
362 IEEE TRANSACTIONS ON RELIABILITY, VOL. 70, NO. 1, MARCH 2021

Error Detection Architectures for Ring Polynomial
Multiplication and Modular Reduction of Ring-LWE

in Z/pZ[x]
xn+1

Benchmarked on ASIC
Ausmita Sarker , Student Member, IEEE, Mehran Mozaffari Kermani , Senior Member, IEEE,

and Reza Azarderakhsh , Member, IEEE

Abstract—Ring learning with error (ring-LWE) within lattice-
based cryptography is a promising cryptographic scheme for the
post-quantum era. In this article, we explore efficient error de-
tection approaches for implementing ring-LWE encryption. For
achieving accurate operation of the ring-LWE problem and thwart-
ing active side-channel attacks, error detection schemes need to be
devised so that the induced overhead is not a burden to deeply
embedded and constrained applications. This article, for the first
time, investigates error detection schemes for both stages of the
ring-LWE encryption operation, i.e., ring polynomial multiplica-
tion and modular reduction. Our schemes exploit recomputing
with encoded operands, which successfully counter both natural
faults (for the stuck-at model). We implement our schemes on
an application-specific integrated circuit. As performance metrics
show hardware overhead, our schemes prove to be low complexity
with high error coverage. The proposed efficient architectures can
be tailored and utilized for post-quantum cryptographic schemes
in different usage models with diverse constraints.

Index Terms—Application-specific integrated circuit (ASIC),
cryptographic engineering, ring learning with error (ring-LWE),
ring polynomial multiplication (RPM).

NOMENCLATURE

ASIC Application-specific integrated circuit.
CED Concurrent error detection.
DFIA Differential fault intensity analysis.
FHE Fully homomorphic encryption.
FPGA Field-programmable gate array.
GE Gate equivalent.
LWE Learning with error.
NTT Number theoretic transform.
REScO Recomputing with scaled operands.
RESO Recomputing with shifted operands.
RESwO Recomputing with swapped operands.
RENO Recomputing with negated operands.

Manuscript received April 21, 2019; revised December 16, 2019 and March
21, 2020; accepted April 28, 2020. Date of publication May 20, 2020; date of
current version March 2, 2021. This work was supported by the U.S. National
Science Foundation under Award SaTC-1801488. Associate Editor: Y. Dai.
(Corresponding author: Mehran Mozaffari Kermani.)

Ausmita Sarker and Mehran Mozaffari Kermani are with the Department of
Computer Science and Engineering, University of South Florida, Tampa, FL
33620 USA (e-mail: asarker@mail.usf.edu; mehran2@usf.edu).

Reza Azarderakhsh is with the Department of Computer and Electrical
Engineering and Computer Science, Florida Atlantic University, Boca Raton,
FL 33431 USA (e-mail: razarderakhsh@fau.edu).

Digital Object Identifier 10.1109/TR.2020.2991671

ring-LWE Ring learning with error.
RPM Ring polynomial multiplication.
SHE Somewhat homomorphic encryption.
VLSI Very-large-scale integration.

I. INTRODUCTION

LATTICE-BASED cryptography is popular for its resistance
against known quantum algorithms, as its security incorpo-

rates worst-case hardness of lattice problems [1]. Ideal lattices
have revolutionized post-quantum cryptography by providing
realizable execution, higher efficiency, and low parameter size.
LWE [2] is one of the most versatile worst-case lattice problems
and allows us to completely pull out the lattice interpretation,
resulting in an extremely simple scheme. Ring-LWE [3] is one
of the most explored and studied lattice-based cryptographic
schemes, introducing even more efficient encryption scheme
than the standard lattice problems [4], practically realizable,
and efficient for hardware implementation [5], [6], among post-
quantum cryptosystems.

Ring-LWE emerges as a promising post-quantum cryptosys-
tem to employ at limited-resource environments. Besides en-
cryption and key generation, FHE [7], and SHE [8], two emerg-
ing groundbreaking techniques to secure cloud data rely on
ring-LWE for efficient and advanced operations.

RPM is an integral part of a number of emerging post-quantum
cryptographic algorithms and various noncryptographic appli-
cations. RPM is the most rigorous computation for ring-LWE,
FHE, SHE, and a number of other cryptographic architectures.
Thus, designing an efficient RPM architecture will certainly im-
prove the performance of these state-of-the-art cryptosystems.
RPM has versatile applications outside the cryptographic area.
Erasure coding [9], a strategy to reconstruct corrupt data, uses
RPM to ensure cost-effectiveness and less complexity. Ensuring
the privacy of electronic medical record [10] or multiparty com-
munication [11], along with many other applications [12]–[15],
apply efficient realization of RPM. Consequently, a robust and
efficient RPM will be much beneficial in terms of time and
hardware complexities.

Ring-LWE involves addition and multiplication over a poly-
nomial ring, where multiplication is the most rigorous operation
and is computed using NTT [16], a robust and efficient con-
struction [17]–[19], with smaller key lengths. Thus, efficient
and fault-free modular multiplication of NTT is crucial to both
high-speed and secure operation. Error detection architectures

0018-9529 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of South Florida. Downloaded on March 12,2021 at 18:38:16 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-1142-8171
https://orcid.org/0000-0003-4513-3109
https://orcid.org/0000-0002-6921-6868
mailto:asarker@mail.usf.edu
mailto:mehran2@usf.edu
mailto:razarderakhsh@fau.edu

SARKER et al.: ERROR DETECTION ARCHITECTURES FOR RPM AND MODULAR REDUCTION OF RING-LWE 363

for both multiplication and modular reduction operations of NTT
will enhance the security of current ring-LWE cryptosystems to
a great scale.

Previous works have been performed on error detection
schemes on several cryptosystems [20]–[24]. The research in
[20] focused on different aspects of tweakable enciphering
schemes (TES), including implementations on hardware and
software platforms, algorithmic security, and applicability to
sensitive security-constrained usage models on TES. The work
in [21] challenged the traditional use of fault coverage for uni-
formly distributed faults as a metric for evaluating the security
of CED against differential fault analysis (DFA). In [22], the
security of logic encryption against side-channel attacks was
evaluated. The problem of exploitable fault characterization in
the context of DFA attacks on block ciphers was addressed
in [23]. [24] identified the weaknesses in the infection mech-
anism of the countermeasure that could be exploited by attacks,
which change the flow sequence. This article proposes suitable
randomization to reduce success probabilities of attacks, which
change the flow sequence and develop a fault-tolerant imple-
mentation of the countermeasure. While these works are based
on classical cryptosystems, we have very few literature works
on error detection for post-quantum cryptosystems. The major
contribution of this article is that we applied error detection
schemes on post-quantum cryptosystems, unlike these previous
works based on classical cryptosystems. Our error detection
schemes are applied on RPM and modular reduction. Although
the previous works have explored error detection on hash-based
secure signature [25] and NTT of lattice-based cryptosystems
[26], both of which are post-quantum cryptosystems, this ar-
ticle, for the first time, explores error detection schemes on
RPM and modular reduction architectures, both integral to any
lattice-based cryptosystems.

