
A High-Performance and Scalable Hardware
Architecture for Isogeny-Based Cryptography

Brian Koziel , Reza Azarderakhsh ,Member, IEEE, and

Mehran Mozaffari Kermani , Senior Member, IEEE

Abstract—In this work, we present a high-performance and scalable architecture for isogeny-based cryptosystems. In particular, we

use the architecture in a fast, constant-time FPGA implementation of the quantum-resistant supersingular isogeny Diffie-Hellman

(SIDH) key exchange protocol. On a Virtex-7 FPGA, we show that our architecture is scalable by implementing at 83, 124, 168, and

252-bit quantum security levels. This is the first SIDH implementation at close to the 256-bit quantum security level to appear in

literature. Further, our implementation completes the SIDH protocol 2 times faster than performance-optimized software

implementations and 1.34 times faster than the previous best FPGA implementation, both running a similar set of formulas. Our

implementation employs inversion-free projective isogeny formulas. By replicating multipliers and utilizing an efficient scheduling

methodology, we can heavily parallelize quadratic extension field arithmetic and the isogeny evaluation stage of the large-degree

isogeny computation. For a constant-time implementation of 124-bit quantum security SIDH on a Virtex-7 FPGA, we generate

ephemeral public keys in 8.0 and 8.6 ms and generate the shared secret key in 7.1 and 7.9 ms for Alice and Bob, respectively. Finally,

we show that this architecture could also be used to efficiently generate undeniable and digital signatures based on supersingular

isogenies.

Index Terms—Elliptic curve cryptography, field-programmable gate array, isogeny-based cryptography, post-quantum cryptography

Ç

1 INTRODUCTION

IT is widely accepted that much of today’s public-key
cryptosystems could be broken with the emergence of a

large-scale quantum computer. Notably, RSA and elliptic
curve cryptography (ECC), which are protected by the diffi-
culty to factor extremely large integers and to perform
elliptic curve discrete logarithms, respectively, will be effec-
tively broken by a quantum computer utilizing Shor’s algo-
rithm [1]. Although it is unclear when such a quantum
computer will be operational, NIST has taken the initiative
to begin standardizing candidates for a post-quantum
future [2]. Among the post-quantum cryptography (PQC)
candidates, isogeny-based cryptography, based on the diffi-
culty of computing isogenies between elliptic curve isomor-
phism classes, has been gaining momentum.

An isogeny between elliptic curves is a morphism
between elliptic curves that preserves the point at infinity.
The idea to use isogenies between elliptic curves as a

cryptosystem was first published by Rostovtsev and Stolbu-
nov in [3]. Originally defined as isogenies between ordinary
elliptic curves, this cryptosystemwas later broken by Childs,
Jao, and Stolbunov [4] with a subexponential quantum
attack. Jao and De Feo subsequently published an isogeny-
based key exchange instead over supersingular elliptic curves,
for which there is no known subexponential attack. This was
introduced as the supersingular isogeny Diffie-Hellman
(SIDH) key-exchange [5]. From there, various other impor-
tant applications of isogeny-based cryptosystems have
appeared in the literature, namely fast isogeny arithmetic
[6], [7], undeniable signatures [8], strong designated verifier
signatures [9], key compression [10], [11], static-static key
agreement [12], digital signature schemes [13], [14], and effi-
cient implementations [6], [7], [15], [16], [17], [18].

The case for isogeny-based cryptography as a quantum-
resistant alternative for public-key cryptography has been so
compelling because it features the smallest public and pri-
vate keys among known quantum-resistant algorithms. As
Table 1 shows, the SIDH key exchange over 128-bit quantum
security level features a public key of 576 Bytes. With public
key compression, the public key size is reduced further by
almost a factor of two to only 336 Bytes. Small public key
sizes reduce both the transmission cost over a wire as well as
the storage requirement, which are extremely valuable as we
begin the transition to a post-quantum secure world. SIDH
features public and private keys that are only a fraction of
other PQC public-encryption schemes. Furthermore, the
SIDH algorithm features perfect forward secrecy, which
means that compromising long-term keys does not compro-
mise past session keys. Unfortunately, the primary

� B. Koziel is with Texas Instruments, Dallas, TX 75243.
E-mail: kozielbrian@gmail.com.

� R. Azarderakhsh is with the Computer and Electrical Engineering and
Computer Science Department and I-SENSE, Florida Atlantic University,
Boca Raton, FL 33431. E-mail: razarderakhsh@fau.edu.

� M. Mozaffari Kermani is with the Computer Science and Engineering
Department, University of South Florida, Tampa, FL 33620.
E-mail: mehran2@usf.edu.

Manuscript received 28 May 2017; revised 23 Jan. 2018; accepted 26 Jan.
2018. Date of publication 12 Mar. 2018; date of current version 16 Oct. 2018.
(Corresponding author: Brian Koziel.)
Recommended for acceptance by Ç. K. Koç, Z. Liu, and P. Longa.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TC.2018.2815605

1594 IEEE TRANSACTIONS ON COMPUTERS, VOL. 67, NO. 11, NOVEMBER 2018

0018-9340� 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-8874-2217
https://orcid.org/0000-0001-8874-2217
https://orcid.org/0000-0001-8874-2217
https://orcid.org/0000-0001-8874-2217
https://orcid.org/0000-0001-8874-2217
https://orcid.org/0000-0002-6921-6868
https://orcid.org/0000-0002-6921-6868
https://orcid.org/0000-0002-6921-6868
https://orcid.org/0000-0002-6921-6868
https://orcid.org/0000-0002-6921-6868
https://orcid.org/0000-0003-4513-3109
https://orcid.org/0000-0003-4513-3109
https://orcid.org/0000-0003-4513-3109
https://orcid.org/0000-0003-4513-3109
https://orcid.org/0000-0003-4513-3109
mailto:
mailto:
mailto:

downside of isogeny-based cryptography is that it is cur-
rently a few orders of magnitude slower than other PQC can-
didates in both hardware and software.

Just as elliptic curve cryptography has improved by leaps
and bounds through decades of research, we believe that
isogeny-based cryptography will continue to improve in
performance and security. To alleviate these performance
concerns, this paper provides a fast and scalable architec-
ture for SIDH and other isogeny-based cryptosystems at
multiple security levels. On a Virtex-7 FPGA, our hardware
architecture can simulate a full SIDH key-exchange (both
party’s perspectives) in a constant-time 31.6 ms at the 124-
bit quantum security level. This work is a major extension
of the work, “Fast Hardware Architectures for Supersingu-
lar Isogeny Diffie-Hellman Key Exchange on FPGA”, which
was presented at Indocrypt 2016 [17]. This extension fea-
tures a complete look at an efficient architecture for iso-
geny-based cryptography, with improved results, more
security levels, and more analysis. Our contributions can be
summarized as follows:

� We provide a constant-time SIDH field-programma-
ble gate array (FPGA) implementation that is 2 times
faster than an optimized software implementation
on Haswell architectures and 1.34 times faster than
the previous best FPGA implementation, both run-
ning similar projective isogeny formulas.

� We show that our SIDH core is scalable by imple-
menting it at the 83, 124, 168, and 252-bit security
levels.

� We illustrate how to achieve high parallelization in
quadratic extension field arithmetic and isogeny
evaluations for isogeny-based cryptosystems.

� We analyze the necessary requirements for deploy-
ment of our isogeny architecture.

2 PRELIMINARIES

Here, we briefly discuss isogeny-based cryptography. As
we review elliptic curve and isogeny theory, we point the
reader to [22] for an in-depth explanation of elliptic curve
theory. For this implementation, we most closely follow the
algorithms from [7].

