
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. 66, NO. 11, NOVEMBER 2019 4209

ARMv8 SIKE: Optimized Supersingular Isogeny
Key Encapsulation on ARMv8 Processors

Amir Jalali , Reza Azarderakhsh , Member, IEEE, Mehran Mozaffari Kermani , Senior Member, IEEE,
Matthew Campagna, and David Jao

Abstract— In this paper, we present highly-optimized constant-
time software libraries for supersingular isogeny key encapsu-
lation (SIKE) protocol on ARMv8 processors. Our optimized
hand-crafted assembly libraries provide the most efficient timing
results on 64-bit ARM-powered devices. Moreover, the presented
libraries can be integrated into any other cryptography primitives
targeting the same finite field size. We design a new mixed
implementation of field arithmetic on 64-bit ARM processors by
exploiting the A64 and Advanced SIMD processing units working
in parallel. Using these techniques, we are able to improve
the performance of the entire protocol by the factor of 5×
compared to optimized C implementations on 64-bit ARM high-
performance cores, providing 83-, 124-, and 159-bit quantum-
security levels. Furthermore, we compare the performance of
our proposed library with the previous highly-optimized ARMv8
assembly library available in the literature. The implementation
results illustrate the overall 10% performance improvement in
comparison with previous work, highlighting the benefit of using
mixed implementation over relatively-large finite field size.

Index Terms— ARM assembly, finite field, isogeny-based
cryptosystems, key encapsulation mechanism, post-quantum
cryptography.

I. INTRODUCTION

IN RECENT years, extensive amount of research has been
devoted to quantum computers. These machines are envi-

sioned to be able to solve mathematical problems which are
currently unsolvable for conventional computers, because of
their exceptional computational power from quantum mechan-
ics. Therefore, if quantum computers are ever built in large
scale, they will certainly be able to break many or almost all
of the currently in-use public-key cryptosystems, the threat of

Manuscript received March 23, 2019; revised May 17, 2019; accepted
May 29, 2019. Date of publication July 22, 2019; date of current ver-
sion October 30, 2019. This work was supported in part by NSF under
Grant CNS-1801341, in part by NIST under Grant 60NANB16D246, in part
by NSERC, CryptoWorks21, Public Works and Government Services Canada,
in part by the Canada First Research Excellence Fund, and in part by the
Royal Bank of Canada. This paper was recommended by Associate Editor
G. Masera. (Corresponding author: Amir Jalali.)

A. Jalali and R. Azarderakhsh are with the Department of Computer and
Electrical Engineering and Computer Science, Florida Atlantic University,
Boca Raton, FL 33431 USA (e-mail: ajalali2016@fau.edu; razarderakhsh@
fau.edu).

M. Mozaffari Kermani is with the Department of Computer Science and
Engineering, University of South Florida, Tampa, FL 33620 USA (e-mail:
mehran2@usf.edu).

M. Campagna is with Amazon Web Services, Inc., Seattle, WA 98108-1207
USA (e-mail: campagna@amazon.com).

D. Jao is with the Department of Mathematics, University of Waterloo,
Waterloo, ON N2L 3G1, Canada (e-mail: djao@uwaterloo.ca).

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCSI.2019.2920869

which would be catastrophic to the confidentiality and integrity
of any secure communication. To counteract this problem,
post-quantum cryptography protocols are required to preserve
the security in the presence of quantum adversaries. Regardless
of whether we can estimate the exact time for the advent of the
quantum computing era, we must begin to prepare the security
protocols to be resistant against potentially-malicious power of
quantum computing. Accordingly, NIST initiated a process to
evaluate, and standardize one or more post-quantum public-
key cryptography primitives [1]. Recently, the first round of
submission of the post-quantum primitives is completed and
all the proposals are publicly available1 to evaluate in terms
of the proof of security and efficiency.

The submitted public-key post-quantum cryptography
(PQC) proposals are based on five different hard problems
and they are categorized as code-based cryptography [2],
(ring) lattice-based cryptography [3], [4], hash-based cryptog-
raphy [5], multivariate cryptography [6], and isogeny-based
cryptography [7]. The isogeny-based cryptography is based
on the hardness of computing the isogenies between two
isomorphic elliptic curves and it provides a complete key
encapsulation protocol. The proposed method is denoted as
Supersingular Isogeny Key Encapsulation (SIKE) [8], and con-
structed upon the initial Diffie-Hellman key-exchange scheme
proposed by Jao and De Feo [7].

SIKE protocol provides a standard method of key-exchange
between two parties, and it has been claimed to be secure
against large-scale quantum adversaries running the Shor’s
quantum algorithm [9]. Compared to other post-quantum can-
didates, supersingular isogeny problem is a much younger
scheme and its security and performance need to be inves-
tigated more. In terms of performance, SIKE is not a fast
protocol due to the extensive number of point arithmetic which
are required for computing large-degree isogenies. However,
because of its significant smaller size of secret-key and public-
key compared to other PQC candidates, SIKE is a suitable
option for the applications where communication bandwidth
is critical. Furthermore, since it is the only post-quantum
cryptography protocol which is constructed on elliptic curves,
hybrid cryptography protocols can be derived from SIKE and
classical elliptic curve cryptography (ECC) to make the transi-
tion towards post-quantum cryptography more convenient and
practical.

1NIST Standardization Process (Accessed Feb. 2019): https://csrc.nist.gov/
projects/post-quantum-cryptography/round-1-submissions

1549-8328 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-6715-2477
https://orcid.org/0000-0002-6921-6868
https://orcid.org/0000-0003-4513-3109

4210 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. 66, NO. 11, NOVEMBER 2019

The initial idea of constructing cryptography schemes
from the isogenies of regular elliptic curves was intro-
duced by Rostovtsev and Stolbunov [10] in 2006. Later,
Charles et al. [11] presented a set of cryptography hash
functions constructed from Ramanujan graphs, i.e., the set of
supersingular elliptic curves over Fp2 with �-isogenies. The
main breakthrough in constructing a post-quantum cryptogra-
phy protocol based on the hardness of computing isogenies
was proposed by Jao and De Feo [7]. Their proposed scheme
presents a set of public-key cryptography schemes such as key-
exchange and encryption-decryption protocols with a coherent
proof of security. Later, De Feo et al. [12] presented the first
practical implementation of the Supersingular Isogeny Diffie-
Hellman (SIDH) key-exchange protocol using optimized curve
arithmetic techniques such as Montgomery arithmetic. Since
the introduction of supersingular isogeny public-key protocol,
many different schemes and implementations such as digital
signature [13], [14], undeniable signature [15], [16], group
key agreement [17], and static-static key agreement [18] have
been proposed which are all built on the hardness of comput-
ing isogenies. The fast hardware architectures for computing
isogenies of elliptic curves proposed by Koziel et al. [19]
demonstrated that isogeny-based cryptography has the poten-
tial to be considered as a practical candidates on FPGAs.
However, the initial performance evaluations in software were
not promising compared to other post-quantum candidates.
In particular to those which are constructed over learning with
errors problem [20]–[22]. The SIDH projective formulas and
implementation by Costello et al. [23] smashed the perfor-
mance bar of the protocol considerably by eliminating field
inversions in isogeny computations, and provided an optimized
software for key-exchange protocol on Intel processors, taking
advantage of hand-written assembly implementation of finite
field arithmetic. However, their software still suffered from
the large amount of computations due to the arithmetic of
elliptic curves. On ARM-powered devices, the performance
evaluations are even worse due to the reduced instruction
set computing (RISC) which concentrates on power-efficiency
rather than performance [24]–[27]. Recently, a new set of
optimization techniques in the computation of Montgomery
ladder and field arithmetic operations [28] improved the per-
formance of the isogeny-based key-exchange protocol further;
however, more investigation on the efficiency of ARM-based
implementations is still required.