In this article, we propose error detection schemes of both
RPM and modular reduction block, as different ring-LWE ar-
chitectures use different moduli, depending on the security level
and application. The main contributions of this article are as
follows.

1) We introduce error detection schemes for RPM with sev-
eral modulo q architectures within the ring R =

Zq [x]
xn+1 .

Among the merits of the proposed schemes is that they
are platform oblivious.

2) The proposed error detection schemes are RESO and
RESwO. We apply both these schemes to different modulo
q architectures, where they could detect the faults injected
with high error coverage.

3) We also introduce error detection schemes for the RPM
architecture, RENO, a subset of REScO with different
performance and implementation metrics and efficiency.
These approaches add very little hardware overhead,
which is advantageous to incorporate in deeply embedded
systems.

4) The proposed error detection schemes are assessed, and
the results show the error coverage. We implement our
schemes on an ASIC, using Synopsys Design Compiler
and a 65-nm standard cell library, to derive the implemen-
tation and performance metrics.

The rest of this article is organized as follows. Section II recaps
the theoretical background of the RPM technique and ring-
LWE encryption. Section III discusses our motivation and the

proposed error detection schemes for ring-LWE architectures.
Section IV summarizes our hardware implementation results.
Finally, Section V concludes this article.

II. PRELIMINARIES

A. Ring Polynomial Multiplication

In this article, we have considered polynomial in the ring
R = Z/pZ[x]

xn+1 . The irreducible polynomial inside this ring is
represented as f(x) with degree of n. Let two polynomials in
this ring be a(x) and b(x). The multiplication of a(x) and b(x)
is derived as

a(x) · b(x) =
n−1∑
i=0

n−1∑
j=0

aibjx
i+j mod f(x). (1)

Here, we use the case presented in [3]. f(x) is an irreducible
polynomial, where f(x) = xn + 1. Here, n is a power of 2, p
is a prime number, and p≡1 mod 2n. From the properties of
irreducible polynomial, we can write xn≡−1 mod f(x). Using
this value ofxn in (1), we derive the polynomial multiplication as

c(x) = a(x) · b(x)

=

n−1∑
i=0

n−1∑
j=0

(−1)�
i+j
n � aibjxi+j modn mod f(x). (2)

B. Ring-LWE Encryption Scheme

Public-key encryption and signatures are essential for con-
structing lattice-based cryptosystems. Difficulty of ring-LWE
problems is the measure of their security, comparable to the
worst-case lattice problems [3]. Ring-LWE provides both en-
cryption and portions of the signature scheme of ideal lat-
tices, within a short key space, resulting in faster algebraic
operations. The cryptographic schemes of the ring-LWE prob-
lem perform addition and multiplication over R = Z[x]

xn+1 and

Rq =
Zq [x]
xn+1 , where q is a prime number and n is power of

2. Such problems need one to decide whether the samples
(a1, t1), . . . , (am, tm)∈ Rq ×Rq are chosen uniformly ran-
dom, or each ti = ais+ ei, where s, e1, . . . , em have small co-
efficients from the (1-D) discrete Gaussian distributionDσ , with
standard deviation σ and mean 0, to attain best entropy/standard
deviation ratio [6].

In the following, we describe the steps of the encryption
scheme. The NTT of polynomial a is denoted as ã.

1) Key generation stage GEN(a): Two error polynomials r̃1
and r̃2 are sampled from Dσ , and let p̃ = r̃1 − ã.r̃2 ∈ Rq.
The public key is the polynomial pair (ã, p̃) and the secret
key is r̃2.

2) Encryption stage ENC(ã, p̃, M): The input message
M ∈ {0, 1}n, is encoded into a polynomial M̃= encode
(M) ∈ R, by multiplying each message bit by �(q/2)�.
The ciphertext can be obtained as c̃1 = ãẽ1 + ẽ2 and
c̃2 = p̃ẽ1 + ẽ3 + M̃ , where ẽ1, ẽ2, and ẽ3 ∈ R are three
error polynomials, sampled from Dσ .

3) Decryption stage DEC(˜c1, ˜c2, r̃2): Inverse NTT will re-
cover M̃ using M̃ = INTT(r̃2c̃1 + c̃2). Decoding of M
from M̃ can be found elementwise, using the following

Authorized licensed use limited to: University of South Florida. Downloaded on March 12,2021 at 18:38:16 UTC from IEEE Xplore. Restrictions apply.

364 IEEE TRANSACTIONS ON RELIABILITY, VOL. 70, NO. 1, MARCH 2021

rule: if M̃ [i] ∈ (−�(q/4�, �(q/4�), then M [i] = 0, else
M [i] = 1, for 0 < i < n− 1.

A number of combinations of (n, q , σ) have been explored in
previous work. The research works in [1] and [3] have proposed
(256, 4093, 8.35) and (214, 16 381, 7.37) as medium- and high-
security parameter sets, respectively. Here, medium and high
security correspond to the hardness of breaking an AES-128
and AES-256 bit block cipher, respectively. The works in [6]
and [18] adopt the parameter sets to (256, 7861, 11.31/

√
2π)

and (512, 12289, 12.18/
√
2π) as medium- and high-security

parameters, compared to AES-128 and AES-256, respectively.

III. PROPOSED ERROR DETECTION SCHEME

A. Fault Model

In fault attacks (intentional and malicious fault injections),
preferably, single-bit faults using the stuck-at model are injected.
We considered malicious faults; thus, we added the faults in the
input signals of the circuit. We used AND and OR logic gates at the
input of the multiplier to simulate stuck-at zero and stuck-at one
faults, respectively, for both a and b. For example, we perform
AND operation between logic zero and a bit of the multiplier
input, suppose a, to simulate 1-bit stuck-at zero fault at input a.
Our schemes are also applicable to natural (accidental) faults,
which can occur anywhere, starting from the inputs, the compo-
nents, the outputs, or even in the internal signals. By repeatedly
comparing the erroneous and error-free outputs, the last subkey
is derived, and eventually, the secret key is compromised (noting
the technological constraints, an attacker may not be able to
inject a single stuck-at fault. Therefore, multiple bits might be
flipped). We note that the stuck-at fault model (both single and
multiple) is able to model both natural and malicious faults and
thus is utilized throughout this article to achieve this twofold
goal of the proposed schemes [27]. This is one of the reasons
that adjacent stuck-at faults need to be considered in fault models
as well. We note that such fault models consider both malicious
faults and also natural faults based on stuck-at faults considered
in this article.