2.1 Isogeny Theory

An elliptic curve defined over a finite field Fq can be written
in its Short Weierstrass form as

Eða;bÞ=Fq : y
2 ¼ x3 þ axþ b;

where a; b 2 Fq. An elliptic curve is composed of all points
ðx; yÞ that satisfy the above equation as well as the point at

infinity. This forms an abelian group over point addition,
the underlying basis of the scalar point multiplication in
elliptic curve Diffie-Hellman, Q ¼ kP , where P;Q 2 E and
k is a scalar. By using abstract geometry to define point
addition and doubling formulas, one can efficiently perform
a scalar point multiplication by performing a series of point
doublings and additions. However, instead of performing
affine point addition and affine point doubling for a scalar
point multiplication, we define projective formulas over
projective coordinates ðX : Y : ZÞ such that x ¼ X=Z and
y ¼ Y =Z. With this representation, only a single inversion is
performed at the end of the scalar point multiplication.

We define an isogeny over a finite field Fq, f : E ! E0 as
a non-constant rational map defined over Fq such that f sat-
isfies group homomorphism from EðFqÞ to E0ðFqÞ [22]. An
isogeny can be thought of as a mapping from one elliptic
curve class to another that preserves the point at infinity.
Two curves are isogenous if an isogeny exists between
them. Specifically, for two elliptic curves to be isogenous
over a finite field, they must have the same number of
points [23]. The degree of an isogeny is its degree as a ratio-
nal map. For every prime, ‘ 6¼ p, there exist ‘þ 1 isogenies
of degree ‘ from a specific isomorphism class. Unique isoge-
nies can be computed over a kernel, k, such that
f : E ! E=hki by using V�elu’s formulas [24].

The j-invariant is an identifier for an elliptic curve iso-
morphism class. The curves within this isomorphism class
share various complex features. An isogeny is essentially a
morphism from one isomorphism class to another. Thus,
we can create a graph of all isogenies by using nodes that
represent each isomorphism class and edges that represent
an ‘ degree isogeny. When considering a specific ‘, each
node has ‘þ 1 neighbors. When considering two distant
nodes on a large graph, it is very difficult to determine a
path from one node to the other. The difficulty to compute
an isogeny between supersingular isomorphism classes
forms the security basis for SIDH and several other isogeny-
based cryptosystems. Supersingular elliptic curve isogeny
classes are interesting in that their endomorphism ring is
not commutative. The commutative endomorphism ring of
ordinary elliptic curves was key to the subexponential
quantum algorithm attacking ordinary isogeny cryptosys-
tems in [4]. The best known attack to compute an isogeny
between two isomorphism classes is based on the claw
problem with complexity O(

ffiffiffi

s
p

) for classical computers and
O(root3s) for quantum computers [5], where s is the degree
of the isogeny. There is no known subexponential solution
to this problem, even when quantum computers are avail-
able. However, it should also be noted that SIDH does
reveal the image of a few torsion points between rounds,

TABLE 1
Comparison of Different Post-Quantum Key Exchange and Encryption Algorithms at 128-bit Quantum Security Level

Algorithm NTRU [19] New Hope [20] McBits [21] SIDH [7] SIDH (with Compression) [11]

Type Lattice Ring-LWE Code Isogeny Isogeny

Public Key 6,130 2,048 1,046,739 576 336
Private Key 6,743 2,048 10,992 48 48
Perfect Forward Secrecy � @ � @ @
Performance Slow Very Fast Slow Very Slow Very Slow

Key sizes are in Bytes.

KOZIEL ETAL.: A HIGH-PERFORMANCE AND SCALABLE HARDWARE ARCHITECTURE FOR ISOGENY-BASED CRYPTOGRAPHY 1595

which may make the problem easier [25]. To this date, no
faster attack on the Jao and De Feo SIDH scheme has been
proposed.

2.2 Finite Field Arithmetic

For supersingular isogeny-based cryptosystems, we can rep-
resent all arithmetic over a quadratic extension field Fp2 ,

where p is a prime number. A finite field Fp consists of p ele-
ments that are closed under addition and multiplication,
which can be thought of as modular addition and multiplica-
tion. We can extend the base finite field Fp to a quadratic
extension field by defining the extension field over an irreduc-
ible polynomial. Notably, we choose the irreducible polyno-
mial x2 þ 1, which is irreducible since i ¼ ffiffiffiffiffiffiffi�1

p
does not exist

in our base field. Thus, we can represent an element A 2 Fp2

as being composed of elements a0; a1 2 Fp in the form
A ¼ a0 þ ia1. a1 is considered to be themost significantFp ele-
ment in the quadratic extension field representation.

2.3 SIDH Key Exchange

In the supersingular isogeny Diffie-Hellman key exchange
protocol, Alice and Bob seek to agree on a secret elliptic
curve class by separately taking seemingly random walks
on their respective isogeny graphs. SIDH is composed of a
double-point multiplication to generate a secret kernel point
followed by a large-degree isogeny over that kernel point.
The difficulty to determine a connection between two dis-
tant supersingular isomorphism classes provides security
for this protocol.

To initiate SIDH, Alice and Bob decide on a smooth iso-
geny prime p of the form ‘aA‘

b
B � f � 1 where ‘A and ‘B are

small primes, a and b are positive integers, and f is a small
cofactor to make the number prime. They determine a
supersingular elliptic curve over a quadratic extension field,
E0ðFp2Þ, with cardinality ðp� 1Þ2. Over this starting super-
singular curve E0, Alice and Bob pick the bases fPA;QAg
and fPB;QBgwhich generate the torsion groups E0½‘eAA � and
E0½‘eBB �, respectively, such that hPA;QAi ¼ E0½‘eAA � and

hPB;QBi ¼ E0½‘eBB �.
The SIDHprotocol proceeds as follows. Alice and Bob each

perform a double-point multiplication with two selected pri-
vate keys that spanZ=‘aZ andZ=‘bZ, respectively. This gener-
ates a secret kernel point that identifies a large-degree
isogeny. Alice’s secret kernel is RA1 ¼ mAPA þ nAPA and
Bob’s secret kernel is RB1 ¼ mBPB þ nBPB, where fmA;nAg
are Alice’s secret keys and fmB;nBg are Bob’s secret keys.
Next, Alice and Bob use that secret kernel to perform their
own secret isogeny walk by computing a large-degree iso-
geny. Alice computes fA : E0 ! EA ¼ E0=hRA1i and Bob

computes fB : E0 ! EB ¼ E0=hRB1i. For the first round, the
opposite party’s basis points are also pushed through the iso-
geny mapping. Alice computes fAðPBÞ;fAðQBÞwith her hid-
den isogeny and Bob computes fBðPAÞ;fBðQAÞ with his
hidden isogeny. At the end of the first round, Alice transmits
fEA;fAðPBÞ;fAðQBÞg and Bob transmits fEB;fBðPAÞ;fBðQAÞg.

With the exchanged information, Alice and Bob again
perform their hidden isogeny walk, but this time with the
transmitted public keys as the starting point. Similar to the
first round, Alice and Bob calculate a secret kernel with their
secret key. Alice’s secret kernel for the second round is
RA2 ¼ mAfBðPAÞ þ nAfBðPAÞ and Bob’s secret kernel is
RB2 ¼ mBfAðPBÞ þ nBfAðPBÞ. With this secret kernel, Alice
and Bob compute a large-degree isogeny which is the same
isogeny walk as the first round. Alice computes fBA : EB !
EBA ¼ EB=hRA2i and Bob computes fAB : EA ! EAB ¼ EA=
hRB2i. Essentially, curves EBA and EAB were obtained by
performing the same two isogeny walks, but in a different
order. In effect, Alice and Bob now share isomorphic curves
with a common j-invariant that can be used as a shared
secret. We illustrate the SIDH key exchange in terms of the
isogeny computation in Fig. 1.

2.4 Projective Isogeny Formulas

The supersingular isogeny Diffie-Hellman protocol was first
proposed by David Jao and Luca De Feo in [5] in 2011. Since
then it has been interesting to see how further papers have
improved the protocol. The two main papers that have
improved the protocol are [6] by De Feo, Jao, and Plût and [7]
by Costello, Longa, and Naehrig. Here, we highlight the main
protocol optimizations that we adapt. As introduced in [6],
we utilize points on Montgomery curves [26] and optimize
arithmetic around them. We define a Montgomery curve, E,
as the set of all points ðx; yÞ that satisfy theMontgomery form

Eða;bÞ : by2 ¼ x3 þ ax2 þ x;

and a point at infinity. When the value a24 ¼ ðaþ 2Þ=4 is
known, these curves feature extremely fast point arithmetic
along their Kummer line, ðx; yÞ ! ðX : ZÞ, where x ¼ X=Z.
Isogenies still work for this representation because P and
�P generate the same set subgroup of points. Interestingly,
we are performing isogenies along the Kummer varieties of
Montgomery curves. This reduces the total number of com-
putations as the y-coordinate does not need to be updated
for point arithmetic or when the point is pushed to a new
curve by evaluating an isogeny.