In this work, we investigate different approaches for
implementing highly-optimized arithmetic libraries on 64-bit
ARM processors. We introduce a new way of implement-
ing multi-precision multiplication using mixed A64/ASIMD
hand-written assembly along with pure A64 assembly
implementation. All the previous works on this area concen-
trated on development of highly-optimized implementation of
field arithmetic using pure SIMD instructions [24], [25], [29],
or investigated a combination of SIMD and general register
implementation on 32-bit ARM platforms, taking advantage
of a mixture of 128-bit wide NEON vectors and 32-bit
general registers [30], [31]. In this work, we show that such a
combination still can be beneficial on 64-bit ARMv8 family of

processors by adopting a novel engineering technique which
takes advantage of out-of-order execution pipeline on high-
performance ARM cores. We compare the performance of our
arithmetic libraries inside the SIKE reference implementation,
and conclude the benefits of using mixed implementation over
relatively-large finite fields.

A. Contributions
In this work, we study different approaches of implementing

SIKE on 64-bit ARM. We engineer the finite field arithmetic
implementation accurately to provide the fastest timing records
of the protocol on our target platforms. Our contributions can
be categorized as follows:

• We propose a new approach for implementing finite field
arithmetic on 64-bit ARM processors. We combine gen-
eral register and vector limbs in an efficient way to reduce
the pipeline stalls and improve the overall performance.
To the best of our knowledge, this work is the first imple-
mentation of such a technique on ARMv8 processors.

• We implement different optimized versions of finite field
multiplication using Karatsuba multiplication method
which outperforms the previous implementation of the
field multiplication with the same size on ARMv8 target
platform. The proposed implementations are constant-
time and resistant to timing attacks.

• Our optimized software provides a constant-time imple-
mentation of the post-quantum SIKE protocol over three
different quantum security levels. We state that, this work
is the first implementation of SIKEp964 which provides
159-bit quantum security level.

• We provide a comprehensive timing results of the
SIKE protocol, using different hand-written assembly
techniques along with optimized C benchmarks on
ARMv8 processors. We are able to improve the overall
performance of the SIKE library significantly on target
processors.

In Section 2 we recall the essential concepts from [7], [8]
which are required in SIKE. In Section 3 we describe
our implementation techniques and methodology to develop
a highly-optimized field multiplier on ARMv8 processors.
In Section 4 we present the efficient implementation of
key components inside SHA-3 inside the SIKE protocol.
We present performance results of our implementation and
the comparison with previous work in Section 5. We conclude
the paper in Section 6.

B. Code Availability

For reproducibility, we provide our optimized implemen-
tation publicly available. The source codes are available at:
https://github.com/amirjalali65/armv8-sike.

II. BACKGROUND

This section provides a brief presentation of the SIKE
protocol. We refer readers to [7], [8] for more detailed
explanation of the supersignular isogeny problem and the base
key-exchange protocol which the SIKE is constructed upon.

JALALI et al.: ARMv8 SIKE: OPTIMIZED SUPERSINGULAR ISOGENY KEY ENCAPSULATION ON ARMv8 PROCESSORS 4211

A. Isogenies of Elliptic Curves
Let p be a prime of the form p = 2eA 3e3 − 1, and let

E be a supersingular elliptic curve defined over a field of
characteristic p. E can be also defined over Fp2 up to its
isomorphism. An isogeny φ : E → E ′ is a non-constant map
from E to E ′ which translates the identity into the identity.
An isogeny map is defined by its degree and kernel. The
degree of an isogeny is its degree as morphism. An isogeny
with degree � map is called �-isogeny. Let G be a subgroup
of points on E which contains � + 1 cyclic subgroups of
order �. This subgroup is the torsion group E[�] and each
element of this group is corresponding to an isogeny of
degree �; accordingly, an isogeny also can be identified by G,
i.e., the kernel of isogeny, and it can be computed using Vélu’s
formula [32]. We denote this map as φ : E → E ′/〈G〉. Vélu’s
formula can only compute the isogeny of small degrees, while
isogeny-based cryptography requires the evaluation of large-
degree isogenies on curves. An efficient recursive strategy of
computing large-degree isogeny is described in [7], by repre-
senting full binary trees and dynamic algorithms. The proposed
strategy is adopted inside the SIKE software to compute large-
degree isogeny.

Isogenies of elliptic curves divide isomorphic curves into
isomorphism classes over Fp2 . These classes of curves are
categorized with their j -invariants [33]. This value is unique
for isomorphic curves of the same class.

SIKE implementation is constructed on Montgomery
curves, taking advantage of their fast and compact arithmetic.
Let E be a Montgomery curve which defined by E : By2 =
x3 + Ax2 + x equation. The j -invariant of E can be derived
by the following equation:

j (E) = 256(A2 − 3)3

A2 − 4
. (1)

Therefore, in order to verify whether two elliptic curves are
on the same class of isomorphisms, we can evaluate their
j -invariant values. This feature is exploited to construct the
supersingular isogeny key encapsulation mechanism [8], where
two parties compute two isomorphic curves of the same class,
and the shared secret is computed as the shared j -invariant
values. Moreover, from (1), in order to compute the j -invariant
of a Montgomery curve E , we only need to push the curve
coefficient A into the formula. Further, we can compute the
curve coefficient using the x-abscissas of two points x P and
xQ on the curve as follows:

A = (1 − x P xQ − x P xR − xQ xR)2

4x P xQ xR
− x P − xQ − xR, (2)

where R = P − Q is also a point on E . Therefore, the
j -invariant of a Montgomery curve can be evaluated using
the x-abscissas of two points and their difference. The above
abstraction is used inside the supersingular isogeny encryption
procedure which is explained in the next section.