B. Error Detection Schemes for RPM

In this article, we present efficient error detection architectures
for polynomial ring multiplication within ring R = Z/pZ[x]

xn+1
.

The proposed schemes can be applied to general polynomials
or operands, not confined to a subset or special cases of poly-
nomials. Previous work in [28] has presented shift operation for
the coefficients of one of the operands, as a countermeasure.
This method perfectly worked for their model, where one of the
operands of the RPM was ternary polynomial.

For a general polynomial case, if we rewrite (2) in matrix
form, the multiplication within R= Z/pZ[x]

xn+1
can be expressed as

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c0
c1
c2
.

.

.

cn−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0 −an−1 . . . −a1
a1 a0 . . . −a2
a2 a1 . . . −a3
.

.

.

an−1 an−2 . . . a0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
·

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

b0
b1
.

.

.

bn−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
. (3)

Shifting the coefficients of a(x) produces a very complex
circuitry, and decoding the shifted message is practically impos-
sible with low overhead. As a result, we do not utilize shifting
operation for general polynomial within R = Z/pZ[x]

xn+1
, although

it worked smoothly for the case of [28].
Besides shifting, research in [28] has also applied the check-

sum method as the fault detection technique. Actual and pre-
dicted checksums are compared to verify if the data are in-
tact. As one of the polynomials for ring multiplication in
this research work is ternary polynomial, the checksum of
one of the multiplication operands and that of an intermedi-
ate computation are theoretically equal. Nonetheless, for the
proposed ring multiplication here, the following is derived for
checksum Cs:
Cs=

∑n−1
k=0 ck=(a0b0 − an−1b1 − an−2b2 − · · · − a1bn−1)

+ (a1b0 + a0b1 − an−1b2 − · · · − a2bn−1) + (a2b0 + a1b1 +
a0b2 − · · · − a3bn−1) + · · ·+ (an−1b0 + an−2b1 + an−3b2 +
· · ·+ a0bn−1) = a0(b0 + b1 + b2 + · · ·+ bn−1) + a1(b0 +
b1 + b2 + · · · − bn−1) + a2(b0 + b1 + · · · − bn−2 − bn−1) +
· · ·+ an−1(b0 − b1 − · · · − bn−1).

Additionally, we have derived the interleaved checksum,
where we add the even and odd coefficients of the product of
multiplication. The results are given as follows:

Inte =
∑n−1

k=0,2,4... ck = (a0b0 − an−1b1 − an−2b2 − · · · −
a1bn−1) + (a2b0 + a1b1 + a0b2 − · · · − a3bn−1) + · · ·+
(an−1b0 + an−2b1 + an−3b2 + · · ·+ a0bn−1) = a0(b0 + b2 +
· · ·+ bn−1) + a1(b1 + · · · + bn−2 − bn−1) + a2(b0 + b2 +
· · · − bn−2) + · · ·+ an−1(b0 − b1 − b3 − · · · − bn−2),

Into =
∑n−1

k=1,3,5... ck = (a1b0 + a0b1 − an−1b2 − · · · −
a2bn−1) + (a3b0 + a2b1 + a1b2 − · · · − a4bn−1) + · · · +
(an−2b0 + an−3b1 + an−4b2 + · · · − an−1bn−1) = a0(b1 +
b3 + b5 + · · ·+ bn−2) + a1(b0 + b2 + · · · − bn−3) + a2(b1 +
b3 + · · · − bn−1) + · · ·+ an−1(−b2 − b4 − · · · − bn−1).
where Inte and Into are even and odd interleaved checksums,
respectively.

Both checksum and interleaved checksum will incur high area
overhead, as there is no efficient approach that can minimize the
cost of the circuit. The checksum presented in [28] can be applied
to ring R = Z/pZ[x]

xn−1
; however, it is not efficient for our ring

R = Z/pZ[x]
xn+1

. Moreover, the checksum operation of convolution
multiplication block in [28] requires no multiplication opera-
tion, whereas the checksum in our RPM architecture requires
n modular multiplication units. Multiplication is an expensive
operation that incurs high area overhead, which makes checksum
an unsuitable scheme for RPM. As a result, we introduce recom-
puting schemes, which will provide us error detection with low
cost.

1) RPM Architecture: In this article, we propose error detec-
tion schemes for the RPM within R = Z/pZ[x]

xn+1
. However, our

scheme is applicable to another polynomial ring multiplication
construction: R = Z/pZ[x]

xn−1
. The aforementioned multiplication

can be expressed as follows:
We utilize a multiplication (modulo p) circuit to compute

a(x) · b(x). The coefficients of elementwise multiplications are
either positive and negative as shown through preceding par-
tial products. We can explain this using (2), where the term
(−1)�

i+j
n � decides whether the coefficients are positive or neg-

ative. When i+ j < n,
⌊
i+j
n

⌋
= 0, then (−1)0 = 1, making the

coefficients positive and vice versa. The function is given as

Authorized licensed use limited to: University of South Florida. Downloaded on March 12,2021 at 18:38:16 UTC from IEEE Xplore. Restrictions apply.

SARKER et al.: ERROR DETECTION ARCHITECTURES FOR RPM AND MODULAR REDUCTION OF RING-LWE 365

follows:

(−1)�
i+j
n � =

{
1, when i+ j < n or

⌊
i+j
n

⌋
= 0

−1, when i+ j � n or
⌊
i+j
n

⌋
= 1

. (4)

We require a module capable of performing both the addition
and subtraction of two operands. To achieve that, we use a
multiplexing adder/subtractor unit. The selector of multiplexer
is the term

⌊
i+j
n

⌋
. According to (4), the module acts as a mod

p adder and as a mod p subtractor when
⌊
i+j
n

⌋
is 0 and 1,

respectively.
In our schemes, we utilize the aforementioned multiplication

module to ensure smooth operation. At first, we apply REScO
and compare the decoded product of multiplication with the
output. Afterward, as an economical and low-power subset of
scaling, we recompute the multiplication by negating one or
both of the operands and compare the decoded message with
the output. The latter approach adds very little area overhead,
utilizing RPM for both the rings efficiently. We get the final
result of the computation in n cycles, as each coefficient is
computed in parallel. Depending on objectives for error coverage
and overhead, our schemes can be tailored to negate as well
as scale one or both of the operands of multiplication, for a
high-error-coverage error detection scheme.