Projective isogeny formulas over Montgomery curves
were introduced in [7]. These formulas projectivize the
curve equation with a numerator and denominator, similar
to projective point arithmetic. We define a projective Mont-
gomery curve, Ê, as the set of all points ðx; yÞ that satisfy
the projectivized Montgomery form

ÊðA;B;CÞ : By2 ¼ Cx3 þAx2 þ Cx;

and a point at infinity. In this representation, the corre-
sponding affine Montgomery curve would have coefficients
a ¼ A=C and b ¼ B=C. The authors of [7] also show that the
b curve coefficient is not needed in any of the computations
for SIDH and can omit recalculating it after each isogeny
computation.

Fig. 1. Visualization of SIDH key exchange. Alice and Bob separately
perform their secret isogeny walks on their respective isogeny graphs.

1596 IEEE TRANSACTIONS ON COMPUTERS, VOL. 67, NO. 11, NOVEMBER 2018

To perform a double point multiplication, we specify that
one of Alice and Bob’s secret keys is 1, as introduced in [6],
so that the double point multiplication produces a secret
kernel, R ¼ hP þmQi. Costello et al. [7] also greatly simpli-
fied the starting parameters for SIDH by proposing to use
the starting Montgomery curve

E0=Fp2 : y2 ¼ x3 þ x:

By specifying points in the base field and trace-zero torsion
subgroup, the first round of the SIDH protocol can be per-
formed as a Montgomery [26] ladder followed by a point
addition, with all operations in Fp. The second round of the
protocol involves a double-pointmultiplicationwith elements
in Fp2 . For this calculation, we utilize the 3-pointMontgomery
ladder proposed in [6] that computes P þmQ in log 2ðmÞ
steps. Each step requires 2 point additions and 1 point dou-
bling. We closely follow the projective isogeny formulas pre-
sented in [7] for isogenies of degree ‘A ¼ 4 and ‘B ¼ 3. For the
first round, we push the Kummer coordinates of the other
party’s basis P , Q, and Q� P through the large-degree iso-
geny rather than the projective version of P and Q to remove
a point subtraction before the 3-point ladder.

As proposed by [27], large-degree isogenies can be
decomposed into a chain of smaller degree isogeny compu-
tations and computed iteratively. From a base curve E0 and
kernel point R0 ¼ R of order ‘e, we compute a chain of
‘-degree isogenies

Eiþ1 ¼ Ei=h‘e�i�1Rii; fi : Ei ! Eiþ1; R ¼ fiðRiÞ:
This problem can be visualized as an acylic graph, which

is shown in Fig. 2. We can traverse this graph by storing

multiple pivot points to efficiently compute the large-degree
isogeny. De Feo et al. [6] show that we can calculate an opti-
mal strategy, or path of least cost, by solving a combinator-
ics problem.

Lastly, Costello et al. [7] show thatwe can perform a simple
compression of the SIDHkeys by exchanging the image of the
opposite party’s basis ½xP ; xQ; xQ�P �. This gives sufficient
information to recalculate theMontgomery curve coefficient a
and only costs 3 Fp2 elements to transmit over the wire.
For instance, Alice’s public key would be fxfAðPBÞ; xfAðQBÞ;
xfAðQB�PBÞ}.

2.5 SIDH Public Parameters

Table 2 contains the chosen public parameters for our SIDH
implementations. These were selected to be a representative
for parameters close to the 85, 128, 170, and 256-bit quantum
security levels. Their actual quantum security is just smaller
at 83, 124, 168, and 252-bit quantum security levels, respec-
tively. Each of these primes have an even power for ‘A ¼ 2
so that the fast isogeny formulas of degree 4 could be fully
used. Prime p503 was selected since it was utilized in [16],
[17] and prime p751 was selected since it was utilized in [7].
Primes p1019 and p1533 were selected to be slightly smaller
than 1,024 bits and 1,536 bits and also have fairly balanced
isogeny graphs. Unfortunately, the candidates for the 1,024-
bit quantum security level were fairly limited, and thus, we
chose a prime with an f term that is not 1.

We utilize the method proposed by Costello et al. [7] to
find generator points for the torsion subgroups ‘

eA
A and ‘

eB
B .

In this method, we start with the Montgomery curve,
E0=Fp2 : y2 ¼ x3 þ x. For the ‘

eA
A -torsion points PA and QA,

we find a point PA 2 E0ðFpÞ½‘eAA � as ½f‘eBB �ðz; ffiffiffiffiffiffiffiffiffiffiffiffiffi

z3 þ z
p Þ, where

z is the smallest positive integer such that
ffiffiffiffiffiffiffiffiffiffiffiffiffi

z3 þ z
p 2 Fp and

PA has order ‘
eA
A . We apply a distortion map over E0 to PA

to find QA such that it is the endomorphism t : E0ðFp2Þ !
E0ðFp2Þ; ðxþ 0i; yþ 0iÞ ! ð�xþ 0i; 0þ iyÞ. Therefore, QA ¼
tðPAÞ. We repeat this process to find the ‘

eB
B -torsion points.

We find PB 2 E0ðFpÞ½‘eBB � as ½f‘eAA �ðz; ffiffiffiffiffiffiffiffiffiffiffiffiffi

z3 þ z
p Þ, where z is the

smallest positive integer such that
ffiffiffiffiffiffiffiffiffiffiffiffiffi

z3 þ z
p 2 Fp and PB has

order ‘
eB
B . Lastly, QB ¼ tðPBÞ. We also list the generator

points PA and PB in Table 2.

3 PROPOSED FINITE FIELD ARITHMETIC UNIT FOR

ISOGENY COMPUTATIONS

In this section, we investigate an efficient field arithmetic
unit for isogeny computations. SIDH features a large

Fig. 2. Acyclic graph structure for performing isogeny computation of ‘6.

TABLE 2
SIDH Public Parameters

Curve: E0=Fp2 : y2 ¼ x3 þ x

Prime Classical/Quantum
Security (bits)

Public Key
Size (Bytes)

PA PB

p503 ¼ 22503159 � 1 125/83 378 ½3159�ð14; ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

143 þ 14
p Þ ½2250�ð6; ffiffiffiffiffiffiffiffiffiffiffiffiffi

63 þ 6
p Þ

p751 ¼ 23723239 � 1 186/124 564 ½3239�ð11; ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

113 þ 11
p Þ ½2372�ð6; ffiffiffiffiffiffiffiffiffiffiffiffiffi

63 þ 6
p Þ

p1019 ¼ 2508331935� 1 253/168 765 ½331935�ð13; ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

133 þ 13
p Þ ½250835�ð7; ffiffiffiffiffiffiffiffiffiffiffiffiffi

73 þ 7
p Þ

p1533 ¼ 27763477 � 1 378/252 1,150 ½3477�ð5; ffiffiffiffiffiffiffiffiffiffiffiffiffi

53 þ 5
p Þ ½2776�ð6; ffiffiffiffiffiffiffiffiffiffiffiffiffi

63 þ 6
p Þ

KOZIEL ETAL.: A HIGH-PERFORMANCE AND SCALABLE HARDWARE ARCHITECTURE FOR ISOGENY-BASED CRYPTOGRAPHY 1597

amount of finite field arithmetic, which is primarily based
on modular addition and multiplication.