B. Supersingular Isogeny Key Encapsulation
(SIKE) Mechanism

1) Public Parameters: SIKE protocol [8], like any other
supersingular isogeny-based scheme, is defined over a set of

public parameters. These parameters need to be agreed by the
parties prior to the key encapsulation mechanism and they are
listed as follows:

• A prime p of the form p = 2e2 3e3 − 1, where eA, eB

are two positive integers. The corresponding finite field
is defined over Fp2 . This explicit form is required for
two main reasons. First, the isogeny computations using
Vélu’s formula need to be constructed over two different
torsion subgroups, i.e., E[2e2] and E[3e3] of points on
a starting curve for each party. Second, for efficiency
reasons, primes of this form are Montgomery-friendly
primes and they provide faster arithmetic [23].

• A starting supersingular Montgomery curve E0 defined
over Fp2 .

• Two sets of generators, i.e., 3-tuple x-coordinates from
E0[2e2] and E0[3e3]. Note that, as it is discussed in
detail in [8] and [23], the entire protocol can be defined
and implemented only using two x-coordinates bases
of each torsion subgroup, i.e., {xP2, xQ2} ∈ E[2e2] and
{x P3, xQ3} ∈ E[3e2]; however, for efficiency reasons, two
auxiliary x-coordinates are used to encode these bases,
i.e., xR2 = x P2 − xQ2 and xR3 = x P3 − xQ3 .

In order to describe the SIKE protocol, first, we need to
understand the supersingular isogeny public-key encryption
scheme [7], because key encapsulation and decapsulation algo-
rithms are defined based on supersingular isogeny encryption
and decryption operations.

2) Supersingular Isogeny Public-Key Encryption: In this
section, we recall the public-key encryption method from
the isogenies of supersingular elliptic curves which was first
introduced in [7], and it is recently described with some
changes for achieving better performance in [8].

Similar to any public-key encryption schemes, supersingu-
lar isogeny PKE contains three main operations, i.e., key-
generation (KeyGen), encryption (Enc), and decryption
(Dec). Fig. 1 illustrates these operations from the isogeny map
perspective.

Key Generation: The secret-key sk, is a random posi-
tive integer which is randomly generated from a key-space
corresponding to each torsion subgroup’s order. We denote
them as K2 = {0, . . . , 2e2 − 1} and K3 = {0, . . . , 3e3 − 1},
accordingly. Next, the secret key and the x-coordinates of
generators construct the kernel of the first isogeny φ� such that
xS� = 〈x P�+[sk�]Q�〉, where � ∈ {2, 3} is the degree of isogeny.
Subsequently, public-key pk is computed by evaluating the
isogeny of (2e2 or 3e3) iteratively from the small isogeny eval-
uation and point multiplication as it is discussed previously.
Eventually, public-key contains a 3-tuple of x-coordinates,
i.e., pkm = (x Pm , xQm , xRm), where xRm = x Pm − xQm and m
is the degree of the isogeny. In Fig. 1 we choose sk from K3;
therefore, the key generation algorithm maps E0 to E3.

Encryption: The encryption procedure encrypts an n-bit
message m from a message space M = {0, 1}n , and generates
two ciphertexts c0 and c1. As it will be discussed later,
in the case of key encapsulation mechanism, we need to
generate a random string along with the encryption process
for security reason. The secret-key which is generated in the
key generation procedure is randomly generated from either

4212 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. 66, NO. 11, NOVEMBER 2019

Fig. 1. Supersingular isogeny PKE protocol.

K2 or K3. Let sk3 be the secret-key from key generation
algorithm from K3, and pk3 be its corresponding public key.
We choose the other keyspace to generate the randomness
inside the encryption algorithm, i.e., K2. The first ciphertext
c0 is generated as a 3-tuple of x-coordinates from evaluating
the large degree 2e2 -isogeny, starting from E0 using the kernel
φ2 which is computed as xS2 = 〈x P2+[sk2]Q2〉.

The second ciphertext is generated after 3 steps:
1) First, the j -invariant of curve E3→2 is evaluated by

computing the large-degree 2e
2-isogeny, initializing from

the kernel φ′
2 = 〈φ3(x P2) + [sk2]φ3(xQ2)〉, and a

starting curve E3 which is retrieved from pk3 using
equation (2).

2) Second, the hash of the retrieved j -invariant value from
Step 1 is computed.

3) Computing the ciphertext as c1 = H (j) ⊕ m.
The computed pair of ciphertexts is the output of encryption
procedure.

Decryption: Decryption algorithm computes m from (c0, c1)
using sk3. First, we compute the j -invariant of curve E2→3
which is computed by evaluating 3e

3-isogeny of a starting
curve E2 and the kernel φ′

3 = 〈φ2(x P3) + [sk3]φ2(xQ3)〉. Note
that E2 is the evaluated curve from 3-tuple x-coordinate c0.
Second, we compute hash of the computed j -invariant using
the same hash function used in encryption algorithm. Finally,
we retrieve the message using m = H (j) ⊕ c1.

3) Key Encapsulation Mechanism: A key encapsulation
mechanism contains 3 main functions: key-generation, encap-
sulation, and decapsulation. In this section, we describe the
SIKE protocol briefly based on the supersingular isogeny
public-key encryption algorithm. We refer readers to [16] for
more details.

Key Generation: Similar to PKE protocol, the key gen-
eration algorithm generates a secret-key from keyspace K3
and computes the corresponding 3-tuple x-coordinates pk3
by evaluating 3e2 -degree isogeny from starting curve E0.

Moreover, an n-bit secret random message s ∈ {0, 1}n is
generated and concatenated to sk3 and pk3 to construct the
SIKE secret-key sk3. The generated pk3 and sk3 are the
output of this operation.

E0 → E3/〈x P3 + [sk3]xQ3〉 → sk3 : (s,sk3,pk3). (3)

Key Encapsulation: Key encapsulation defines on top of the
supersingular isogeny encryption method. The input of this
operation is the public-key pk3 which is generated in key-
generation procedure. First, an n-bit random string m ∈ {0, 1}n

is generated and concatenated with the public-key pk3. Next,
the result is hashed using a custom-SHAKE256 (cSHAKE256)
hash function G. This hash value is the ephemeral secret-key r ,
and it is pushed along with pk3 into encryption function to
construct the SIKE ciphertext. The hash function H inside
the encryptor is also a cSHAKE256 function. The generated
ciphertexts are further concatenated with m and hashed to
generate the secret shared-key K :

Enc(pk3, m, G(m ‖ pk3)) → (c0, c1)

H (m ‖ (c0, c1)) → K . (4)

Key Decapsulation: The decapsulation algorithm computes
the shared-key K from the outputs of equations (3) and (4).
First, 2-tuple ciphertext is decrypted using secret-key sk3 and
hashed to retrieve m′. Further, m′ is concatenated with public-
key pk3 and hashed using the G function to retrieve ephemeral
secret-key r ′.

Dec(sk3, (c0, c1)) → m′

G(m′ ‖ pk3) → r ′.

Next, c′
0 is computed by evaluating 2e

2-isogeny of starting
curve E0 using the kernel 〈x P2 + [r ′]xQ2〉:

E0 → E2/〈x P2 + [r ′]xQ2〉 → c′
0.