2) Proposed Error Detection Scheme Through Recomputing:
Error detection codes might be generally inefficient and expen-
sive for general polynomial ring multiplication. With a view
to making such detection schemes faster and cheaper, we have
utilized a recomputing method that scales one or both operands
of multiplication as encoding operation. REScO is a modified
architecture of RPM, where we insert a multiplexer, a multiplier,
and dividers. The selector of the multiplexer, normal/REScO,
determines whether it performs original RPM or REScO. In the
latter case, one of the operands, e.g., b, is scaled with a factor
k, and we get the encoded operand e(x) = k · a(x) · b(x). For
the decoding process, we have to apply multiplicative inversion
mod p of the factor,k, i.e.,d(x) ≡ k−1 · e(x) mod p, whered(x)
is the decoded output. Thus, we have to select k, carefully, to
avoid cases of the nonexisting multiplicative inverse. To achieve
that goal, k has to be a nonzero integer, where gcd(k, p) = 1.

In terms of error coverage, REScO is effective in countering
faults. However, it incurs substantial hardware overhead from the
costly arithmetic operations, e.g., multiplier and divider mod-
ules, required during encoding and decoding stages. Inserting
many of dividers in the implementation makes it expensive,
power consuming, and slow. To solve this situation, we explore
a more efficient and low-power subset of REScO, i.e., RENO.

In RENO, we recompute by negating one or both of the
operands of multiplication. Negating can be inferred as mul-
tiplying with −1; hence, RENO is a special case of REScO.
During encoding, the selector of the additional multiplexer
chooses between normal and RENO operations, as shown in
Fig. 1. In the case of RENO, the coefficients of the operands,
given by (4), are swapped, using an inverter. Mathematically,
i+ j < n,

⌊
i+j
n

⌋
= 0, becomes 1 after inversion, making the

coefficients negative and vice versa. Therefore, we get the en-
coded operand e(x) as e(x) = −a(x) · b(x). During the decode
stage, let any of the coefficients of decoded output d(x) be di,
where di ≡ (p− ei) mod p ≡ −ei mod p. We use n number of
subtractors in this stage of RENO. As adder/subtractor modules

Fig. 1. Hardware architecture of the proposed RENO.

Fig. 2. Hardware architecture of the modified RENO.

are inexpensive, compared to multiplier and divider modules
of REScO, RENO provides an efficient and low-overhead-error
detection method. We would like to emphasize that REScO and
RENO are not two different techniques. RENO is a subset of
REScO, where we are scaling the operands with −1.

The architecture of RENO in Fig. 1 can detect transient faults
correctly. However, this architecture can only detect permanent
faults present in the multiplexing adder/subtractor module, while
failing to detect such faults in the operands or in any other section
of the architecture. To resolve this issue, we modify Fig. 1 and
negate one of the operands since the beginning of the compu-
tation, as presented in Fig. 2. The normal/RENO multiplexer
will now select normal operand bj or negated operand (p− bj).
As a result, the operands are negated at the input stage, and
that enables this scheme to detect both permanent and transient
faults in operands as well as entire architecture satisfactorily.
Moreover, the structure in Fig. 2 reduces the hardware overhead
by removing the (p− ei)modpbox and adding two multiplexers
before the feedback structure. Using the selectors Enc/Dec, the
multiplexers either perform encoding by elementwise multipli-
cation of a and negated b, i.e., (p− bj), or subtract ei from p,
giving the decoded output di ≡ (p− ei) mod p. We perform

Authorized licensed use limited to: University of South Florida. Downloaded on March 12,2021 at 18:38:16 UTC from IEEE Xplore. Restrictions apply.

366 IEEE TRANSACTIONS ON RELIABILITY, VOL. 70, NO. 1, MARCH 2021

Fig. 3. Pipelined scheduling for data path of the proposed schemes.

computations on the operands in two runs: the first run (run1)
deals with normal computation, and the second run (run2) deals
with RENO. We use the selector Enc throughout run1 and
the first n clock cycles of run2. In contrast, Dec is selected
only in the (n+ 1)th cycle of RENO, in order to complete the
decoding of negated operands. In such a manner, we eliminate
n number of subtractors by performing the (p− ei) operation
through the already existing adder/subtractor modules. As the
hardware overheads of multiplexers are considerably lower than
these modules, modified RENO costs even less than regular
RENO, while ensuring higher error coverage. We utilize an error
detection flag, which is logic OR operation of comparisons for
every column. Even if only one of the columns of Fig. 2 has
erroneous output, the flag will be set to 1, and we can detect the
error.

One can modify RENO by negating both of the operands. In
this case, the input operands are (p− ai) and (p− bi), instead
of a and b. As multiplication of two negative terms gives a
positive result, there is no need for decoding. Negating both
input operands requires more involved encoding and hardware
overhead (as seen in Section IV). Nevertheless, in some plat-
forms, absence of decoding stage might compensate for this
excess circuitry.

Two unlikely cases may appear during assertion of perma-
nent or long transient faults. One event can be “masking,” in
which the output is not erroneous, even if a fault exists in the
intermediate logic. Such cases are excluded because the circuit
masks the faults and these are not translated to errors. The second
instance is a rare case, where all the entries of operands ai and bi
are zero. RENO cannot detect these errors, because negating any
zero value will keep it unaltered. However, applying all the input
bits to a logic OR gate can be a secondary measure to detect such
a case. We would like to emphasize that this would be equivalent
to multiplying two zero polynomials, which is an unlikely case.

3) Ameliorating the Throughput Overhead Through Pipelin-
ing: The delay overhead we took into account is the critical path
delay, where the critical path is the path that incurs the highest
delay. As our error detection is a time redundancy technique,
the total time of a recomputed architecture will be twice of an
original architecture deteriorating the throughput, if no measure
is in place to compensate such shortcoming. Such absence of
pipelining will degrade the throughput drastically, which can
be improved by applying subpipelining. Subpipelining will in-
crease the frequency to make sure that the design throughput is
close to the original architecture. This will incur slightly higher
area overhead, which can be overlooked as we are achieving
low throughput degradation of the error detection approach. We
insert registers in locations, which will, in turn, break the timing
paths into approximately equal halves. We denote the two halves
of the pipelined stages as H1 and H2. According to Fig. 3, our
scheduling order of normal (Ni) and recomputed (Ri) operations
is shown, where 1 ≤ i ≤ n, with n being the number of cycles

in the original nonpipelined approach. We compute Ri and Ni

at the same cycle but in different pipelined stages, whereas in
the next cycle, Ni+1 and Ri are computed.

C. Error Detection Schemes for Ring-LWE Architecture

To construct the ring-LWE encryption architecture, based
on preliminaries presented in this article, we utilize a DSP-
enabled schoolbook polynomial multiplier, along with a mod-
ular reduction block. Here, we emphasize on two sets of
parameters, i.e., (n, q, σ) = (214, 16 381, 7.37) and
(512, 12 289, 12.18/

√
2π), both being high-security param-

eters. Resemblance between the reduction method of (n, q,
σ) = (214, 16 381, 7.37) and (256, 4093, 8.35) makes our
scheme easily modifiable to apply to the other parameter
sets [29]. In contrast, (n, q, σ) = (256, 7681, 11.31/

√
2π)

and (512, 12289, 12.18/
√
2π) both use the shift–addition–

multiplication–subtraction–subtraction (SAMS2) technique for
modular reduction in the research works of [18] and [30]. Thus,
our error detection scheme presented through such parameter
sets is also applicable to the former.

