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Abstract—To augment the confidentiality property provided
by block ciphers with authentication, the Galois Counter Mode
(GCM) has been standardized by the National Institute of Stan-
dards and Technology. The GCM is used as an add-on to 128-bit
block ciphers, such as the Advanced Encryption Standard (AES),
SMS4, or Camellia, to verify the integrity of data. Prior works on
the error detection of the GCM either use linear codes to protect
the GCM architectures or are based on AES–GCM architectures,
confining the mechanisms to the AES block cipher. Although such
structures are efficient, they are not only confined to specific ar-
chitectures of the GCM but might also not fully take advantage
of the parallel architectures of the GCM. Moreover, linear codes
have been shown to be potentially ineffective with respect to biased
faults. In this paper, we propose algorithm-oblivious constructions
through recomputing with swapped ciphertext and additional au-
thenticated blocks, which can be applied to the GCM architectures
using different finite field multipliers in GF (2128 ). Such obliv-
iousness for the proposed constructions used in the GCM gives
freedom to the designers. We present the results of error simula-
tions and application-specific integrated circuit implementations
to demonstrate the utility of the presented schemes. Based on the
overhead/degradation tolerance for implementation/performance
metrics, one can fine-tune the proposed method to achieve more
reliable architectures for the GCM.

Index Terms—Application-specific integrated circuit (ASIC),
Galois Counter Mode (GCM), GF (2128 ) multiplier, reliability.

NOMENCLATURE

ASIC Application-specific integrated circuit.
FPGA Field-programmable gate array.
GCM Galois Counter Mode.
GE Gate equivalent.
RESCAB Recomputing with swapped ciphertext and addi-

tional authenticated blocks.
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I. INTRODUCTION

S TANDARDIZED by the National Institute of Standards and
Technology, the GCM [1] is used in conjunction with block

ciphers, such as the Advanced Encryption Standard (AES),
Camellia, SMS4, and CLEFIA, through a hash function over
a binary finite field, to provide authentication, augmented to
confidential data.

There have been previous proposed architectures for the GCM
in the literature. The FPGA bitstream encryption/authentication
through the GCM, bit-sliced implementations for 64-bit In-
tel processors [2], and software-based implementations [3] are
among the early works adopting the GCM. Moreover, GCM
implementations, such as the ones in [4]–[9], provide the con-
fidence to utilize the architectures for different secure applica-
tions. In addition, the algorithmic security of the GCM has been
scrutinized in recent studies [10], [11].

The GCM provides authentication for encrypted/raw data;
nevertheless, natural faults, e.g., through exposure to laser and
cosmic ray particles, such as alpha and gamma rays, and ma-
licious faults undermine its reliability. Previous works on the
error detection of the GCM have either utilized linear codes,
e.g., parity and cyclic redundancy check (CRC) [7], or presented
different combined AES–GCM error detection architectures by
carefully scrutinizing the implementation cycles [9].

In this paper, we present error detection schemes that are not
confined to specific GCM architectures. We also verify the error
coverage of the proposed approaches through error simulations
for both transient and permanent multiple and biased faults. Our
schemes constitute algorithm-oblivious constructions through
RESCAB, which can be applied to the GCM architectures using
different finite field multipliers in GF (2128); for example, in our
experiments, we have used a quadratic and a subquadratic mul-
tiplier to show the obliviousness of the proposed method. The
obliviousness of our schemes comes from the fact they can be ap-
plied to different constructions (and are not confined to just one,
such as schemes that derive predicted signatures). For instance,
one can use different multipliers, different numbers of branches,
different finite fields, such as polynomial basis or normal ba-
sis, and different modulo-2 addition trees. We benchmark the
proposed architectures to assess their ability to detect transient
and permanent faults by performing fault injection simulations.
Moreover, we implement the proposed error detection architec-
tures on an ASIC platform using 65-nm standard-cell library.