3.1 Field Arithmetic Unit Methodology

Our field arithmetic unit centers around a dual-port RAM
block for 256 values in Fp, which is shown in Fig. 3. In addi-
tion to RAM, we have highly optimized adder/subtractor
and multiplication accelerators. We include so many regis-
ters so that we can parallelize as much of the SIDH formulas
as possible, which is illustrated in Section 4. In using the
dual-port RAM, we can read two registers simultaneously
to initiate a modular addition or modular multiplication
immediately. Further, we opted to directly store the output
of the adder/subtractor to Port A and the output of the mul-
tiplication unit to Port B.

As is described later, we utilized Montgomery multiplica-
tion [28] for our multiplier. This implies that all results are in
the Montgomery domain, and that the result of a Montgom-
ery multiplication could be c or cþ p, since the result is mod-
ulo 2p. Thus, we assume that all values are modulo 2p inside
the register RAM. In other designs, such as [16], [17], the result
of themultiplier is sent into the adder/subtractor so that it can
be reduced. Thus,when compared to these other implementa-
tions, this design decision allows us to reduce the multiplica-
tion latency by the add delay, allows us to store up to two
values to the register file simultaneously, and was found to
also slightly increase themax frequency of the device.

The RAM file contains 256 values in Fp, which allows for
up to 128 values in Fp2 . The beginning of the register file
holds 0, 1, 2, and 6 in the Montgomery domain as well as
the Montgomery constant R2. This is followed by the SIDH

parameters. The rest of the registers are for intermediate
values throughout the protocol. We place Fp2 values starting
at an even register position by placing the most significant
Fp element at the even position and the least significant Fp

element at the odd position.

3.2 Finite Field Adder

Finite field addition computes the sum C ¼ AþB, where
A;B;C 2 Fp. If the sum C is greater than p, then there is a
reduction by performing the subtraction C ¼ C � p so that
C 2 Fp. A similar situation occurs for finite field subtraction,
C ¼ A�B, where A;B;C 2 Fp. However, as noted, we rep-
resent all numbers modulo 2p. Therefore, we will subtract
by 2p in the case of addition and add by 2p in the case of
subtraction to ensure that the result is modulo 2p.

Since SIDH uses very large inputs, we split the adder/
subtractor into approximately 256-bit add/sub stages. We
chose 256 since it is a nice division of the prime sizes for
approximate security levels and also features a critical
path delay approximately equal to that of our multiplier
(described in Section 3.3). Each cycle we can compute a dif-
ferent 256-bit chunk of the result by adding or subtracting
the aligned bits with the carry/borrow of the previous oper-
ation. We fully pipeline this cascaded addition chain so that
the adder/subtractor can compute on new inputs every
cycle. Operand 1 can be the feedback of the previous addi-
tion result or Port A out. Operand 2 can be 0, Port B out, or
2p. The controller selects the inputs. The possible inputs to
the adder/subtractor are shown in Fig. 3.

Every modular addition and subtraction operation per-
forms both A�B and A�B� 2p and takes the appropriate

Fig. 3. High-level architecture of our SIDH core. This architecture is optimized for performance, configurable with the number of replicated multipliers,
and scalable for isogeny-based computations at varying security levels.

1598 IEEE TRANSACTIONS ON COMPUTERS, VOL. 67, NO. 11, NOVEMBER 2018

result modulo 2p so that it is a constant set of operations. To
efficiently check that the modulo 2p condition is enforced,
we always check to see if the results AþB� 2p and A�B
are negative for addition and subtraction, respectively.

3.3 Field Multiplier

Finite field multiplication is essentially a modular multipli-
cation. Multiplying two elements in a finite field Fp will pro-
duces an output double the size of the inputs, so finite field
multiplication is a combination of a standard multiplication
with a reduction. It is well known that when optimizing for
high-performance hardware architectures, the conventional
wisdom is to perform multiple partial multiplications in
parallel. For instance, although [7] and [32] present methods
to reduce the number of partial multiplications when com-
puting SIDH arithmetic, this method is not altogether useful
for hardware architectures that would perform a number of
these partial multiplications in parallel anyways.

Specifically, we examined the Montgomery [28] multipli-
cation literature to find a strong multiplier for our architec-
ture. Montgomery multiplication performs a modular
multiplication by transforming integers tom-residues, or the
Montgomery domain, and performing multiplications with
this representation. Thus, for SIDH, we will initially trans-
form our input parameters to the Montgomery domain and
use Montgomery multiplication throughout the protocol.
At the end of computations, the result can be converted out
of the Montgomery domain with a single Montgomery
multiplication.

In Table 3, we provide a time complexity comparison of
several Montgomery multiplication schemes over the 512
and 1,024-bit modulus levels. Some of these are high-perfor-
mance multipliers that also have been designed for fast RSA
computations. Our target is a high-performance Montgom-
ery multiplier, which is a balance between critical path for
the frequency and multiplication/interleave latency. We
chose to not include the provided hardware results of these
works because there are too many differing implementation
specifics that make comparisons unfair.

Ultimately, we chose the interleaved systolic Montgomery
multiplier proposed in [16] as it is high-performance, high-
throughput, and scalable, which is a strong fit for a high-

performance implementation of isogeny-based cryptography.
This multiplier utilizes the high-radix Montgomery multipli-
cation procedure. This Montgomery multiplication, Smþ3 ¼
A�B�R�1 mod M centers on computing mþ 2 rounds of
the computations

qi ¼ ðSiÞ mod 2k (1)

Siþ1 ¼ ðSi þ qiMÞ=2k þ aiB; (2)

where k is the high radix, R ¼ 2km is the auxiliary modulus,
M is the target modulus, m is the total number of k-bit
chunks in the modulus, A and B are inputs with ai being
the ith k-bit chunk of A, M ¼ ðð�M�1 mod RÞ mod 2kÞM,
and S0 ¼ 0 [33]. Essentially, we can perform the large multi-
plications qiM and aiB by computing them in k-bit parallel
chunks.

Notably, we can use a systolic architecture to perform the
iterative computations in Equations (1) and (2). This is built
on a 1-dimensional systolic array of mþ 2 processing ele-
ments that each compute Siþ1;j ¼ ðSi þ qimjÞ=2k þ aibj,
where j is the number of the processing element in the
array. In this sense, we push the k-bit chunks of A from
processing element 0 to processing element mþ 2 and also
perform a feedback for Si þ qiM. The multiplication
sequence begins by pushing a 0 through the systolic array
by triggering a synchronous reset within each processing
element. Then, the first k-bit chunk of A, a0, is pushed into
the first processing element where it performs the simpler
computation, S1;0 ¼ ðS0 þ q0MÞ=2k þ a0b0 ¼ a0b0. This corre-
sponds to the first k-bits of the S1. a0 continues through the
entire systolic array to produce all of S1. This only occupies
a single processing element at a time, so we also push other
chunks of A through the array, such that the processing ele-
ments are working in parallel. After mþ 3 cycles, the least
significant k-bit word of the result is ready. The last word is
ready after 3mþ 7 cycles. When a single multiplication is
issued, only half of the processing elements are used on a
specific cycle. Thus, we can issue two multiplications simul-
taneously, at the cost of multiplexers on the input and out-
put to select between the “even” and “odd” multiplication.

For our Montgomery multiplier, we chose the radix 216 as
it approximately matched the addition critical path and a
16� 16 bit multiplication could be computed with a single
DSP48 block. The critical path of the Montgomery multiplier
was the basic processing equation, Siþ1;j ¼ ðSi þ qimjÞ=
2k þ aibj. With the radix 216, we compute two 16-bit multi-
plications qimj and aibj in parallel, which is then accumu-
lated in a 4-way adder that added two 32-bit values and
two 16-bit values. The adder summed qimj, aibj, Si, and a
carry. Regardless of the prime size, this will be the critical
path of the multiplier, hence the scalability.