Choosing the proper value of q varies upon the level of security
and efficient modular reduction and is based on the property of
the modulus, e.g., Fermat number or a large prime number. This
article, for the first time, explores error detection schemes within
modular operations.

Section III-B2 introduces error detection schemes us-
ing recomputing for multiplication operation, i.e., RPM. In
Sections III-C1 and III-C2, we explore error detection schemes
for modular reduction operations. In Fig. 1, we have seen modp
block, where we can apply our modular reduction operations,
based on the value of p. Our error detection schemes on modular
reduction can be used in any compatible architecture, not being
limited to RPM only.

1) Error Detection Scheme for Polynomial Multiplier
and q = 16 381: In this construction, we use a DSP-
based schoolbook polynomial multiplication scheme, fol-
lowed by the modulo q operation. For q= 16 381, it is
found that 214 mod 16 381 = 3. As a result, the inputs
of the DSP blocks are 14 bits in length, and the product
can be written as x27...0 = 214x27...14 + x13...0 = 3x27...14 +
x13...0 = (x27...14 << 1) + (x27...14) + x13...0,where left shift
is denoted by <<. The modular operation reduces the result
within [0, 16 380], requiring two modulo q operations at most,
which is performed by the modulo q reducer block of Fig. 4.
In contrast, the DSP block computes the unsigned multiplica-
tion through (AB + C). In the case of signed multiplication,
i.e., multiplication with a negative number, (D −A)B + C is
performed, where D = q.

In this article, we propose two variants of recomputing
schemes, which we apply to the most rigorous computation of
ring-LWE encryption operation, i.e., the entire DSP as well as
the modular q reducer block. Fig. 4 shows RESO, in which two of
the input operands are shifted to left by 1 bit. Another approach
is RESwO, where two of the input operands are swapped. In
the former approach, we insert a multiplexer that controls either
the normal mode or the RESO mode of operation through the
select pin Norm/RESO. In a Norm operation, we get the usual
multiplier output with mod q reduction, whereas the RESO
mode performs left shift of both operands A and C, giving the

Authorized licensed use limited to: University of South Florida. Downloaded on March 12,2021 at 18:38:16 UTC from IEEE Xplore. Restrictions apply.

SARKER et al.: ERROR DETECTION ARCHITECTURES FOR RPM AND MODULAR REDUCTION OF RING-LWE 367

Fig. 4. Proposed construction of schoolbook log2q × log2q bit multiplier for q = 16381.

Fig. 5. Proposed SAMS2 construction for error detection in modular reduction.

multiplier output as 2AB + 2C = 2(AB + C). The output of
the modulo q block is shifted to the right by 1 bit, which will
provideAB + C, in a fault-free scenario. The outputs of both the
rounds are compared, and any discrepancy between the results
detects the presence of faults in the architecture. RESwO can also
be applied in a similar manner, which will detect both permanent
and transient faults with less overhead.

2) Error Detection Scheme for the SAMS2 Approach and
q = 12 289: Modular reduction operations for a number of
values are computationally less efficient than the former values
we explored, yet such values of q are famous and widely used
in SHE and other cryptographic applications. The works of
[18] and [30] apply the values of q = 7681 and 12 289 and use
SAMS2 for faster modular reduction operation.

In the SAMS2 approach, we explain the Norm mode for
q = 12 289, where the input contains 14 bits, as 214 ≡ 212 − 1
mod 12 289. In the Shift-Add block, we approximate quotient t
ofxout = x− tq asx >> 14 + x >> 16 + x >> 18 + x >>
20 + x >> 22 + x >> 24 + x >> 26, which is a combination
of shift and addition operation, based on [30]. From this value
of t, we use the Multq block to find the product tq. However,
the Multq block is a combination of left shifts and addition,
resulting in a much efficient scheme, compared to a multiplier.
In the last block, i.e., Subt, the subtraction between xin and
multiples of q from q to 7q are performed in parallel, providing
a much faster reduction due to simultaneous calculations. Taking
the least positive number between xin− tq and the results of
the above subtractions, the Subt block works in a loop until the
output is not lower than q.

In this article, we present the error detection architecture of
SAMS2 operation through the RESO mode of the multiplier (see
Fig. 5). We apply RESO as encoding and decoding operations
of the input and the output, respectively. As the entire SAMS2

operation is linear, applying a left shift at the input stage and
a right shift at the output stage should retain the same xout as
the Norm mode. Thus, comparing the values of both rounds of
operations provides us the error detection if both values of xout
fail to coincide.

IV. ERROR COVERAGE AND ASIC ASSESSMENTS

In this section, we present the results of our error simulations
and ASIC assessments using the Synopsys Design Compiler and
VHDL with TSMC 65-nm for two security levels and two of our
architectures to assess the overhead. Using 65-nm ASIC synthe-
sis, we also present the overhead of the presented constructions
for the case studies of moderate- and high-security levels, i.e.,
for (n = 256, p = 1049 089), and (n = 512, p = 4206 593),
respectively. We have also chosen the third set of parameters
(n = 1024, p = 536 903 681) based on SHE [8]. The bench-
marking is performed for the error detection architectures (for
two proposed schemes, i.e., Prop. 1: Negating both operands
and Prop. 2: Negating one operand, respectively) and also for
the original construction.

A. Fault Simulations

We evaluated the error detection capability of the proposed
work based on fault-injection simulation coded in VHDL. Our
schemes are through recomputing with encoded operands, a
time redundancy technique, which can detect faults by repeat-
ing computation. Such time redundancy techniques can de-
tect both permanent and transient faults, as the error in arith-
metic logic unit can be detected by comparing f(x) with the
decode(encode(f(x)), given that x is the input of the function
f. When a transient fault occurs in the input, the decoded output

Authorized licensed use limited to: University of South Florida. Downloaded on March 12,2021 at 18:38:16 UTC from IEEE Xplore. Restrictions apply.

368 IEEE TRANSACTIONS ON RELIABILITY, VOL. 70, NO. 1, MARCH 2021

TABLE I
ERROR COVERAGE AND BINARY CLASSIFICATION TESTS

becomes decode(encode(f(x′)), with x′ being the faulty input.
Such discrepancy in the decoded output with respect to the
expected output f(x) will detect the fault injection. In our
error detection scheme in RPM, the encode is RENO and the
construction is self-decoding. To further verify this proof, we
injected transient faults in the input b in Fig. 2 only during run1.
For 65 536 cases, we found that our scheme can detect transient
faults for 100% of the times.