JALALI et al.: ARMv8 SIKE: OPTIMIZED SUPERSINGULAR ISOGENY KEY ENCAPSULATION ON ARMv8 PROCESSORS 4213

TABLE I

SIKE FINITE FIELD PARAMETERS [8]

The final correction is performed by comparing the c0 value
with c′

0 and if they are equal, the shared-key K is computed
as K = H (m′ ‖ (c0, c1)), otherwise K = H (s ‖ (c0, c1)).

C. SIKE Implementation Parameters
The reference implementation of SIKE [8] contains three

sets of parameters which correspond to three finite fields,
denoted as Fp503, Fp751, and Fp964 because of their bit-
length. Our optimized software is forked from the reference
implementation and it offers the same security levels using the
same parameters. Table I presents the information regarding
each prime and its provided quantum security level. The start-
ing elliptic curve of the reference implementation is defined
as E0/Fp2 : y2 = x3 + x , with the cardinality equal to
#E0 = (2e2 3e3)2 and j (E0) = 1728. This special instance of
the Montgomery curve is chosen for efficiency reason, while
any other supersingular curve can be used inside the protocol.
We remark that the best known quantum attack on isogeny-
based cryptography is based on claw-finding algorithm using
quantum walks [34], which theoretically can find the isogeny
between two curves in O(3

√
�e�), where �e� is the size of the

isogeny kernel; accordingly, the provided quantum security
level for each prime in SIKE is determined by the mini-
mum bit-length of each isogeny kernel, i.e., min(3

√
2e2, 3

√
3e3).

Detailed discussion about the security of the SIKE protocol is
out of scope of this work and we refer the readers to [8] for
further details.

III. OPTIMIZED FIELD ARITHMETIC

IMPLEMENTATION ON ARMV8

In this section, we explain our design approach and tech-
niques. Our state-of-the-art implementation technique con-
centrates on the base field multiplication, since it is the
most expensive operation inside the SIKE protocol. However,
the proposed library takes advantage of other optimization in
different layers of arithmetic.

A. Quadratic Extension Field Arithmetic
The main arithmetic operations inside the SIKE protocol

are elliptic curve point arithmetic over quadratic extension
field Fp2 . Since the bit-length of the SIKE primes are smaller
than the multiple of our target platform word size (64-bit),
in the reference implementation, optimization techniques such
as lazy reduction are exploited to improve the overall perfor-
mance of Fp2 arithmetic. As a result, finite field multiplication
and reduction are implemented separately, and the reduction
operation is delayed as much as possible to minimize the
number of field arithmetic.

Since the quadratic extension arithmetic over Fp2 is imple-
mented efficiently in the SIKE reference implementation [8]

TABLE II

SIKE BASE FIELD OPERATION COUNTS OVER DIFFERENT PARAMETER
SETS

using above optimization techniques, we adapt the same
strategy for computing quadratic extension field arithmetic.
However, we focus on the underlying base field arithmetic
implementation to improve the efficiency of the protocol
further on the target platform.

B. SIKE Performance Profiling
In order to optimize the SIKE reference implementation,

first we need to profile the number of operation counts for
underlying field arithmetic. Since the isogeny computations
for different degrees require different number of operations
in corresponding with the isogeny graph, the number of field
operations is different for each security level. Table II presents
the number of field arithmetic operations in the SIKE protocol
over different finite fields. This helps us to concentrate on
the performance-bottleneck operations and try to improve
them further compared to previous optimized implementations.
As mentioned above, using lazy reduction technique reduces
the number of field reduction to field multiplication signifi-
cantly. Moreover, projective coordinates arithmetic replaces all
the field inversions with extra multiplications and the perfor-
mance of multiplier directly affects the overall performance
of the protocol. Therefore, in this work, we focus on the
efficiency of the field multiplication and engineer a highly-
optimized multiplier for each quantum-security level. We find
different levels of Karatsuba multiplication very effective
to improve the performance compared to operand-scanning
method, while we can exploit a parallel strategy to compute
the multiplication of each half using mixed A64 and ASIMD
assembly instructions. We elaborate more on this technique in
this paper, but first we describe the most relevant architectural
capabilities of the target platform which are considered in the
design of our optimized library.

C. Target Architecture
We present a new design of arithmetic implementation on

ARMv8 platforms by combining A64 and ASIMD instruc-
tions. To have these units working in parallel, the target
platform should support out-of-order super-scalar pipeline.
This feature is provided by ARMv8 high-performance cores
such as Cortex-A57, Cortex-A72, and Cortex-A73. Therefore,
we expect to get the best performance results of our mixed
implementation on these family of processors, while our
A64 implementation is anticipated to outperform the mixed
version on power-efficient cores such as Cortex-A53.

1) ARMv8 Cortex-A57 and Cortex-A72: This family of
processors are designed for the high-performance applications
where they combine with power-efficient cores to achieve
power-performance efficiency in the ARM big.LITTLE
technology. Instructions are fetched and decoded in order

4214 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. 66, NO. 11, NOVEMBER 2019

Fig. 2. 512-bit mixed-multiplication implementation overview.

into internal micro-operations (μops), and issued out-of-order
to one of eight execution pipelines [35]; accordingly, two
separate pipelines are dedicated for A64 and ASIMD μops.
Once A64 instructions are dispatched through the integer
pipeline, they are queued to be executed. Meanwhile, ASIMD
pipeline can execute vector operations in the background
when the A64 pipeline is stalled. This approach removes
pipeline stalls to some extent and it is expected to boost
the performance of arithmetic. We exploited this capability
to implement optimized Fp multiplication.

We implement the field multiplication using two different
strategies for each level of security. First, we implemented
the straightforward A64 implementation using one-level
Karatsuba technique. Next, we designed a mixed version
of Karatsuba multiplication to be utilized in our target
architecture.

D. Karatsuba Multiplication in A64
Previous implementations of field multiplication over

Fp751 [23], [25] and Fp964 [25] are based on Comba-based
and two-level Karatsuba multiplication, respectively. In this
work, we propose one-level Karatsuba multiplication method
for both Fp503 and Fp751, while we follow two-level imple-
mentation over Fp964 for achieving better performance as dis-
cussed in [25]. In particular, we achieved better performance
results over Fp751 using Karatsuba multiplication compared to
previous Comba-method implementations.

Using A64 assembly instructions, one-level Karatsuba
implementation is straightforward; field operands are repre-
sented in radix-264 and two n-bit field elements, e.g., a and b
are divided into two n

2 -bit halves, i.e., ah2
n
2 + al and

bh2
n
2 + bl . Consequently, one n-bit long multiplication is

replaced with three n
2 -bit multiplications, at the cost of extra

additions/subtractions: c = (ah + al).(bh + bl) − ahbh − albl .
Multiplication implementation in A64 starts with loading

input operands into general 64-bit registers using ldp instruc-
tion which can load a pair of 64-bit data in each instruction.
Next, the multiplication of 64-bit registers is implemented
using mul and umulh instructions, computing the low and
high halves of the 128-bit result, respectively. The intermediate

additions, subtractions, and carry propagation operations are
performed using adcs and sbcs. Eventually, the result is
stored back to memory iteratively in pairs of 64-bit wide using
stp instruction.

