Proc. Int. Workshop Constructive Side Channel Anal. Secure Design
(COSADE), 2015, pp. 189–203.

[4] S. Patranabis, A. Chakraborty, D. Mukhopadhyay, and P. P. Chakrabarti,
“Fault space transformation: A generic approach to counter differen-
tial fault analysis and differential fault intensity analysis on AES-Like
block ciphers,” IEEE Trans. Inf. Forensics Security, vol. 12, no. 5,
pp. 1092–1102, May 2017.

[5] A. Aghaie, A. Moradi, S. Rasoolzadeh, A. R. Shahmirzadi,
F. Schellenberg, and T. Schneider, “Impeccable circuits,” IEEE Trans.
Comput., vol. 69, no. 3, pp. 361–376, Mar. 2020.

[6] F. Valencia, T. Oder, T. Guneysu, and F. Regazzoni, “Exploring the
vulnerability of R-LWE encryption to fault attacks,” in Proc. Workshop
Cryptogr. Security Comput. Syst. (CS2), 2018, pp. 7–12.

[7] L. G. Bruinderink and P. Pessl, “Differential fault attacks on determin-
istic lattice signatures,” IACR Trans. Cryptograph. Hardw. Embedded
Syst., vol. 2018, no. 3, pp. 21–43, 2018.

[8] T. Oder, T. Schneider, T. Poppelmann, and T. Guneysu, “Practical
CCA2-secure and masked ring-LWE implementation,” IACR Trans.
Cryptograph. Hardw. Embedded Syst., vol. 2018, no. 1, pp. 142–174,
2018.

[9] S. Ebrahimi and S. Bayat-Sarmadi, “Lightweight and fault-resilient
implementations of binary Ring-LWE for IoT devices,” IEEE Internet
Things J., vol. 7, no. 8, pp. 6970–6978, Aug. 2020.

[10] S. Patranabis, A. Chakraborty, and D. Mukhopadhyay, “Fault tolerant
infective countermeasure for AES,” J. Hardw. Syst. Security, vol. 1,
no. 1, pp. 3–17, Apr. 2017.

[11] M. Mozaffari-Kermani, R. Azarderakhsh, and A. Aghaie, “Fault detec-
tion architectures for post-quantum cryptographic stateless hash-based
secure signatures benchmarked on ASIC,” ACM Trans. Embedded
Comput. Syst., vol. 16, no. 2, pp. 59:1–59:19, Dec. 2016.

[12] A. Sarker, M. Mozaffari-Kermani, and R. Azarderakhsh, “Hardware con-
structions for error detection of number-theoretic transform utilized in
secure cryptographic architectures,” IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 27, no. 3, pp. 738–741, Mar. 2019.

[13] A. Sarker, M. Mozaffari-Kermani, and R. Azarderakhsh, “Error detection
architectures for ring polynomial multiplication and modular reduction
of ring-LWE in Z/pZ[x]

xn+1 , benchmarked on ASIC,” IEEE Trans. Rel.,
early access, May 20, 2020, doi: 10.1109/TR.2020.2991671.

[14] M. Mozaffari-Kermani, R. Ramadoss, and R. Azarderakhsh, “Efficient
error detection architectures for CORDIC through recomputing with
encoded operands,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS),
May 2016, pp. 2154–2157.

[15] M. Mozaffari-Kermani and A. Reyhani-Masoleh, “A low-cost S-box for
the Advanced Encryption Standard using normal basis,” in Proc. IEEE
Int. Conf. Electro/Inf. Technol. (EIT), Windsor, ON, Canada, Jun. 2009,
pp. 52–55.

[16] J. Buchmann, F. Gopfert, T. Guneysu, T. Oder, and T. Poppelmann,
“High-performance and lightweight lattice-based public-key encryption,”
in Proc. ACM Workshop IoT Privacy Trust Security, 2016, pp. 2–9.

[17] F. Gopfert, C. van Vredendaal, and T. Wunderer, “A hybrid lattice basis
reduction and quantum search attack on LWE,” in Proc. Int. Workshop
Post Quant. Cryptogr., 2017, pp. 184–202.

[18] A. Aghaie, M. Mozaffari-Kermani, and R. Azarderakhsh, “Fault diag-
nosis schemes for low-energy block cipher Midori benchmarked on
FPGA,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 25,
no. 4, pp. 1528–1536, Apr. 2017.

Authorized licensed use limited to: University of South Florida. Downloaded on March 28,2021 at 18:48:04 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TR.2020.2991671

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