The design in [16] features an interleaved version of [34].
As k-bit chunks of A are pushed through the systolic archi-
tecture, the earlier processing elements are no longer proc-
essing inputs. Thus, we can interleave multiplications every
2mþ 3 cycles by pushing in a new set of A and B. It is also
known that for SIDH primes of the form 2ea‘

eb
b f � 1, �M ¼ M

since M 0 ¼ 1. This is applicable to our test primes. This sim-
plification removes the need for one processing element
and reduces the multiplication latency by 3 cycles and

TABLE 3
Time Complexity Comparison of Montgomery Multipliers

Work Critical Latency (cc)

Path Delay Mult Interleave

512-bit Montgomery Multiplication

[29] (d ¼ 4) 5TFA þ TAND 130 130

[30] (k ¼ 16) 2T16� þ T32þ 192 192

[31](s ¼ 16) 2T32� þ T64þ 66 66

[16] (k ¼ 16) T16� þ T16þ þ T32þ 100 69

1,024-bit Montgomery Multiplication

[29] (d ¼ 4) 5TFA þ TAND 258 258

[30] (k ¼ 16) 2T16� þ T32þ 384 384

[31](s ¼ 32) 2T64� þ T128þ 66 66

[16] (k ¼ 16) T16� þ T16þ þ T32þ 196 133

Note that T32� indicates the critical path of a 32-bit multiplication and T16þ
indicates the critical path of a 16-bit addition.

KOZIEL ETAL.: A HIGH-PERFORMANCE AND SCALABLE HARDWARE ARCHITECTURE FOR ISOGENY-BASED CRYPTOGRAPHY 1599

interleave latency by 2 cycles. Unfortunately, the only
caveat to using the modulo 2p methodology is that there
will be overflow for p751 since the input operands can be
752 bits. Thus, p751 actually performs a 768-bit Montgomery
multiplication for this field arithmetic unit, which raises
the multiplication latency by 3 cycles and the interleave
delay by 2 cycles.

Similar to the design in [16], we replicate the Montgom-
ery multiplier depending on how many resources we
require. Since the multiplication latency is much higher
than that of the addition latency and the multiplier is not
fully pipelined, we found this to be necessary to greatly
increase the speed of isogeny-based arithmetic. We issue
and read the multiplication results by using a circular FIFO
buffer. It is the job of the program ROM within the control
unit to keep track of which multiplications are ready and
read them when appropriate, which is explained in Section
4.1. Each time a multiplication is started, the issue index is
incremented and each time a multiplication result is read,
i.e., through a write to Port B, the read index is incremented.

4 PARALLELIZING SIDH WITH NEW

ARCHITECTURES

This section details our techniques to maximize the through-
put of our architecture throughout the SIDHprotocol.

4.1 Scheduling

In this work, we examined various methods to efficiently
schedule isogeny-based algorithms with our high through-
put architecture. Ultimately, we generate a constant pro-
gram ROM using a greedy algorithm to schedule the
multipliers, adder, and register file for critical computations
first and effectively interleave other, less important compu-
tations when resources are available.

Since there is a variety of operations that are used
throughout SIDH, we opted to divide each function, such as
a Montgomery ladder step, compute an isogeny of degree 3,
etc., into an instruction block or subroutine. To generate
these blocks of code, we created a custom assembly lan-
guage which takes in Fp and Fp2 addition, subtraction, mul-
tiplication, and squaring operations, and schedules a fast
implementation of the assembly code using the allocated
number of resources and appropriate delays. The latency
for a read, write, add, multiply, and multiplication inter-
leave are shown in Table 4 for a given prime.

For our isogeny computations, we most closely use the
projective isogeny and Montgomery arithmetic formulas

presented in [7]. For all subroutines, we rearranged the order
of the operations and included register renaming to mini-
mize data and read dependencies. To schedule instructions,
we dynamically create a data dependency and read depen-
dency graph to issue instructions as soon as possible. We
schedule the instructions from our assembly code in order,
such that the first instructions have priority over the multi-
plier unit, adder, and register file. These first instructions are
recorded into the current program ROM snapshot and used
to create further dependency graphs. Data dependencies
ensure that read after write dependencies are not violated,
i.e., trying to read and use a result before it is ready. Read
dependencies ensure that write after read dependencies are
not violated, i.e., writing a result to a register that has not
been read by all of its consumers. Algorithm 1 illustrates our
procedure. We note that the order of our assembly code is
essential in that the first instructions have the highest priority
to be “placed”, where we lock the hardware resources for
these instructions to ensure that the instruction’s output is
ready for whichever future instructions might need it as a
data dependency. Further instructions can also be inter-
leaved with these critical computations as long as the neces-
sary hardware resources are available.

Algorithm 1. Proposed Scheduling Methodology

Input: SIDH Instruction File
Output: FPGA ROM File
1: for each instruction block do
2: for each Fp or Fp2operation do
3: current_cycle =maxðdata dependency(opa,opb),

read dependency(opout))
4: while instruction can’t be issued do
5: current_cycle += 1

6: end while
7: Insert instruction sequence
8: Update data and read dependencies

9: end for
10: commit_cycle = 0
11: while commit_cycle < last_cycle do
12: ifmultiplier_mismatch then
13: reschedule_mismatched_multiplier()

14: end if
15: commit_cycle += 1

16: end while
17: end for
18: return FPGA ROM file

In addition to the dependencies, the resources to carry
out an operation have to also be available. For an Fp addi-
tion, we engage a memory load, addition, addition reduc-
tion, and memory store. Thus, for a given cycle t, we ensure
that the memory unit is available for a read at cycle t,
addition unit is available at cycles tþ read delay and
tþ read delayþ add delay, and finally that the memory unit
can store to Port A at cycle tþ read delayþ 2� add delay.
From the compiler’s point of view, the result would be
ready at cycle tþ read delayþ 2� add delayþ write delay.
Similarly, an Fp multiplication requires that the memory at
cycle t can be used as a load, the multiplier at cycle
tþ read delay can issue a multiplication, and the memory at
cycle tþ read delayþmult delay can store to Port B.

TABLE 4
Scheduling Parameters

Latency (cc)

Prime Read Write Add
Multiplication

Mult. Interleaved

p503

2 1

2 100 69
p751 3 148 101
p1019 4 196 133
p1533 6 292 197
pm d m

256e 3dmþ2
16 e þ 4 2dmþ2

16 e þ 5

1600 IEEE TRANSACTIONS ON COMPUTERS, VOL. 67, NO. 11, NOVEMBER 2018

We perform all scheduling outside of our hardware with
the aid of a Python script. This script outputs the controls for
every cycle for our register file, adder, andmultiplier. Our con-
troller is composed of a program ROM and program counter
to issue the correct operations to the field arithmetic unit.
Each instruction is 26 bits long. Bits 0-7 and 8-15 are the
addresses sent to Port A and B, respectively, for read or write
operations. Bits 16 and 17 indicate a write to Port A and Port
B, respectively. Bit 18 indicates a read of Port A and Port B.
Bits 19-21 indicate which add operation is taken. The possible
addition sequences are memory add, memory sub, reduction
add, reduction sub, or do nothing. Bits 22-23 indicate themul-
tiplier operation, which includes starting a multiplication,
resetting the circular FIFO buffer, or doing nothing. Bit 24 is to
indicate that the address for Port A is special, which is used to
pop the last point in the point queue in the isogeny evaluation
sequence. Lastly, if bits 0-24 are all 0 for more than 1 cycle,
then bit 25 indicates that there is a stall, with the number of
stalled cycles represented with bits 0-24. Stalls are typically
encountered when the processor is waiting on a result from a
multiplier or adder and no new controls need to pushed.

4.2 Rescheduling Multiplier Mismatches

Since we used an even-odd multiplier, we scheduled our
instructions with a greedy algorithm that incurs stalls if a
multiplication is not on the right even-odd cycle. We force
each instruction block to start on an even cycle by perform-
ing an even-odd bit reset on the last cycle of a block (which
is a memory store). In our scheduling methodology, we
schedule all instructions and then iteratively commit each
cycle to verify that our multipliers are working on the cor-
rect cycle. We must issue the first multiplication of an
instruction block on an even cycle, followed by an odd
cycle, followed by an even cycle, and so on. We commit
each cycle in order to verify this condition. If there is a mul-
tiplier mismatch, i.e., trying to issue an odd multiplier on an
even cycle, then we must resolve this violation.