E. Mixed A64-ASIMD Karatsuba Multiplication

One of the benefits of using divide-and-conquer method
such as Karatsuba multiplication is that the parts which build
the final result, e.g., (ah + al).(bh + bl), ahbh , and albl can
be computed independently. This fact is in contrast with other
multiplication methods such as Comba-method which requires
the carry to be propagated step-by-step between each slot of
the final result; as a result, the divided parts can be computed
in parallel and combined at the end. In our mixed version of
implementation, we exploit this advantage and compute ahbh

and albl concurrently. We choose to implement ahbh using
A64 and albl using ASIMD assembly instructions. Fig. 2
illustrates the overall overview of our mixed A64-ASIMD
multiplication for 512-bit input operands.

As it is already discussed in details [16], [25], it is
rather inefficient to attempt ASIMD implementation for field
arithmetic on 64-bit ARM due to the smaller radix repre-
sentation of operands, i.e., radix-232 and therefore extended
number of arithmetic operations. However, in our engineered
mixed implementation, many pipeline stalls are removed;
this may result in improvement in overall performance the
multiplication.

The first step to design our mixed multiplier is to choose
what algorithm to use for each half of multiplication, i.e., ahbh

and albl . For A64 implementation, we found the Comba-
multiplication method fast and optimum. In particular, since
the multiplication size is cut in half (n

2 -bit), we have access
to redundant number of 64-bit general registers that can be
used to implement the operand-scanning method without any
need to load/store data back and forth in the middle of
process. On the other hand, for the ASIMD implementation
of albl , Comba-multiplication is not a suitable option due
to the lack of carry-propagation instruction. Previous works
on the efficient implementation of multi-precision multiplica-
tion on ARMv7 NEON [24], [36] present an efficient field

JALALI et al.: ARMv8 SIKE: OPTIMIZED SUPERSINGULAR ISOGENY KEY ENCAPSULATION ON ARMv8 PROCESSORS 4215

Fig. 3. Transposition of data into two vectors to handle carry-overflow.

multiplication using parallel school-book method. We adopted
the same strategy; however, since the vector manipulation in
ARMv8 ASIMD is totally different from ARMv7 NEON,
we customized our version of school-book multiplication on
ARMv8 platforms.

A64-based product-scanning method is implemented by
loading the most significant halves of input operands, and
computing each slot of the result by multiplication and addi-
tion of corresponding input words. ASIMD-based school-book
multiplication, however, is more complicated to implement.
We explain the implementation steps in detail in the following:

1) After loading the least-significant halves of input
operands into vectors using ld1 instruction, one of the
input vectors is rearranged in correspond with the inter-
mediate additions positions (highlighted words in Fig. 2)
using transpose instructions trn1 and trn2. Note
that, ASIMD multiplication instructions compute two
32 × 32-bit multiplications concurrently, i.e., a0b0 and
a4b0 are computed using one multiplication instruction
in parallel.

2) Each 32-bit limb of “non-shuffled” operand is multiplied
to the entire shuffled operand in each step using umull
and umull2 instructions. These instruction computes
the multiplication of a 32-bit limb to the first and sec-
ond halves of a 128-bit ASIMD vector, respectively.
We use these instructions only in the first step of the
multiplication process since we need no addition. For the
next steps, we exploit umlal and umlal2 instructions
which compute the multiplication and addition at the
same time.

3) Vectorized additions are performed in parallel and can
add two 128-bit vector using only one add instruction.
However, vectorized addition does not handle carry-
propagation between vector slots; accordingly, interme-
diate multiplication results need to be transposed from
4×32-bit values into 2×32-bit ones, while the remaining
two slots are preserved for carry overflows. Fig. 3,
shows this process for a 128-bit wide ASIMD vector.
This transposition is performed by compounding the
multiplication result vector (Vt0) with a zero vector (Vt1)
using trn1 and trn2 instructions.

4) The ASIMD-based multiplication performs Steps 2 and
3 iteratively for each 32-bit word of the second operand.
In the final step we compute the last additions and
carry propagation operations and move the result vectors

into general registers using umov instruction to perform
subtraction (ahbh − albl).

We implement the rest of Karatsuba multiplication operations,
i.e., (ah +al).(bh +bl) and subtractions, using A64 instruction,
taking advantage of its 64-bit wide arithmetic. Furthermore,
we design 512-, 768-, and 1024-bit mixed Karatsuba multi-
plication using the above technique and integrate them into
the SIKE software, providing three different quantum security
levels.

We remark that since all the curve arithmetic in SIKE
implementation is performed on Montgomery space, the most
optimized algorithm for reduction is Montgomery reduction
which is already used in the SIKE implementation submission.
Moreover, SIKE primes, i.e., Fp503, Fp751, and Fp964, have a
special form which is utilized to improve the reduction algo-
rithm by eliminating several single-precision multiplications;
we refer the reader to [23], [25] for more details. Therefore,
we believe the most efficient implementation of reduction
algorithm on ARMv8 is based on product-scanning method
using A64 assembly instructions.

IV. OPTIMIZED SHA-3 IMPLEMENTATION

SIKE reference implementation requires three hash func-
tions F , G, and H which are used inside encapsulation
and decapsulation algorithms. These hash functions are all
instances of cSHAKE256 with different custom input strings
which is based on SHA-3 library and specified by NIST.
Compared to isogeny computations, the computational cost
of these functions is negligible and they barely affect the
overall performance of the SIKE protocol. However, in this
work, we focus on using the most efficient implementation
of this protocol on ARMv8 platforms; therefore, we replace
the generic implementation of SHA-3 with the hand-written
assembly version developed by OpenSSL2 project authors
in our software. The essential function inside the SHA-3
is the Keccak-1600 function which performs the core
permutations. Note that, the optimized implementation of
this function is developed using A64 assembly instructions
without taking advantage of ASIMD vectors for the following
reason. Addressing 64-bit lanes of ASIMD vectors is not as
trivial as 32-bit NEON on ARMv7 processors. In particu-
lar, we found it is rather complicated to perform rotate
operation using available ASIMD instructions on 64-bit lanes
which adds up significant number of clock cycles to the overall
timing results. Therefore, 64-bit ASIMD implementation of
Keccak-1600 is slower than A64 general register imple-
mentation on ARMv8 processors.

V. PERFORMANCE RESULTS AND DISCUSSION

In this section, we present our benchmark procedure
and provide SIKE performance evaluation results on two
famous ARMv8 family of processors, i.e., Cortex-A57 and
Cortex-A72.