This paper is organized as follows. In Section II, we present
the proposed error detection constructions for high-throughput
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Fig. 1. GCM architecture including GHASH.

GCM. In this section, through case studies as well as through a
general formula, we propose our efficient error detection con-
struction. We, then, assess the proposed scheme on an ASIC,
preceded by error injection simulations in Section III in order
to show the efficacy of the approach proposed in this paper.
Finally, conclusions are presented in Section IV.

II. PROPOSED ERROR DETECTION CONSTRUCTIONS

In the GCM, the encrypted blocks are asserted in conjunction
with additional potential raw data, as shown in Fig. 1, to the
Galois Hash (GHASH) function, which is constructed by finite
field multiplications with a fixed parameter [hash subkey (H)].
In Fig. 1, A1 – Am are additional authenticated data (ADD) (not
encrypted) to be verified for integrity. Moreover, C1 – Cn−m−1
are the 128-bit ciphertext blocks derived through a given block
cipher. Together with the ADD and an added 128-bit block for
specifying the length LA,C , we get n blocks of data, i.e., X1 –
Xn . The GCM can provide authentication assurance for addi-
tional data (of practically unlimited length per invocation) that
are not encrypted. Such data are used to derive the authentica-
tion tag as part of the GCM. The plaintext and the additional
authenticated data are the two categories of data that the GCM
protects. We note that the GCM protects the authenticity of the
plaintext and the AAD. The GCM also protects the confiden-
tiality of the plaintext, while the additional authenticated data
are protected in terms of authenticity. Such data might include
addresses, ports, sequence numbers, protocol version num-
bers, and other fields that indicate how the plaintext should be
treated.

The GHASH function calculates the following:
∑n

i=1 Xi

Hn−i+1 = X1 × Hn ⊕ X2 × Hn−1 ⊕ · · · ⊕ Xn−1 × H2 ⊕
Xn × H . Note that we use the symbol ⊕ for XOR operation
or modulo-2 addition and the symbol × for multiplication
in finite field. The hash subkey is generated by applying
the 128-bit block cipher to the “zero” input block, i.e.,
0 = (0, 0, . . . , 0) ∈ GF (2128), as shown in Fig. 1. The arith-
metic operations are done using the irreducible polynomial
f(x) = x128 + x7 + x2 + x + 1. Eventually, the authentica-
tion tag T (with a length of t bits for the most significant part of

the added output with the encrypted given input J0) is derived
as shown in Fig. 1. The following example shows a simple
multiplication for GHASH in finite field.

Example: Suppose we get the polynomial for the 128-bit hash
subkey (H) as H(x) = x27 + x25 + x20 + x4 + x + 1. To find
the polynomial representing β(x) = (Xn−1 × H + Xn ) × H
mod f(x), assuming the two 128-bit input blocks to GHASH as
Xn−1 = x89 + x23 + x10 and Xn = x93 + x24 + x10 + x, one
would need to perform a finite field multiplication followed by
reduction using the irreducible polynomial. We note that through
the irreducible polynomial, we have x128 = x7 + x2 + x + 1;
thus, x129 = x8 + x3 + x2 + x, x130 = x9 + x4 + x3 + x2 ,
x131 = x10 + x5 + x4 + x3 , and the like. The final sim-
plified answer for β(x) = (Xn−1 × H + Xn ) × H mod
f(x) will have these powers of x: 120, 118, 113, 94,
93, 91, 89, 77, 73, 64, 63, 60, 51, 50, 49, 44, 37, 35,
31, 30, 26, 24, 23, 22, 21, 17, 16, 15, 14, 13, 8, 5,
3, i.e., β(x) = x120 + x118 + x113 + x94 + x93 + x91 +
x89 + x77 + x73 + x64 + x63 + x60 + x51 + x50 + x49 +
x44 + x37 + x35 + x31 + x30 + x26 + x24 + x23 + x22 + x21

+ x17 + x16 + x15 + x14 + x13 + x8 + x5 + x3 .