The first two rules for rescheduling mismatched multiply
cycles is that any stores and multiplications before the erring
multiplication are unaffected so that dependencies, arithmetic
pipelines, and previous multiplications are not violating a
scheduling rule. Next, we push the erringmultiplication cycle
one cycle forward so that it is now on the correct even-odd
cycle. If there are any store sequences that coincide with the
new load cycle for this stalled multiplication, then we push
these stores forward aswell. From there, we redo the schedul-
ing process starting from the erring cycle. By iterating cycle

by cycle through the initial instructions, we again keep track
of the available resources and dynamically create a read and
write dependency graph to fit the instructions into the new
schedulewith a corrected even-oddmultiplication.

Overall, we found that completely rescheduling instruc-
tions after a mismatched multiplication greatly reduced the
stalls encountered as a result of using the even-odd multi-
plier. For a few replicated multipliers, the majority of new
schedules did not increase the total number of cycles in an
instruction block.

4.3 Extension Field Arithmetic

As was previously stated, SIDH operates in the extension
field Fp2 . For this extension field, we use the irreducible
polynomial x2 þ 1, applicable to SIDH primes of the form
2eA‘

eB
B f � 1. By combining fast Fp addition and multiplica-

tion primitives, we can efficiently schedule these Fp2 com-
putations. The Fp2 equations were chosen to minimize the
total number of Fp multiplications. Let i ¼ ffiffiffiffiffiffiffi�1

p
be the most

significant Fp element in Fp2 . Let A;B;C 2 Fp2 and
a0; b0; a1; b1; c0; c1 2 Fp, where A ¼ a0 þ ia1, B ¼ b0 þ ib1 and
the result of some ? operation is C ¼ A ? B where C ¼
c0 þ ic1. We define the extension field arithmetic Fp2 in
terms of Fp with the series of operations shown in Table 5.
Based on these representations, parallel calculations could
easily be performed for a single operation in Fp2 . For

instance, three separate multiplications in Fp could be car-
ried out simultaneously for the calculation of a multiplica-
tion in Fp2 . With other non-dependent instructions in the
scheduling, many multipliers can be used in parallel.

Unfortunately, an inversion in Fp was difficult to paral-
lelize, and suffered as a result. We performed an exponenti-
ation with Fermat’s little theorem by utilizing a k-ary
method with k ¼ 4. We were able to parallelize the genera-
tion of the windows 1; 2; 3; . . . ; 2k � 1, but after that, the
inversion was done serially. k squarings were done in serial
followed by a multiplication. The inversion added many
lines to the program ROM, and was difficult to parallelize,
showing that there may still be some merit to having a dedi-
cated inversion unit. One could also perform the window
method for exponentiation proposed in [35], but again serial
window methods are not parallel in nature.

4.4 Scheduling Isogeny Computations and
Evaluations

As is briefly discussed in Section 2.4, a large-degree isogeny is
efficiently computed by iteratively computing the base degree

TABLE 5
Quadratic Extension Field Arithmetic Unrolling When i ¼ ffiffiffiffiffiffiffi�1

p

Fp2 operation Addition Subtraction Squaring Multiplication Inversion

Step 1 c0 ¼ a0 þ b0 c0 ¼ a0 � b0 t0 ¼ a0 � a1 t0 ¼ a0 þ a1 t0 ¼ a0 � a0
Step 2 c1 ¼ a1 þ b1 c1 ¼ a1 � b1 t1 ¼ a0 þ a1 t1 ¼ b0 � b1 t1 ¼ a1 � a1
Step 3 - - t2 ¼ a0 � a1 t2 ¼ a1 � b0 t0 ¼ t0 þ t1
Step 4 - - c0 ¼ t1 � t2 t3 ¼ a0 � b1 t0 ¼ t�1

0
Step 5 - - c1 ¼ t0 þ t0 t0 ¼ t0 � t1 t1 ¼ 0� a1
Step 6 - - - c1 ¼ t2 þ t3 c0 ¼ a0 � t0
Step 7 - - - t1 ¼ t0 � t2 c1 ¼ t1 � t0
Step 8 - - - c0 ¼ t1 � t3 -
Cost in Fp 2A 2A 2M þ 3A 3M þ 5A 1I þ 2M þ 2S þ 2A

Inputs are A ¼ a0 þ ia1 and B ¼ b0 þ ib1 and the output is C ¼ c0 þ ic1. Temporary registers are t0 through t3.

KOZIEL ETAL.: A HIGH-PERFORMANCE AND SCALABLE HARDWARE ARCHITECTURE FOR ISOGENY-BASED CRYPTOGRAPHY 1601

isogeny with specific points derived from the secret kernel
point. As is shown in Fig. 2, this can be visualized as an acycle
graph in the shape of a triangle. By beginning at the secret ker-
nel point at the top, we compute the large-degree isogeny by
computing the base degree isogeny at the leaves of the graph.
We traverse the graph bymoving left with a point multiplica-
tion by ‘ ormoving right with an ‘-degree isogeny evaluation.
Since we only need to compute an isogeny at each of the
leaves, we can determine an optimal strategy or least cost tra-
versal of the graph based on the relative weight of a point
multiplication by ‘ and an ‘-degree isogeny evaluation. This
combinatorial problem was studied in [6]. The primary take-
away is that an optimal strategy is composed of two optimal
sub-strategies. Therefore, we can recursively determine the
least cost traversal from the leaves up to the head of the graph.
We calculated fast strategies for traversing this graphwith the
Magma code provided by [7], which closely follows the algo-
rithms proposed by [6].

By utilizing multiple pivot points, we can avoid traversing
every node. This is opposed to the multiplication or isogeny-
based traversals originally proposed in [5]. The time complex-
ity of an optimal strategy is approximately Oðe log eÞ, which
is quite an improvement overOðe2Þ for hitting every point.

The general procedure to compute a large-degree iso-
geny is composed of performing serial point multiplications
on a specified point to reach a leaf node and then perform-
ing an isogeny at that leaf node. While performing the serial
point multiplications, multiple pivots are stored to a point
queue. Following the isogeny computation, each of these
saved pivots are pushed through the isogeny mapping to a
new curve. In software implementations such as [6], [7],
[15], these isogeny evaluations are computed serially. As a
contrast, we emphasize that our hardware architecture can
compute each of these isogeny evaluations in parallel, as
there are no data dependencies between pivot points. Essen-
tially, this can be thought of as loop unrolling the isogeny
evaluation step of the large-degree isogeny computation. By
performing multiple isogeny evaluations in a single instruc-
tion block, we can take advantage of instruction reordering
and a massive amount of parallelism with the pipelined
adder unit and replicated multipliers.

To demonstrate the speedup achieved by this approach,
we consider an implementation with 4 replicated multipliers
in our architecture under the public key parameters for p752.
For Bob’s first round of the protocol, he could compute 1941
serial 3-isogeny evaluations, or he could compute 6 single, 15
double, 274 triple, ... which in array form is [6, 15, 274, 35, 56,
28, 36, 10, 10, 5, 1, 1] loop unrolled 3-isogeny evaluations. For
our scheduling algorithm, the serial version of the isogeny
evaluation stage requires 1.6 million cycles, whereas the par-
allel version requires 0.685million cycles. This is a speedup of
approximately 2.34. In addition, the isogeny evaluation step
already requires a large portion of the total time in SIDH. By
parallelizing the isogeny evaluations, we reduced the total
time of Bob’s first round from 2.9 million cycles to 1.9 million
cycles for this example, a speed improvement of 1.53. The
only downside to including each of these parallel routines is
that the program ROM must include many more routines,
costing more blocks of memory. However, we still only use a
small proportion of the available block memories so this was
notmuch of a problem.