A. Implementation Details
As it is mentioned before, our optimized implemen-

tation targets high-performance ARMv8 processors which

2Available in: https://github.com/openssl/openssl

4216 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. 66, NO. 11, NOVEMBER 2019

TABLE III

PERFORMANCE RESULTS (PRESENTED IN MILLIONS OF CLOCK CYCLES) OF THE PROPOSED SOFTWARE LIBRARIES IN COMPARISON WITH
REFERENCE IMPLEMENTATION ON ARMV8 PLATFORMS. (BENCHMARKS WERE OBTAINED ON 1.95 GHz CORTEX-A57

AND 2.4 GHz CORTEX-A72 CORES RUNNING ANDROID 7.1.1 AND 8.1.0, RESPECTIVELY)

support out-of-order pipeline. We use a Huawei Nexus 6P
cellphone, running Android Nougat 7.1.1 and a Google
Pixel 2, running Android Oreo v8.1.0, for benchmarking
our software on Cortex-A57 and Cortex-A72, respectively.
The binaries are cross-compiled with clang 5.0.3 using
-O3 -fomit-frame-pointer -pie flags and run via
adb-shell. The -pie flag is used to generate position
independent executables which can be run on cellphones.
We benchmarked the executables on one high-performance
core using taskset command to ensure power-efficient cores
were not involved.

Our optimized software libraries using both A64 and mixed-
assembly are publicly available3 for different levels of security.

B. Performance Results

Table III presents benchmark results of our SIKE imple-
mentation on target platforms for different security lev-
els. The results highlight the performance of our optimized
ARMv8 assembly implementation using A64 assembly and
mixed assembly in comparison with the portable optimized C
reference implementation [8]. Results are averaged over 103

iterations and converted to clock cycle counts corresponding
to the target processor frequency. Based on the benchmark
results, the optimized arithmetic libraries provide roughly
5× faster results than generic implementation on the target
platforms. Moreover, we notice that for larger finite fields,
our mixed ASIMD/A64 version outperforms the A64 opti-
mized library by a very small factor, while in relatively
smaller fields, the A64 implementation is more efficient. This
highlights the fully pipeline utilization that we obtain using
mixed assembly implementation. However, as it is discussed
before, since ASIMD arithmetic operations are performed in
radix-232, the overall performance improvement is not remark-
able. We also observe that the clock cycle count on Cortex-A72
core is slightly less than Cortex-A57. This performance
enhancement is related to architecture design improvements in
Cortex-A72 family of processors which contain many micro-
architecture updates for performance improvement compared
to its prior generation.

3https://github.com/amirjalali65/armv8-sike

TABLE IV

PERFORMANCE COMPARISON OF THIS WORK WITH THE PREVIOUS

ARMV8 OPTIMIZED IMPLEMENTATION OF SIKEp751
ON A CORTEX-A57 CORE PRESENTED IN

MILLIONS OF CLOCK CYCLES

In order to evaluate the efficiency of Karatsuba multiplica-
tion over Fp751, we compared our mixed optimized library
with the only available4 highly-optimized ARMv8 SIKE
implementation. We compared the performance of the SIDH
v3.0 which supports optimized ARMv8 SIKE implementa-
tion with our software for the only available security level,
i.e., SIKEp751. We have noticed the available ARMv8 imple-
mentation of SIKEp503 inside the SIDHv3.0 library is imple-
mented in C and therefore the performance comparison with
this work is not fair. Table IV presents the performance evalu-
ation of the SIKE implementation inside SIDHv3.0 in compar-
ison with this work. The presented benchmarks show roughly
10% performance improvement of our library over highly-
optimized previous library for the same field size. We state
that the performance improvement of this results corresponds
to different multiplication algorithm and implementation tech-
nique that we use in this work. Moreover, it proves the fact
that ARMv8 vector instructions can still be useful inside field
arithmetic operations. In particular, using mixed implementa-
tion and taking advantage of 256-bit wide ASIMD vectors can
result in performance improvement over larger fields. That is
because the scarce number of available 64-bit general registers
enforces an excessive number of memory-register load and
stores instructions, and using vectors will reduce these costly
operations, and improve the overall performance.

C. Broader Impact of the Proposed Work
The proposed method of multiplication in this work is

independent of the shape of the SIKE primes and thus it can be
used in other cryptographic schemes. In particular, we observe

4https://github.com/microsoft/pqcrypto-sidh (accessed in Feb. 2018)

JALALI et al.: ARMv8 SIKE: OPTIMIZED SUPERSINGULAR ISOGENY KEY ENCAPSULATION ON ARMv8 PROCESSORS 4217

TABLE V

PERFORMANCE COMPARISON OF CLASSICAL AND POST-QUANTUM
ELLIPTIC CURVE BASED CRYPTOGRAPHY ON CORTEX-A57

AND CORTEX-A72 PRESENTED IN 106 CLOCK CYCLES

larger bit-length multiplications benefit more from the pro-
posed mixed implementation, since it offers less number of
memory-register transfers and pipeline stalls. As a result,
we expect to obtain better performance of different classical
and post-quantum cryptographic schemes on high-performance
ARMv8 processors by adopting the proposed implementation
method. For instance, classical and post-quantum RSA [37]
and ECC implementations over large finite fields are the most
promising candidates which can benefit significantly from the
proposed method on ARMv8 platforms. Moreover, non-RNS
variants of homomorphic encryption schemes such as original
Fan-Vercauteren method [38] and its inherited schemes can
also profit from the proposed method inside their underlying
large integer multiplications of polynomial coefficients.

In all the above applications, we expect to achieve better
performance improvement of our proposed method over rela-
tively larger parameter sets.

D. Comparison With Classical ECC
To provide a clear performance comparison of classical and

post-quantum elliptic curve cryptography, we benchmarked
two popular classical elliptic curve key-exchange cryptography
schemes, Curve25519 [39] and FourQ [40] on the target
platforms, and provided the obtained results in Table V. Since
the optimized assembly implementation of these schemes are
not publicly available, we only present the portable imple-
mentation results in comparison with SIKEp503 portable
implementation. As we expected, the quantum resistant SIKE
shows slower results by orders of magnitude compared to
classical ECC.

VI. CONCLUSION

The main motivation behind this work was to push the
performance bar of the post-quantum SIKE protocol further
on 64-bit ARM-powered embedded devices; we presented
an optimized implementation of SIKE protocol on 64-bit
high-performance ARM processors. We investigated differ-
ent design of implementing multi-precision multiplication on
ARMv8 processors, with and without using ASIMD vectoriza-
tion. We showed that incorporating ASIMD implementation,
mixed with A64 design, over relatively large finite fields,
can improve the overall performance of projective coordinates
cryptography protocols such as SIKE.

Our proposed approach can be used inside any other cryp-
tography primitives which require significant amount of field
multiplication over large primes. Moreover, we benchmarked
our implementations on two popular Android cellphones to
evaluate the practical efficiency of the SIKE protocol. We com-
pared our results with the previous SIKE optimized implemen-
tation to justify the performance benefits we gained using our
proposed implementation techniques. We believe the proposed

method can be used on other platforms which support out-of-
order execution pipeline, improving the overall performance of
the protocol by reducing pipeline stalls. We plan to investigate
this possibility in the future works.