A. Motivation for the Proposed Approach

Error detection constructions of the GCM are important be-
cause if there are errors in the output of the GCM, the respective
tag would be calculated incorrectly and that would cause errors
in providing authenticity. In other words, we note the following.

1) If the block cipher output is faulty, the resulting tag would
be calculated based on that, causing an incorrect tag based
on the erroneous output.

2) If the GHASH function is faulty, one would have a correct
ciphertext with a wrong tag, which would cause failure in
authenticity.

3) If both these outputs are erroneous, not only do we get an
incorrect ciphertext but also an incorrect tag.

Linear codes used in [7] are effective, especially for special
classes of fault models and also random faults. However, there
are two main problems with using linear codes for the GCM.
First, the formulations and error detection mechanisms would
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be confined to one architecture of the GCM, e.g., one type
of multiplier in GF (2128) (and, thus, would need to be revis-
ited/implemented accordingly). Moreover, the designers need
to have freedom in choosing the block ciphers paired with the
GCM. In addition, we note that the parallel GCM architec-
tures, e.g., presented in [5] and [8] (to alleviate the perfor-
mance/throughput and, thus, the efficiency of the architectures),
can be leveraged for error detection to achieve more efficient
constructions.

To resolve the above-mentioned complications, in this paper,
we present error detection schemes that are not confined to
specific GCM architectures, whose details are presented in the
following.

B. Error Detection for Parallel GHASH

The error detection construction proposed in this paper is
based on the parallel high-throughput realization of the GCM
in [8]. In other words, by implementing the GCM in par-
allel branches, one would have q parallel adders–multipliers
for deriving the output of the GCM. Noting that q = 2j ,
1 ≤ j ≤ �log2 n�, which leads to a lower number of clock cy-
cles, let us present the following example for q = 8, n = 24:

cX1 × H8 × H8 × H8 ⊕ X2 × H8 × H8 × H7

⊕ · · · ⊕ X8 × H8 × H8 × H ⊕ X9 × H8 × H8

⊕ X10 × H8 × H7 ⊕ · · · ⊕ X24 × H.

We also achieve the following for the general case:
X1 × Hq × · · · × Hq

︸ ︷︷ ︸
n
q times

⊕X2 × Hq × · · · × Hq

︸ ︷︷ ︸
n
q −1 times

×Hq−1 ⊕

· · · ⊕ Xi × Hq × · · · × Hq

︸ ︷︷ ︸
n
q −1 times

×Hq−i+1 ⊕ · · · ⊕ Xq ×

Hq × · · · × Hq

︸ ︷︷ ︸
n
q −1 times

×H ⊕ Xq+1 × Hq × · · · × Hq

︸ ︷︷ ︸
n
q −1 times

⊕Xq+2 ×

Hq × · · · × Hq

︸ ︷︷ ︸
n
q −2 times

×Hq−1 ⊕ · · · ⊕ Xn × H . Here, only the

exponentiations of the hash subkey to the powers of 2 are
used for the exponentiations Hq−i+1 , 1 ≤ i ≤ q, to have
low-complexity structures.

Our schemes constitute algorithm-oblivious constructions
through RESCAB, which can be applied to the GCM archi-
tectures implemented using different finite field multipliers in
GF (2128). The RESCAB is based on asserting the input data
blocks and swapping the blocks to get to the output. There are
two advantages in the proposed scheme. First, the derivation of
decoded output (after asserting the swapped inputs) to compare
with the normal output is trivial. Second, the scheme is ap-
plicable to any number of branches q = 2j , 1 ≤ j ≤ �log2 n�,
any type of finite field multiplication, and any combination of
encrypted and raw data.