To implement the large-degree isogeny computation, we
held the selected strategy for our implementation in a block
ROM. For our largest prime, this was 2,048 8-bit entries indi-
cating which pivot points to take. Since we have a finite num-
ber of registers, we chose to hold a maximum of 12 points in
the point queue with up to 6 evaluations being parallelized at
a time. This occupied a total of 96 registers in our register file.
With these constraints in mind, we generated fast strategies
for Alice and Bob with a point multiplication cost to isogeny
evaluation cost of 2:1, the only exception being p1533 which
was utilized with a ratio 1.9:1 so that a maximum of 12 points
were in the point queue. Our isogeny control unit kept track
of the current isogeny, point multiplication index of each of
the points in the point queue, and loop conditions for the iso-
genies. To add a point to the point queue,we utilized a special
queue_size variable that was incremented on an isogeny split.
The split was facilitated by using a special control bit to point
the address of Port A to the address of the last point in the
point queue so that it could be appended. Overall, the control
logic used to implement the isogeny logic was minimal com-
pared to the size of the field arithmetic unit.

4.5 Scheduling Example

In Fig. 4, we illustrate the data-dependency graph of the Get
3 Isogeny function, which is based on the same formula
from [7]. This function takes a point of order 3, P ¼ ðX3; Z3Þ
and outputs an isogenous curve with projective Montgom-
ery coefficients ðA;CÞ ¼ ðZ4

3 þ 18Z2
3X

2
3 � 27X4

3 ; 4X3Z
3
3).

Since we use a dual-port RAM as our register file, we can
only issue 1 load each cycle to initiate an Fp operation. Thus,
as Fig. 4 illustrates, we break our instructions into “steps”, or
the order as it appears in our assembly code. We can issue
these instructions once the data and read dependencies are
resolved and the hardware resources are available. We can
generally ignore read dependencies since we chose a large
register file and have plenty of temporary registers to work
with. We specifically ordered our assembly code so that we
calculate the datapath critical computations first to allow
more parallelism.

Although Fig. 4 shows a linear progression of instruc-
tions, the instructions can be initiated and completed out of
order. For instance, consider a system with only two avail-
able multipliers. The squaring in Step 1 requires both multi-
pliers. Thus, only the initial additions and subtractions in
the squaring and multiplication in Step 2 and 3, respec-
tively, can be issued until these multipliers are free. Upon
the completion of Step 1’s interleave delay, the two multipli-
cations from Step 2 will be issued. As Step 2 is processing
these multiplications, the addition unit is free and is utilized
by Step 4 to perform the Fp2 addition. Thus, the timing cost
of Step 4 is interleaved with the cost of Step 2.

We highlight the two blocks ofmultipliers in Fig. 4 to high-
light the critical computations that limit the computation time
of computing the 3-isogeny computation. Notably, there are 7
total multiplications in Mult Block 1 and 8 total multiplica-
tions in Mult Block 2. The number of multipliers is the pri-
mary configurability in our architecture to achieve a desired
performance. If we have 8 total multiplier resources, then the
minimumnumber of clock cycles is achieved for the 3-isogeny
computation. This is illustrated later in our summary of sub-
routine costs in Table 6 of Section 4.6which shows a consistent

1602 IEEE TRANSACTIONS ON COMPUTERS, VOL. 67, NO. 11, NOVEMBER 2018

424 cycles per “Get 3 Isog” subroutine for 8, 10, and 12 multi-
pliers. For some subroutines, we do not have many data
dependencies and can issue many multiplications in parallel,
up to our total number ofmultipliers. Thus, addingmoremul-
tipliers will continue to reduce the total number of cycles for
subroutineswith large amounts of parallelism.

4.6 Total Cost of Routines

Here, we break up the relative costs of routines within our
implementation of the SIDH protocol. Table 6 contains the
results of various routines for p751, which closely follows the
formulas provided in [7]. ~A, ~S, and ~M refer to addition,
squaring, and multiplication, respectively, in Fp2 . Routines
with a note of ðFpÞ count operations in Fp. The purpose of
each routine can be summarized as follows:

� Mont. Ladder Step (FpÞ: Perform a single step of the
Montgomery ladder [26] in Fp, which requires 1
point addition and 1 point doubling.

� 3-point Ladder Step: Perform a single step of the 3-
point Montgomery ladder [6], which requires 2 point
additions and 1 point doubling.

� Mont. Quadruple/Triple: Perform a scalar point multi-
plication by 4 in the case of quadrupling and scalar
point multiplication by 3 in the case of tripling.

� Get ‘ Isog: Compute an isogeny of degree ‘. Alice
operates over isogenies of degree 4 and Bob operates
over isogenies of degree 3.

� Eval. ‘ Isog (x times): Push points through the isoge-
nous mapping from their old curve to their new
curve. This code is unrolled x times from 1 point to
11 points.

� Fp2 inversion (Fp): Compute the inverse of an element
using Fermat’s little theorem.

We also include the total number of operations in Fp for
the SIDH protocol in Table 7. As was noted previously,
operations in Fp2 can be broken down into operations in Fp,
so this table shows the total cost of each SIDH round.

5 FPGA IMPLEMENTATIONS

In this section, we present the results of our supersingular
isogeny accelerator on a Virtex-7 FPGA. For a proof of con-
cept, we implemented the SIDH key exchange protocol.

Fig. 4. Data-dependency graph for computing an isogeny of degree 3. This function takes a point of order 3, P ¼ ðX3; Z3Þ and outputs an isogenous
curve with projective Montgomery coefficients ðA;CÞ ¼ ðZ4

3 þ 18Z2
3X

2
3 � 27X4

3 ; 4X3Z
3
3). Depending on data dependencies, read dependencies, and

available resources, the greedy scheduler will attempt to schedule these instructions one-by-one at the first available opportunity, perhaps in an
out-of-order but correct methodology.

KOZIEL ETAL.: A HIGH-PERFORMANCE AND SCALABLE HARDWARE ARCHITECTURE FOR ISOGENY-BASED CRYPTOGRAPHY 1603

5.1 Implementation Results

The SIDH corewas synthesizedwith Xilinx Vivado 2015.4 to a
Xilinx Virtex-7 xc7vx690tffg1157-3 device. All results were
obtained after place-and-route. The area and timing results of

our SIDH core are shown in Table 8.We present results for 3-6
replicated multipliers in our architecture. Fewer multipliers
could not benefit from the isogeny evaluation parallelism and
are not included. The implementation was optimized with

TABLE 7
Operation Counts for SIDH Rounds for Various Security Levels

SIDH Round Ops. in Fp

p503 p751 p1019 p1533

Alice Round 1 23; 915Aþ 42; 545M 37; 417Aþ 66; 958M 52; 929Aþ 94; 773M 84; 605Aþ 149; 771M
Bob Round 1 24; 894Aþ 48; 456M 39; 648Aþ 76; 413M 54; 663Aþ 106; 047M 88; 820Aþ 163; 972M
Alice Round 2 23; 152Aþ 39; 170M 36; 288Aþ 61; 936M 51; 392Aþ 87; 915M 82; 264Aþ 139; 295M
Bob Round 2 26; 758Aþ 45; 513M 42; 442Aþ 71; 970M 58; 402Aþ 100; 134M 93; 628Aþ 155; 161M

A andM correspond to modular addition and multiplication, respectively, in Fp.