To simulate permanent faults, we injected three types of
stuck-at faults, i.e., single, 2-bit, and multiple-bit faults for over
1012 cases, all injected at the input state of the algorithm. An
attacker may not be successful at flipping exactly 1 bit to collect
sensitive information due to technological constraints, which
led us to consider multiple stuck-at faults. The faults that we
consider are stuck at 0 and stuck at 1. The schemes provide
close to 100% error coverage (reservation on the comparator
is explained in the following) for these three cases. The simu-
lation results are confirming that the schemes can detect both
transient and permanent faults satisfactorily. We assume that the
comparators are hardened, i.e., the comparators are fault free
and not compromised. We can harden the comparators in two
ways, first by using large transistors that are resistant to faults.
An alternative is using triple modular redundancy (TMR) [31].
In such a technique, a module is replicated three times, and the
output is extracted from a majority voter. The assumption here
is that the voter is immune to faults, which can be achieved by
using tristate buffers as voters instead of SRAMs. Selective TMR
[32] is another variant to ensure fault detection in comparators,
with higher efficiency and lower area overhead than TMR. If
none of the comparator hardening techniques are applied and
the comparators are compromised, the error coverage will be
50%, while using the TMR techniques will increase the error
coverage to 100% [32].

Our schemes provide close to 100% error coverage; our
schemes are highly suitable in terms of detecting fault injection
on the cryptosystems with high accuracy (see Table I). To further
explain, we explored the rate of missed detection, also known
as the false negative rate (FNR), which is 0.001%. This can be
explained by masking of error. In such situation, the presence
of one defect hides the presence of another defect. Our schemes
have no false positives (FP) (false alarms), as such cases are
relevant where error detection is done in mid-stages of error
detection constructions, where detected faults are masked. All
faults are correctly detected, and there has not been a case where
a fault-free condition was flagged as a faulty one, resulting
in zero FP detection and 0% false positive rate (FPR) of our
schemes. We can deduce the true positive rate (TPR) of our
schemes from TPR% = (1− FNR)%, to be 99.999%. More-
over, our schemes have 100 precision, where we define precision
as the ratio of the number of true positives to the number of all
positive, i.e., precision = TP

TP+FP , where FP is explained before
and TP is the total number of true positive detection.

Sensitivity is the measure to correctly detect faults where
faults are actually injected, i.e., sensitivity = TP

TP+FN , which, in

turn, is equal to TPR. In this article, we define precision as ratio
of the number of true positives to the number of all positive, i.e.,
precision = TP

TP+FP . The precision of our schemes is 100%. To
find the receiver operating characteristics (ROC), one has to plot
TPR against FPR with respect to varying threshold values. As the
output of comparators shows either a high or low flag for fault
and fault-free output, respectively, we do not require various
values of threshold in our scenario. Considering the cases in
which the comparison units are hardened, the resulting ROC
curve is almost a vertical graph, as the horizontal axis denotes
FPR and vertical axis denotes TPR. The 99.999% TPR and 0%
FPR are the reasons behind such outcome. The simulation results
are architecture and platform oblivious, which is presented in
Table I for the Artix-7 FPGA device in Xilinx Vivado software.

B. ASIC Comparison for Error Detection in the RPM Module

As shown in Table II, the area [in terms of μm2 which can be
converted to kilo gate equivalent (kGE), which is the normalized
area for two-input NAND gate by dividing the column numbers
by 1.41 × 103], delay (which is indication of maximum working
frequency), and power consumption at the frequency of 20 MHz
are tabulated. The original architecture denotes where no error
detection schemes were applied. We also note that negating
one of the input operands requires more involved encoding and
hardware overhead, compared to negation both input operation.
We have performed our simulations for register transfer level
(RTL) and technology-independent constructions to make sure
our results are oblivious of platform (different FPGA families
and different ASIC technologies). We laid out the implementa-
tion of our schemes on the Synopsys Design Compiler. We would
like to mention that we did not fabricate the chip; however, the
proposed schemes are platform and implementation oblivious.
The implementations have preserved the hierarchy, and the error
detection construction has not been affected in optimization, and
the efforts for area and delay have been set to medium.

Here, we note that the RENO operation in Section III-B2 and
RESO operation in Sections III-C1 and III-C2 are compatible.
We explored the efficient schemes in each of the architectures.
RENO is computationally more efficient than RESO, in the case
of the RPM architecture, as only one mod p negation block
suffices the RENO operation. In contrast, to apply RESO on
RPM, we require to add left shift blocks to all of the input
operands, which will require (n+ 1) left shift blocks at the
input as we are feeding the coefficients of a in parallel and n
right shift block at the output. Thus, RESO incurs much higher
area overhead than RENO, making RENO a better recomputing
scheme for RPM. However, applying RENO in the modular
reduction operation further complicates the mod q negation
inside the modulo q reducer block for Fig. 4 and the Subt block
for Fig. 5, as they are already a series of negation operation.
Consequently, adding another mod q negation will result in
a discrepancy in the reduction operation. Moreover, to apply
RESO, we only use two left shift blocks and one right shift
block in Fig. 4, which is much cheaper than mod q negation
units.

We would like to finalize this section by noting that the
proposed architectures are oblivious of the standard cell library
and hardware platform. Therefore, we expect similar results
in overheads on FPGA and ASIC libraries. We also note that

Authorized licensed use limited to: University of South Florida. Downloaded on March 12,2021 at 18:38:16 UTC from IEEE Xplore. Restrictions apply.

SARKER et al.: ERROR DETECTION ARCHITECTURES FOR RPM AND MODULAR REDUCTION OF RING-LWE 369

TABLE II
IMPLEMENTATION RESULTS FOR ASIC TSMC 65-NM OF RPM ARCHITECTURE (PROP. 1: NEGATING BOTH OPERANDS, PROP. 2: NEGATING ONE OPERAND)

the throughput and frequency degradations can be alleviated
through pipelining at the expense of added hardware overhead.
However, our fault model was stuck-at faults, whereas FPGAs
deal with other faults, e.g., bit-flip in configuration memory cell,
which may result in different error coverage. DFIA that is a
combination of differential power analysis and fault injection
concepts has gained much attention in the recent past. The biased
fault models range from low intensity to higher ones in previous
works. Our aforementioned proposed fault detection schemes
have capabilities to detect these biased faults. Finally, previous
studies of [28] introduced efficient countermeasures against fault
attacks on NTRUEncrypt. However, RPM in NTRUEncrypt
[28] is a special case, and it is not applicable for encrypting
other systems, for example, the ring-LWE in [17]. Moreover,
we do not utilize shifting operation for general polynomial
within R = Z/pZ[x]

xn+1
, although it worked smoothly for the case of

[28]. We also note that the presented error detection schemes in
this article for RPM in the ring R = Z/pZ[x]

xn+1
are not confined

to this ring and can be incorporated into a number of other
constructions, such as the ring R = Z/pZ[x]

xn−1
.