Process of error detection: The scheme proposed here is based
on recomputation. Therefore, no additional circuitry, other than
added registers for storing the results of cycles and also com-
parators, is used. This allows different implementations of the
GCM to be utilized if needed, as opposed to the schemes based

on added error detection units. Let us explain our scheme for
q = 2j , 1 ≤ j ≤ �log2 n�. The output of the GCM can be de-
rived by grouping the input blocks, i.e., we derive the following
example for q = 8, n = 24:

X1 × H8 × H8 × H8 ⊕ X9 × H8 × H8⊕

· · · ⊕ Xi × H8 × H8 × H

8−i + 1
︷ ︸︸ ︷
1 + 2 + 4 + · · ·⊕

Xi+8 × H8 × H

8−i + 1
︷ ︸︸ ︷
1 + 2 + 4 + · · ·⊕

· · · ⊕ X8 × H8 × H8 × H⊕
X16 × H8 × H ⊕ · · · ⊕ X24 × H.

We also achieve the following for the general case: X1 ×
Hq × · · · × Hq

︸ ︷︷ ︸
n
q −1 times

×Hq ⊕ Xq+1 × Hq × · · · × Hq

︸ ︷︷ ︸
n
q −1 times

⊕ · · · ⊕

Xi × Hq × · · · × Hq

︸ ︷︷ ︸
n
q −1 times

×H

q −i + 1
︷ ︸︸ ︷
1 + 2 + 4 + · · · ⊕ Xi+q ×

Hq × · · · × Hq

︸ ︷︷ ︸
n
q −2 times

×H

q −i + 1
︷ ︸︸ ︷
1 + 2 + 4 + · · · ⊕ · · · ⊕ Xq ×

Hq × · · · × Hq

︸ ︷︷ ︸
n
q −1 times

×H ⊕ X2q × Hq × · · · × Hq

︸ ︷︷ ︸
n
q −2 times

×H ⊕ · · · ⊕

Xn × H .
Phase 1: It is noted that because the number of input

blocks n is large (combined additional authenticated data blocks
and encrypted blocks), in very high percentage of the itera-
tions, i.e., n

q − 1 out of n
q − 1 + log2 q times, we have Hq

as one of the inputs of the finite field multipliers used to de-
rive GHASH, e.g., for n = 220 and q = 8, we have n

q − 1 =
(0.999997)[n

q − 1 + log2 q]. We need log2 q times multiplica-
tion cycles, in general, so that using the exponentiations to the
powers of two, we can implement Hq−1 for low-complexity
realizations. If one stores the 128-bit output result of the GCM
after n

q − 1 cycles and compares that with the result obtained for
the swapped variant of the 128-bit input blocks (for instance, the
input for the first multiplier now becomes the input of the kth
multiplier for 2 ≤ k ≤ q), then, after n

q − 1 cycles, the result
must be the same, without the need for decoding. This low-
complexity construction is another advantage of the proposed
architecture.

Fig. 2 shows the construction of the proposed scheme for q =
4 parallel branches. The swapped inputs through the RESCAB
are also shown by the arrows. We note that swapping the input
blocks means asserting specific operands for each branch and,
then, changing the asserted operands by swapping the inputs
to the branches. Moreover, we use an intermediate register Rint

to store the result after n
4 − 1 cycles. We have also shown the

architecture for q = 32 in Fig. 3. To explain in detail, we have
used the simple example of n = 32. In this case and as shown in
Fig. 3, swapping has been done in the order shown; nevertheless,
such a construction is not confined to just this order (see Fig. 3).
It is possible that we get transient faults (some natural faults
and, especially, malicious faults are of such nature) that cannot
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Fig. 2. Proposed RESCAB construction for GCM (q = 4).

be detected in some cases as we cover most but not all the
iterations. The following simple example elaborates on the fact
that as we increase the number of branches, the performance
is increased but that depends on the area tolerance in specific
applications.