ACKNOWLEDGMENT

The authors would like to thank the reviewers for their
comments.

REFERENCES

[1] T. Lange. (2015). PQCRYPTO Project in the EU, NIST Workshop
on Cybersecurity in a Post-Quantum World. Accessed: Feb. 2018.
[Online]. Available: http://csrc.nist.gov/groups/ST/post-quantum-2015/
presentations/session7-lange-tanja.pdf

[2] R. J. McEliece, “A public-key cryptosystem based on algebraic,” Coding
Thv, vol. 4244, pp. 114–116, Apr. 1978.

[3] J. Hoffstein, J. Pipher, and J. H. Silverman, “NTRU: A ring-based public
key cryptosystem,” in Proc. Int. Algorithmic Number Theory Symp.
Berlin, Germany: Springer, 1998, pp. 267–288.

[4] M. Ajtai, “Generating hard instances of lattice problems,” in Proc. ACM
Symp. Theory Comput., 1996, pp. 99–108.

[5] R. C. Merkle, “Secrecy, authentication, and public key systems,” Ph.D.
dissertation, Dept. Elect. Eng., Stanford Univ., Stanford, CA, USA,
1979.

[6] T. Matsumoto and H. Imai, “Public quadratic polynomial-tuples for
efficient signature-verification and message-encryption,” in Proc. Work-
shop Theory Appl. Cryptogr. Techn. Berlin, Germany: Springer, 1988,
pp. 419–453.

[7] D. Jao and L. De Feo, “Towards quantum-resistant cryptosystems from
supersingular elliptic curve isogenies,” in Proc. Int. Workshop Post-
Quantum Cryptogr. Berlin, Germany: Springer, 2011, pp. 19–34.

[8] D. Jao et al., “Supersingular isogeny key encapsulation,” NIST,
Gaithersburg, MD, USA, Tech. Rep., 2017.

[9] P. W. Shor, “Algorithms for quantum computation: Discrete logarithms
and factoring,” in Proc. Annu. Symp. Found. Comput. Sci., 1994,
pp. 124–134.

[10] A. Rostovtsev and A. Stolbunov, “Public-key cryptosystem based on
isogenies,” IACR Cryptol. ePrint Arch., Tech. Rep. 2006/145, 2006,
p. 145.

[11] D. X. Charles, K. E. Lauter, and E. Z. Goren, “Cryptographic
hash functions from expander graphs,” J. Cryptol., vol. 22, no. 1,
pp. 93–113, 2009.

[12] L. De Feo, D. Jao, and J. Plût, “Towards quantum-resistant cryptosys-
tems from supersingular elliptic curve isogenies,” J. Math. Cryptol.,
vol. 8, no. 3, pp. 209–247, 2014.

[13] S. D. Galbraith, C. Petit, and J. Silva, “Signature schemes based on
supersingular isogeny problems,” IACR Cryptol. ePrint Arch., Tech.
Rep. 2016/1154, 2016. Accessed: Feb. 2018.

[14] Y. Yoo, R. Azarderakhsh, A. Jalali, D. Jao, and V. Soukharev, “A post-
quantum digital signature scheme based on supersingular isogenies,”
in Proc. Int. Conf. Financial Cryptogr. Data Secur. Cham, Switzerland:
Springer, 2017, pp. 163–181.

[15] D. Jao and V. Soukharev, “Isogeny-based quantum-resistant undeniable
signatures,” in Proc. Int. Workshop Post-Quantum Cryptogr. Cham,
Switzerland: Springer, 2014, pp. 160–179.

[16] A. Jalali, R. Azarderakhsh, and M. Mozaffari-Kermani, “Efficient post-
quantum undeniable signature on 64-bit arm,” in Proc. Int. Conf. Sel.
Areas Cryptogr. Cham, Switzerland: Springer, 2017, pp. 281–298.

[17] R. Azarderakhsh, A. Jalali, D. Jao, and V. Soukharev, “Prac-
tical supersingular isogeny group key agreement,” IACR Cryp-
tol. ePrint Arch., Tech. Rep. 2019/330, 2019. [Online]. Available:
https://eprint.iacr.org/2019/330

[18] R. Azarderakhsh, D. Jao, and C. Leonardi, “Post-quantum static-static
key agreement using multiple protocol instances,” in Proc. Int. Conf.
Sel. Areas Cryptogr. Cham, Switzerland: Springer, 2017, pp. 45–63.

[19] B. Koziel, R. Azarderakhsh, M. M. Kermani, and D. Jao, “Post-quantum
cryptography on FPGA based on isogenies on elliptic curves,” IEEE
Trans. Circuits Syst., vol. 64, no. 1, pp. 86–99, Jan. 2017.

[20] J. W. Bos, C. Costello, M. Naehrig, and D. Stebila, “Post-quantum
key exchange for the TLS protocol from the ring learning with errors
problem,” in Proc. IEEE Symp. Secur. Privacy, May 2015, pp. 553–570.

[21] E. Alkim, L. Ducas, T. Pöppelmann, and P. Schwabe, “Post-quantum
key exchange—A new hope,” IACR Cryptol. ePrint Arch., Tech.
Rep. 2015/1092, 2015. Accessed: Feb. 2018. [Online]. Available:
http://eprint.iacr.org

4218 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. 66, NO. 11, NOVEMBER 2019

[22] J. Bos et al., “Frodo: Take off the ring! Practical, quantum-secure key
exchange from lwe,” in Proc. ACM SIGSAC Conf. Comput. Commun.
Secur., 2016, pp. 1006–1018.

[23] C. Costello, P. Longa, and M. Naehrig, “Efficient algorithms for super-
singular isogeny Diffie-Hellman,” in Advances in Cryptology. Berlin,
Germany: Springer, 2016.

[24] B. Koziel, A. Jalali, R. Azarderakhsh, D. Jao, and
M. Mozaffari-Kermani, “NEON-SIDH: Efficient implementation of
supersingular isogeny Diffie-Hellman key exchange protocol on ARM,”
in Proc. Int. Conf. Cryptol. Netw. Secur. Cham, Switzerland: Springer,
2016, pp. 88–103.

[25] A. Jalali, R. Azarderakhsh, M. M. Kermani, and D. Jao, “Supersingular
isogeny Diffie-Hellman key exchange on 64-bit ARM,” IEEE Trans.
Depend. Sec. Comput., to be published.

[26] A. Jalali, R. Azarderakhsh, and M. M. Kermani, “NEON SIKE: Super-
singular isogeny key encapsulation on ARMv7,” in Proc. Int. Conf.
Secur., Privacy, Appl. Cryptogr. Eng., 2018, pp. 37–51.