V. CONCLUSION

In this article, we proposed error detection schemes, i.e.,
REScO and RENO, a subset of REScO with different perfor-
mance and implementation metrics and efficiency. Additionally,
we employed RESO and RESwO to a number of ring-LWE
architectures and modular reduction stages, which can be ap-
plied to most well-known modulo operations. These approaches
added very little hardware overheads, which was advantageous
to incorporate in deeply embedded systems. We benchmarked
the proposed architectures to assess their ability to detect tran-
sient and permanent faults. Moreover, we implemented the
proposed error detection architectures on ASIC, and our re-
sults showed that the proposed error detection architectures
can be feasibly utilized for RPM in the rings R = Z/pZ[x]

xn+1
and

R = Z/pZ[x]
xn−1

. We note that our scheme is suitable for the re-
quired performance and implementation metrics for constrained
applications.

REFERENCES

[1] D. Micciancio and O. Regev, “Lattice-based cryptography,” in Post-
Quantum Cryptography, Berlin, Germany: Springer, 2009, pp. 147–191.

[2] O. Regev, “On lattices, learning with errors, random linear codes,
cryptography,” in Proc. Annu. ACM Symp. Theory Comput., 2005,
pp. 84–93.

[3] V. V. Lyubashevsky, C. Peikert, and O. Regev, “On ideal lattices and
learning with errors over rings,” J. ACM, vol. 60, no. 6, pp. 1–35,
Nov. 2013.

[4] N. Gottert, T. Feller, M. Schneider, J. Buchmann, and S. Huss, “On the
design of hardware building blocks for modern lattice-based encryption
schemes,” in Proc. 14th Int. Workshop Cryptographic Hardware Embed-
ded Syst., Sep. 2012, pp. 512–529.

[5] T. Poppelmann and T. Guneysu, “Towards practical lattice-based public
key encryption on reconfigurable hardware,” in Proc. 20th Int. Conf. Sel.
Areas Cryptographic, 2013, pp. 68–85.

[6] S. S. Roy, F. Vercauteren, N. Mentens, D. D. Chen, and I. Verbauwhede,
“Compact ring-LWE cryptoprocessor,” in Proc. 16th Int. Workshop Cryp-
tographic Hardw. Embedded Syst., 2014, pp. 371–391.

[7] C. Gentry, “Fully homomorphic encryption using ideal lattices,” inProc.
Annu. ACM Symp. Theory Comput., 2009, pp. 169–178.

[8] K. Lauter, M. Naehrig, and V. Vaikuntanathan, “Can homomorphic en-
cryption be practical?” in Proc. ACM Workshop Cloud Comput. Secur.,
2011, pp. 113–124.

[9] J. Detchart and J. Lacan, “Polynomial ring transforms for efficient XOR-
based erasure coding,” in Proc. IEEE Int. Symp. Inform. Theory, 2017,
pp. 604–608.

[10] J. Benaloh, M. Chase, E. Horvitz, and K. Lauter, “Patient controlled
encryption: Ensuring privacy of electronic medical records,” in Proc. ACM
Workshop Cloud Comput. Secur., 2009, pp. 103–114.

[11] A. Ben-David, N. Nisan, and B. Pinkas, “FairplayMP: A system for secure
multi-party computation,” in Proc. ACM Conf. Comput. Commun. Secur.,
2008, pp. 257–266.

[12] J. Bos et al., “CRYSTALS—Kyber: A CCA-secure module-lattice-based
KEM,” in Proc. IEEE Eur. Symp. Secur. Privacy, 2018, pp. 353–367.

[13] S. Streit and F. De Santis, “Post-quantum key exchange on ARMv8-A: A
new hope for NEON made simple,” IEEE Trans. Comput., vol. 67, no. 11,
pp. 1651–1662, Nov. 2018.

[14] B. Pinkas, T. Schneider, N. P. Smart, and S. C. Williams, “Secure two
party computation is practical,” in Proc. Int. Conf. Theory Appl. Cryptol.
Inform. Secur., 2009, pp. 250–267.

[15] Z. Brakerski and V. Vaikuntanathan, “Fully homomorphic encryption from
ring-LWE and security for key dependent messages,” in Proc. Annu. Conf.
Adv. Cryptol., 2011, pp. 505–524.

[16] J. M. Pollard, “The fast Fourier transform in a finite field,” Math. Comput.,
vol. 25, pp. 365–374, 1971.

[17] D. D. Chen et al., “High-speed polynomial multiplication architecture for
ring-LWE and SHE cryptosystems,” IEEE Trans. Circuits Syst. I: Reg.
Papers, vol. 62, no. 1, pp. 157–166, Jan. 2015.

Authorized licensed use limited to: University of South Florida. Downloaded on March 12,2021 at 18:38:16 UTC from IEEE Xplore. Restrictions apply.

370 IEEE TRANSACTIONS ON RELIABILITY, VOL. 70, NO. 1, MARCH 2021

[18] C. P. Rentería-Mejía and J. Velasco-Medina, “High-throughput ring-LWE
cryptoprocessors,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,
vol. 25, no. 8, pp. 2332–2345, Aug. 2017.

[19] T. Oder, T. Schneider, T. Poppelmann, and T. Guneysu, “Practical CCA2-
secure and masked ring-LWE implementation,” IACR Trans. Crypto-
graphic Hardw. Embedded Syst., vol. 2018, pp. 142–174, 2018.

[20] M. M. Kermani, R. Azarderakhsh, A. Sarker, and A. Jalali, “Efficient
and reliable error detection architectures of Hash-Counter-Hash tweakable
enciphering schemes,” ACM Trans. Embedded Comput. Syst., vol. 17,
no. 2, May 2018, Art. no. 54.

[21] X. Guo, D. Mukhopadhyay, C. Jin, and R. Karri, “Security analysis of
concurrent error detection against differential fault analysis,” J. Crypto-
graphic. Eng., vol. 5, no. 3, pp. 153–169, 2015.

[22] M. Yasin, B. Mazumdar, S. S. Ali, and O. Sinanoglu, “Security analysis
of logic encryption against the most effective side-channel attack: DPA,”
inProc. IEEE Int. Symp. Defect Fault Tolerance VLSI Nanotechnol. Syst.,
2015, pp. 97–102.