Example: Comparing Figs. 2 and 3 for two parallel construc-
tions, i.e., for q = 4 parallel branches in Fig. 2 and for q = 32
in Fig. 3, one notes that the area footprints in these two figures
vary significantly. Let us examine in more detail what the im-
plications of having 4 and 32 branches are with respect to area
complexity. Fig. 2 needs four parallel multipliers as opposed
to Fig. 3 in which 32 are needed. However, in the first phase,
as discussed previously, for n = 128, and based on the num-
ber of cycles n

q − 1, 3 and 31 cycles are needed, respectively.
The choice for these architectures depends on the area tolerance
of the applications. For example, in implantable and wearable
medical devices, one might use low-area footprints, whereas for
game console security, performance is the bottleneck.

Phase 2: The remaining log2 q iterations constitute a very
small fraction of cycles needed for the entire output derivation,
e.g., for n = 220 and q = 8, 0.0003%. Thus, we propose a simple
recomputation that adds very slightly to performance overhead.
We note that in this case, the left-hand side of Fig. 3 is executed
twice without swapping the operands. We detect the permanent
faults in the previous phase through recomputation.

The proposed scheme can also be applied to Poly1305, which
is a cryptographic message authentication code (can be used
to verify the data integrity and the authenticity of a message)
[12]. Google has selected Poly1305 (along with Bernstein’s
ChaCha20 symmetric cipher) as a replacement for RC4 in

TLS/SSL [13]. Poly1305 uses 128-bit blocks, which are used
as coefficients of a polynomial, evaluated modulo the prime
number 2130 − 5. Similar to the GCM, Poly1305 derives an au-
thentication tag that is appended to the output of a block cipher,
say the AES with key k, and gets verified at the receiver side.
Briefly, the input messages construct the integers c1 − cq , and
the tag is derived by multiplying these with a type of “key” r
(similar to the hash subkey in the GCM) as follows: (((c1r

q +
c2r

q -1 + +cq r
1) mod 2130 − 5) + AESk (n)) mod 2128 . Simi-

lar to the RESCAB method for the GCM, here, exponentiations
of r can be realized in hardware (and the input entries can be
swapped) in parallel. We note that Poly1305 is efficiently imple-
mented in software, and the adoption of our proposed scheme
does not mean that we advocate the hardware implementations
of Poly1305.

III. ERROR SIMULATIONS, ASIC IMPLEMENTATIONS,
AND COMPARISONS

In simulations and in theory, we note that the fundamental
difference between security attacks and random faults is the
intelligent-attacker assumption. However, due to limitations in
practice, in real implementations, one needs to note that it is
very difficult to control these variables due to the nature of the
implementations. In this section, we present the results of our
error injection simulations for both random and biased faults.

Error injection simulations: We have used linear-feedback
shift register based injections for stuck-at faults for the GCM
architecture with q = 8 parallel branches for two types of finite
field multipliers, assessed after applying the RESCAB scheme.
We have considered both unbiased and biased faults. We have
injected 10 000–50 000 faults, and for the error injection of
biased faults, we have considered having two adjacent branches
(out of eight in our example) faulty.

Figs. 4 and 5 show the results of our simulations for permanent
faults using bit-parallel finite field multiplier (quadratic); see
the results depicted in Fig. 4 for random multiple faults (solid
line) and biased faults (dotted line), and for the Karatsuba–
Ofman subquadratic multiplier, see the results in Fig. 5. We
have considered the case study of 210 cycles for throughput
degradation alleviation. Similarly, Figs. 6 and 7 show the results
of our simulations through transient fault injections.

As shown in Figs. 4–7, the error coverage for the experi-
mented injections is high. We note that the slight fluctuations
seen in these figures do not follow a trend. This has been ver-
ified by the injection of up to 80 000 faults for the case study
of permanent biased faults, and the results show a similar error
coverage as Fig. 4. We have also increased the number of our
simulation-based experiments by having different inputs and
fault numbers/locations, leading to 100 000 instances. Similar
to previous experiments, this confirms the accuracy of our er-
ror coverage results. Our proposed schemes can detect transient
faults with high error coverage. The proposed schemes also pro-
vide high error coverage for permanent and long transient faults.