[27] A. Jalali, R. Azarderakhsh, M. M. Kermani, and D. Jao, “Towards
optimized and constant-time CSIDH on embedded devices,” in Proc.
10th Int. Workshop Constructive Side-Channel Anal. Secure Design
(COSADE), 2019, pp. 215–231.

[28] A. Faz-Hernández, J. López, E. Ochoa-Jiménez, and
F. Rodríguez-Henríquez, “A faster software implementation of the
supersingular isogeny diffie-hellman key exchange protocol,” IEEE
Trans. Comput., vol. 67, no. 11, pp. 1622–1636, Nov. 2018.

[29] S. Ali and M. Cenk, “Faster residue multiplication modulo 521-bit
Mersenne prime and an application to ECC,” IEEE Trans. Circuits
Syst. I, Reg. Papers, vol. 65, no. 8, pp. 2477–2490, Aug. 2018.

[30] P. Longa, “FourQNEON: Faster elliptic curve scalar multiplications on
ARM processors,” in Proc. 23rd Int. Conf. Sel. Areas Cryptogr. (SAC),
2016, pp. 501–519.

[31] H. Seo, Z. Liu, P. Longa, and Z. Hu, “SIDH on ARM: Faster
modular multiplications for faster post-quantum supersingular isogeny
key exchange,” IACR Trans. Cryptograph. Hardw. Embedded Syst.,
vol. 2018, no. 3, pp. 1–20, 2018.

[32] J. Vélu, “Isogénies entre courbes elliptiques,” CR Acad. Sci. Paris A,
vol. 273, pp. A238–A241, Jan. 1971.

[33] J. H. Silverman, The Arithmetic of Elliptic Curves, vol. 106. New York,
NY, USA: Springer, 2009.

[34] S. Tani, “Claw finding algorithms using quantum walk,” Theor. Comput.
Sci., vol. 410, no. 50, pp. 5285–5297, 2009.

[35] ARM Limited. (2016). Cortex-A57 Software Optimization Guide.
Accessed: Feb. 2018. [Online]. Available: http://infocenter.arm.com/
help/topic/com.arm.doc.uan0015b/cortex_a57_software_optimization_
guide_external.pdf

[36] H. Seo, Z. Liu, J. Großschädl, J. Choi, and H. Kim, “Montgomery
modular multiplication on ARM-NEON revisited,” in Proc. Int. Conf.
Inf. Secur. Cryptol. Cham, Switzerland: Springer, 2014, pp. 328–342.

[37] D. J. Bernstein, N. Heninger, P. Lou, and L. Valenta, “Post-quantum
RSA,” in Proc. 8th Int. Workshop Post-Quantum Cryptogr. (PQCrypto),
2017, pp. 311–329.

[38] J. Fan and F. Vercauteren, “Somewhat practical fully homomorphic
encryption,” IACR Cryptol. ePrint Arch., Tech. Rep. 2012/144, 2012,
p. 144.

[39] D. J. Bernstein, “Curve25519: New Diffie-Hellman speed records,”
in Proc. 9th Int. Workshop Public Key Cryptogr. (PKC), 2006,
pp. 207–228.

[40] C. Costello and P. Longa, “four Q: four-dimensional decompositions on
a Q-curve over the mersenne prime,” IACR Cryptol. ePrint Arch., Tech.
Rep. 2015/565, 2015, p. 565.

Amir Jalali received the B.Sc. degree in com-
puter engineering from Shahid Beheshti University,
Tehran, Iran, in 2009, the M.Sc. degree in com-
puter engineering from the Department of Computer
Engineering and Information Technology, Amirkabir
University of Technology, Tehran, Iran, in 2012,
and the Ph.D. degree in computer engineering from
the Department of Computer, Electrical Engineering
and Computer Science, Florida Atlantic University,
USA, in 2018. His current research interests include
efficient software implementation of elliptic curve

cryptography, post-quantum cryptography, and homomorphic encryption.

Reza Azarderakhsh (M’12) received the Ph.D.
degree in electrical and computer engineering from
Western University in 2011. He was a recipient
of the NSERC Post-Doctoral Research Fellowship
with the Center for Applied Cryptographic Research,
Department of Combinatorics and Optimization,
University of Waterloo. He is currently an Assis-
tant Professor with the Department of Electrical
and Computer Engineering, Florida Atlantic Uni-
versity. His current research interests include finite
field and its application, elliptic curve cryptography,

pairing based cryptography, and post-quantum cryptography. He is serving
as an Associate Editor for the IEEE TRANSACTIONS ON CIRCUITS AND

SYSTEMS (TCAS-I).

Mehran Mozaffari Kermani (S’00–M’11–SM’16)
received the B.Sc. degree from the University of
Tehran, Iran, and the M.E.Sc. and Ph.D. degrees
from the University of Western Ontario, London,
Canada, in 2007 and 2011, respectively. In 2012,
he joined the Electrical Engineering Department,
Princeton University, NJ, USA, as an NSERC Post-
Doctoral Research Fellow. From 2013 to 2017,
he was an Assistant Professor with the Rochester
Institute of Technology. In 2017, he has joined
the Computer Science and Engineering Department,

University of South Florida. He has been the TPC member for a number of
conferences including HOST (Publications Chair), DAC, DATE, RFIDSec,
LightSec, WAIFI, FDTC, and DFT. He is currently serving as an Associate
Editor for the IEEE TVLSI, ACM TECS, and IEEE TCAS I. He has been the
Guest Editor for the IEEE TDSC, IEEE/ACM TCBB, and the IEEE TETC
for special issues on security.

Matthew Campagna received the bachelor’s degree
in mathematics from Fordham University and the
Ph.D. degree in mathematics (group theory) from
Wesleyan University. He managed the Secure Sys-
tems Research Group, Pitney Bowes. He was
with the U.S. Department of Defense. He led the
Certicom Research Group, BlackBerry, managing
research in cryptography and standards participa-
tion in ANSI, ZigBee, SECG, ETSI’s SAGE, and
the 3GPP-SA3 working group. He is currently the
Principal Security Engineer with the Cryptogra-

phy Group, Amazon Web Services, Inc., where he currently leads the
cryptographic design of AWS cryptographic services such as AWS KMS,
CloudHSM, and AWS Certificate Manager. He is also an affiliate of the
Institute for Quantum Computing, University of Waterloo, and a member of
the ETSI Security Algorithms Group Experts (SAGE).

David Jao received the Ph.D. degree in mathematics
from Harvard University, Cambridge, MA, USA,
in 2003. From 2003 to 2006, he was with the
Cryptography and Anti-Piracy Group, Microsoft
Research, contributing cryptographic software mod-
ules for several Microsoft products. He is currently
an Associate Professor with the Mathematics
Faculty, University of Waterloo, Canada, and
the Director of the Centre for Applied Crypto-
graphic Research. His research interests include
elliptic curve cryptography, protocol design and
implementation, and post-quantum cryptography.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