[23] S. Saha, U. Kumar, D. Mukhopadhyay, and P. Dasgupta, “An automated
framework for exploitable fault identification in block ciphers,” J. Cryp-
tographic Eng., vol. 9, no. 3, pp. 203–219, 2019.

[24] S. Patranabis, A. Chakraborty, and D. Mukhopadhyay, “Fault tolerant
infective countermeasure for AES,” J. Hardw. Syst. Secur., vol. 1, no. 1,
pp. 3–17, 2017.

[25] M. M. Kermani, R. Azarderakhsh, and A. Aghaie, “Fault detection ar-
chitectures for post-quantum cryptographic stateless hash-based secure
signatures benchmarked on ASIC,”ACM Trans. Embedded Comput. Syst.,
vol. 16, no. 2, 2019, Art. no. 59.

[26] A. Sarker, M. M. Kermani, and R. Azarderakhsh, “Hardware construc-
tions for error detection of number-theoretic transform utilized in secure
cryptographic architectures” IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 27, no. 3, pp. 738–741, Mar. 2019.

[27] L. Breveglieri, I. Koren, and P. Maistri, “An operation-centered approach to
fault detection in symmetric cryptography ciphers,” IEEE Trans. Comput.,
vol. 56, no. 5, pp. 534–540, May 2007.

[28] A. Kamal and A. Youssef, “Strengthening hardware implementations
of NTRUEncrypt against fault analysis attacks,” J. Cryptographic Eng.,
vol. 3, no. 4, pp. 227–240, May 2013.

[29] T. Pöppelmann and T. Güneysu, “Area optimization of lightweight lattice-
based encryption on reconfigurable hardware,” in Proc IEEE Int. Symp.
Circuits Systs., 2014, pp. 2796–2799.

[30] Z. Liu, H. Seo, S. S. Roy, J. Großschädl, H. Kim, and I. Verbauwhede,
“Efficient ring-LWE encryption on 8-bit AVR processors,” in Proc. Int.
Workshop Cryptographic Hardw. Embedded Syst., 2015, pp. 663–682.

[31] R. E. Lyons and W. Vanderkulk, “The use of triple-modular redundancy to
improve computer reliability,” IBM J. Res. Develop., vol. 6, no. 2, pp. 200–
209, Apr. 1962.

[32] P. K. Samudrala, J. Ramos, and S. Katkoori, “Selective triple modular
redundancy (STMR) based single-event upset (SEU) tolerant synthesis for
FPGAs,” IEEE Trans. Nucl. Sci., vol. 51, no. 5, pp. 2957–2969, Oct. 2004.

Ausmita Sarker (Student Member, IEEE) received
the B.Sc. degree in electrical and electronic engineer-
ing from the Bangladesh University of Engineering
and Technology, Dhaka, Bangladesh, in 2016. She is
currently working towards the Ph.D. degree with the
Department of Computer Science and Engineering,
University of South Florida, Tampa, FL, USA.

Her current research interests include crypto-
graphic hardware, post-quantum cryptography, and
embedded systems security.

Mehran Mozaffari Kermani (Senior Member,
IEEE) received the B.Sc. degree from the University
of Tehran, Tehran, Iran, in 2005, and the M.E.Sc.
and Ph.D. degrees from the Department of Electrical
and Computer Engineering, University of Western
Ontario, London, ON, Canada, in 2007 and 2011, re-
spectively, all in electrical and computer engineering.

He joined the Advanced Micro Devices in 2011 as a
Senior ASIC/Layout Designer, Integrating Sophisti-
cated Security/Cryptographic Capabilities into accel-
erated processing. In 2012, he joined the Department

of Electrical Engineering, Princeton University, Princeton, NJ, USA, as a Natural
Sciences and Engineering Research Council of Canada (NSERC) Postdoctoral
Research Fellow. From 2013 to 2017, he was an Assistant Professor with the
Rochester Institute of Technology, Rochester, NY, USA. In 2017, he joined the
Department of Computer Science and Engineering, University of South Florida,
Tampa, FL, USA.

Dr. Kermani was a recipient of the prestigious NSERC Postdoctoral Research
Fellowship in 2011 and the Texas Instruments Faculty Award (Douglas Harvey)
in 2014. He is an Associate Editor for the IEEE TRANSACTIONS ON VERY

LARGE SCALE INTEGRATION (VLSI) SYSTEMS, ACM Transactions on Embedded
Computing Systems, and IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS

I: REGULAR PAPERS, and the Guest Editor for the IEEE TRANSACTIONS ON

DEPENDABLE AND SECURE COMPUTING for the special issue of Emerging Em-
bedded and Cyber Physical System Security Challenges and Innovations 2016
and 2017. He was the lead Guest Editor for the IEEE/ACM TRANSACTIONS ON

COMPUTATIONAL BIOLOGY AND BIOINFORMATICS and the IEEE TRANSACTIONS

ON EMERGING TOPICS IN COMPUTING for special issues on security. He has
been the Technical Program Committee Member for a number of conferences,
including the IEEE International Symposium on Hardware Oriented Security
and Trust (Publications Chair), ACM Conference on Computer and Communi-
cations Security (Publications Chair), the Design Automation Conference, De-
sign, Automation and Test in Europe Conference and Exhibition, International
Workshop on Radio Frequency Identification: Security and Privacy Issues, Inter-
national Workshop on Lightweight Cryptography for Security and Privacy, the
International Workshop on the Arithmetic of Finite Fields, Workshop on Fault
Diagnosis and Tolerance in Cryptography, and IEEE International Symposium
on Defect and Fault Tolerance in VLSI and Nanotechnology Systems.

Reza Azarderakhsh (Member, IEEE) received the
Ph.D. degree in electrical and computer engineering
from Western University, London, ON, Canada, in
2011.

He is currently an Assistant Professor with the
Department of Electrical and Computer Engineering,
Florida Atlantic University, Boca Raton, FL, USA.
His current research interests include finite field and
its application, elliptic curve cryptography, pairing-
based cryptography, and post-quantum cryptography.

Dr. Azarderakhsh was a recipient of the Natural
Sciences and Engineering Research Council Postdoctoral Research Fellowship
while working with the Center for Applied Cryptographic Research and the De-
partment of Combinatorics and Optimization, University of Waterloo, Waterloo,
ON. He was the Guest Editor for the IEEE TRANSACTIONS ON DEPENDABLE AND

SECURE COMPUTING for the special issue of Emerging Embedded and Cyber
Physical System Security Challenges and Innovations 2016 and 2017. He was
also the Guest Editor for the IEEE/ACM TRANSACTIONS ON COMPUTATIONAL

BIOLOGY AND BIOINFORMATICS for special issue on security. He is an Associate
Editor for IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS: REGULAR PAPERS.

Authorized licensed use limited to: University of South Florida. Downloaded on March 12,2021 at 18:38:16 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