We would also like to discuss two unlikely cases that may
appear during permanent or long transient faults. One event can
be “masking,” in which the output is not erroneous, even if a
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Fig. 3. Proposed RESCAB construction for GCM q = 32 and n = 32 cycles: Original operands (top subfigure) and swapped operands (bottom shaded subfigure).

fault exists in the intermediate logic. Such cases are excluded
because the circuit masks the faults and these are not translated
to errors. The second instance is a rare case where all the entries
of operands are zero in each column. As swapping any zero value
will keep it unaltered, this benchmark case cannot be detected,
confirming the results of our simulations. However, applying all
the input bits to a logic OR gate can be a secondary measure to
detect the errors in this unlikely case.

Karatsuba–Ofman subquadratic multipliers have sub-
quadratic complexity and are realized by converting the costly
multiplications to additions at the cost of added delay. The bit-
parallel construction, on the other hand, is much larger but con-
siderably fast when implemented. We do not present the error

detection schemes of the block ciphers in this paper as it has
been studied in previous works [9]–[26].

In Fig. 8, we see a clear connection between the simulated
architecture and the proposed scheme. As seen in this figure,
for eight parallel branches and through adding the proposed ap-
proach, the transient and permanent faults (see Figs. 4–7) are
injected through the approach presented in this section. More-
over, oblivious of the multiplier type, the simulations for Fig. 8
(see the results depicted in Figs. 4–7) show high error coverage.

Throughput alleviation: We propose two methods for alleviat-
ing the throughput of the proposed constructions. First, through
deep subpipelining of the finite field multipliers, one can care-
fully assert/reorder the normal and swapped raw and encrypted
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Fig. 4. Error injection simulation results using bit-parallel finite field multiplier (quadratic) in the GCM for q = 8: Permanent faults (solid line: multiple faults,
dotted line: biased faults).

Fig. 5. Error injection simulation results using Karatsuba–Ofman subquadratic multiplier in the GCM for q = 8: Permanent faults (solid line: multiple faults,
dotted line: biased faults).

Fig. 6. Error injection simulation results using bit-parallel finite field multiplier (quadratic) in the GCM for q = 8: Transient faults (solid line: multiple faults,
dotted line: biased faults).

data. This would increase the throughput of the RESCAB
method at the expense of added hardware complexity.

The second remedy is to recompute with the swapped en-
tries for just a fraction of the total cycles needed for deriving
the GCM. Let us have an example to clarify this approach. In
the proposed parallel approach, let us have n = 220 blocks and
q = 8 parallel constructions (we get n

q − 1 = (0.999997)[n
q −

1 + log2 q]). In the original RESCAB, to achieve high error
coverage, after the first 217 − 1 cycles, we compare the normal

and encoded results. Based on the reliability requirements and
throughput degradation tolerance, however, this can be low-
ered. For instance, the intermediate register can be populated
with the result of normal and swapped operands after 216 cy-
cles to roughly halve the cycles needed before reaching the
intermediate value to compare for error detection (to halve the
throughput degradation as well). We note that such flexibility
is an advantage of the proposed approach, noting the complica-
tions presented in the previous section.
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Fig. 7. Error injection simulation results using Karatsuba–Ofman subquadratic multiplier in the GCM for q = 8: Transient faults (solid line: multiple faults,
dotted line: biased faults).

Fig. 8. Pictorial view of the simulated circuit for error detection of the GCM (q = 8).

TABLE I
ASIC 65-nm TSMC BENCHMARK OF THE PROPOSED SCHEMES

FOR AES–GCM AND n = 230 BLOCKS

ASIC implementations: Using 65-nm ASIC synthesis, we also
present the overhead of the presented constructions for the case
study of AES–GCM. The benchmarking is performed for the
error detection architectures using TSMC 65-nm library and
Synopsys Design Compiler (presented in Table I for area [kilo
gate equivalent (kGE), which is the normalized area for 2-input
NAND gate] and respective throughputs).

In Table I, we have presented four schemes based on bit-
parallel multipliers for the GCM with q = 8, i.e., variants of the

proposed approach in the last three rows based on 1) one-stage
deep subpipelining (highest error coverage and area overhead);
2) case study of 225 cycles; and 3) case study of 210 cycles.
The former approach increases the area overhead (which is nor-
mally negligible for time redundancy) to decrease throughput
degradation, whereas the latter cases have lower overhead but
at the expense of covering permanent and a subset of transient
faults. We have also presented in the first row the plain approach
without subpipelining.

Comparisons: Let us consider linear codes, such as CRC,
parities, and interleaved parities, for error detection of the GCM
constructions. Although such structures are efficient, they have
major drawbacks. They are not only confined to specific archi-
tectures for the ciphers within blockcipher-GCM (for example,
if any of such codes are derived for the AES, obviously, they
cannot be used for CLEFIA block cipher) but also to the very
architecture in GHASH within the GCM for which such codes
are derived (for example, the parities derived for error detection
in polynomial basis quadratic multipliers cannot be utilized for
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composite field normal basis subquadratic multipliers). In con-
trast with the previous work, which either utilizes linear codes,
e.g., parity and CRC [7] (confined to specific architectures of
the GCM and considers random and not biased faults), or fo-
cuses on the AES–GCM, not taking advantage of the parallel
constructions presented in [5] and [8] to fine-tune the schemes
[9]. This paper is not limited to the types of finite field multipli-
ers, can be tailored towards higher reliability or lower overhead,
and also can be applied to different block ciphers, and considers
biased fault models. Specifically, the two previous works on the
error detection of the GCM have either utilized linear codes [7]
or presented different combined AES–GCM error detection ar-
chitectures by carefully scrutinizing the implementation cycles
[9]. Let us start with the former. Linear codes used in [7] are
effective especially for special classes of fault models and also
random faults. However, there are two main problems with us-
ing linear codes for the GCM. First, the formulations and error
detection mechanisms would be confined to one architecture of
the GCM, e.g., one type of multiplier in GF (2128) (and, thus,
would need to be revisited/implemented accordingly). Using
any other type of multiplier would result in modifications in
the architectures proposed in such schemes. This is rather im-
portant as we do not want to get confined to specific types or
architectures (and not being able to tailor the GCM architec-
tures utilized in different usage models). The error coverage of
the proposed scheme is very high (more than 99.9%), which is
higher than different variants of the one in [7]: 48%, 74%, 87%,
92.5%, 96%, and 98%. Moreover, although much effective, for
the latter, the designers need to have freedom in choosing the
block ciphers paired with the GCM. In addition, we note that
the parallel GCM architectures, e.g., presented in [5] and [8] (to
alleviate the performance/throughput and, thus, the efficiency of
the architectures), can be leveraged for error detection to achieve
more efficient constructions. The proposed scheme in this paper
alleviates the above-mentioned shortcomings.

IV. CONCLUSION

In this paper, we proposed, simulated through error injec-
tions, and implemented on ASIC our proposed schemes for the
GCM. Our schemes constituted algorithm-oblivious construc-
tions through RESCAB, which can be applied to the GCM ar-
chitectures using different finite field multipliers in GF (2128);
for example, in our experiments, we used a quadratic and a
subquadratic multiplier to show the obliviousness of the pro-
posed approach. The proposed scheme is not limited to the
types of finite field multipliers, can be tailored towards higher
reliability or lower overhead, can be applied to different block
ciphers, and considers biased fault models. Such obliviousness
for the proposed constructions used in the GCM gives freedom
to the designers. Through deep subpipelining, we reached an
area overhead of 6.7% and a throughput degradation of 7.7%.
Moreover, for RESCAB 225 cycles (210 cycles), we reached
an area overhead of 4.9%, while throughput degradations are
11.9% and 8.5%, respectively. Based on the available resources,
one may utilize the proposed error detection schemes for making
the hardware implementations of the GCM more reliable.
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