TABLE 6
Cost of Major Routines for p751

Routine Ops. in Fp2 #ops. in Latency for nmults. (cc)

ð ~AÞ ð ~SÞ ð ~MÞ protocol 2 4 6 8 10 12

Mont. Ladder Step (FpÞ 9 4 5 751 621 485 485 485 485 485
3-point Ladder Step 14 6 9 751 2,137 1,167 901 715 706 685
Mont. Quadruple 11 4 8 1,094 1,816 1,284 1,132 1,132 1,132 1,132
Mont. Triple 15 5 8 1,512 1,812 1,192 1,034 1,031 978 978
Get 4 Isog. 7 5 0 370 590 384 363 363 363 363
Eval. 4 Isog. 6 1 9 10 1,981 1,299 1,151 1,151 1,151 1,151
Eval. 4 Isog. (3 times) 18 3 27 145 4,557 2,395 1,775 1,557 1,455 1,315
Eval. 4 Isog. (5 times) 30 5 45 66 7,515 3,845 2,625 2,105 1,850 1,658
Eval. 4 Isog. (7 times) 42 7 63 54 10,473 5,357 3,796 3,234 2,944 2,692
Eval. 4 Isog. (9 times) 54 9 81 18 13,431 6,803 4,655 3,765 3,299 3,157
Eval. 4 Isog. (11 times) 66 11 99 2 16,389 8,242 5,597 4,371 3,800 3,461
Get 3 Isog. 8 3 3 478 883 488 455 424 424 424
Eval. 3 Isog. 2 2 6 12 1,425 1,013 830 824 750 750
Eval. 3 Isog. (3 times) 6 6 18 274 3,437 1,839 1,354 1,145 1,086 965
Eval. 3 Isog. (5 times) 10 10 30 112 5,681 2,933 2,017 1,596 1,371 1,192
Eval. 3 Isog. (7 times) 14 14 42 72 7,925 4,094 2,880 2,409 2,167 1,996
Eval. 3 Isog. (9 times) 18 18 54 20 10,169 5,178 3,517 2,852 2,456 2,327
Eval. 3 Isog. (11 times) 22 22 66 2 12,413 6,301 4,265 3,322 2,801 2,500
Fp2 Inversion (FpÞ 2 757 196 4 148,958 148,556 148,404 148,310 148,310 148,310

TABLE 8
Implementation Results of SIDH Architectures on a Xilinx Virtex-7 FPGA

Primec
Quantum
Security
(bits)

Area Time
SIDH/s#

Mults.
#

FFs
#

LUTs
#

Slices
#

DSPs
#

BRAMs
Freq.
(MHz)

Latency
(cc� 106)

Total
time (ms)

p503 83

6 24,908 18,820 7,491 192 43.5 202.1 3.34 16.5 60.5
8 31,809 23,483 9,608 256 42 202.5 3.09 15.2 65.5
10 38,701 28,687 11,517 320 40.5 202.9 3.00 14.7 67.6
12 45,615 33,969 13,203 384 40 207.0 2.94 14.2 70.4

p751 124

6 38,489 27,713 11,277 288 60.5 204.9 7.46 36.4 27.4
8 48,688 34,742 14,447 384 58.5 203.7 6.86 33.7 29.7
10 58,846 42,390 16,983 480 56 197.7 6.56 33.2 30.2
12 69,054 50,084 19,892 576 54.5 201.5 6.37 31.6 31.6

p1019 168

6 54,572 37,188 13,443 384 74 188.9 13.47 71.3 14.0
8 68,364 46,640 16,618 512 72.5 204.0 12.45 61.0 16.4
10 82,102 57,086 23,187 640 70.5 192.6 11.75 61.0 16.4
12 95,895 67,432 26,976 768 68 195.3 11.41 58.4 17.1

p1533 252

6 82,176 59,246 20,559 576 90 194.6 30.06 154.5 6.47
8 102,832 73,438 25,692 768 89.5 193.3 27.73 143.4 6.97
10 123,429 88,945 34,700 960 87 184.0 26.00 141.3 7.08
12 144,127 104,684 40,279 1152 85 193.1 25.16 130.3 7.67

1604 IEEE TRANSACTIONS ON COMPUTERS, VOL. 67, NO. 11, NOVEMBER 2018

the PerfOptimized High and Performance Explore options in
Xilinx Vivado. These are constant-time results. Our SIDH
parameters are discussed in Section 2.

The final column of Table 8 indicates the number of SIDH
protocol executions per second. An SIDH protocol execu-
tion refers to the completion of round 1 and round 2 for
both Alice and Bob, which is composed of 4 double-point
multiplications and 4 large-degree isogeny computations.
For a single party, the approximate SIDH protocol execution
time is expected to be half of the total SIDH protocol since
the party will only be performing 1 set of round 1 and round
2 computations.

The target of this work is to push an FPGA implementa-
tion of SIDH to be as fast as possible. As expected, the heavy
parallelism that is achieved by evaluating multiple isoge-
nies in parallel and performing quadratic extension field
arithmetic pushes the cycle counts lower when more multi-
pliers are added. When comparing 6 replicated dual multi-
pliers to 3 replicated dual multipliers, the timing results are
improved by approximately 20 percent, but at the cost of
almost double the resources.

By applying the architecture to SIDH primes of approxi-
mately size 512 bits, 768 bits, 1,024 bits, and 1,536 bits, we
show that the architecture is scalable as the clock frequency
remains fairly stable. The critical path delay of the design
remains at approximately 5 ns, but routing and additional
hardware resources account for the difference between
implementations. Interestingly, the synthesis and implemen-
tation tools appeared to have trouble for an odd number of
replicated multipliers as is illustrated in the slower clock
frequency in 6 and 10 multipliers of p1019 and p1533. For
our largest implementation, p1533 with 6 replicated dual-
multipliers, the highest utilization of resourceswas for DSP’s
at 32 percent. IO pins, LUTs, FF’s, and BRAM’s were 25.67,
24.17, 16.64, and 5.78 percent utilized, respectively. For the
same primewith 3 replicatedmultipliers, 16 percent of DSP’s
and 13.68 percent of LUT’s were utilized. With these details,
a 3,072-bit SIDH implementation (512 bits quantum secu-
rity) should also fit on the sameVirtex-7 device.

Since our fastest results were achieved for 6 replicated
dual-multipliers in each security level, we highlighted each
of these results in Table 8. These results show that perfor-
mance scaled quadratically with the size of the prime.

5.2 Comparison to Other Works

5.2.1 Other SIDH Implementations

The only other hardware implementations of SIDH are [16]
and [17], both of which were geared towards speed on a Vir-
tex-7 and use a similar systolic multiplier. In Table 9, we pro-
vide a rough comparison for 6multipliers at the approximate

512-bit security level. [16] uses affine isogeny formulas,
resulting in a non-constant key-exchange. [17] uses the same
projective isogeny formulas as this work, but has a slower
frequency and requires more clock cycles, a consequence of
the architecture and scheduling methodology. Thus, the
implementation from this work is 27 percent faster and uses
fewer resources than the faster of the two. For p751, our 6 rep-
licated multiplier implementation pushes the speedup to 37
percent faster than the fastest SIDH core in [17], but at the
cost of additional hardware.

As these results show, the architecture and methodology
presented in this paper provide a major boost to speed. We
especially emphasize that our implementation results are con-
stant-time, which helps defend against simple power analysis
and timing attacks. In Table 10, we compare the time our
SIDH round times to both software and hardware implemen-
tations at the approximate 85, 128, and 170-bit quantum secu-
rity levels. In assessing the comparison of our hardware
implementation to others, it is important to note that not all
implementations utilized the same isogeny formulas. It is dif-
ficult to make a fair comparison. We include other prototype
results to show how SIDH has progressed over the years.
Notably, we utilized the projective isogeny formulas over iso-
geny graphs of 4 and 3 that was proposed by [7]. The only
other known implementations that utilize these formulas are
[7] and [17]. Both of these previous implementations were
geared towards speed and used high-performance comput-
ing devices. In summary, our implementation is 2 times faster
than the software implementation presented for a Haswell
architecture in [7] and 1.36 times faster than the Virtex-7
implementation proposed in [17], which each use a similar set
of projective isogeny formulas.

5.2.2 Other PQC Implementations

Comparison to other PQC public-key encryption and key-
exchange schemes is even more difficult. Notably, the device,
methodology, and motivations differ with the current FPGA
literature on PQC, which is sparse at the moment. These dif-
ferent factors mean that this comparison is not fair. Neverthe-
less, we include this comparison as a baseline for the state of
the art PQC schemes on reconfigurable computing.

In the FPGA PQC literature, we found works related to
code-based crypto with McBits [36] and Ring-LWE with
NewHope [37]. As we compare these works in Table 11, we
emphasize that isogeny-based cryptography features much
smaller public-keys. We chose our p503 and p751 implementa-
tions with 3 replicated multipliers to compare with because
they have the best time-area products for our results.

When comparing to the McBits implementation scheme
by Wang et al. [36], we note that this implementation was

TABLE 9
Hardware Comparison of SIDH Architectures on a Virtex-7 with 3 Replicated Multipliers

Work
Prime

(bits)

Area Time

#
FFs

#
LUTs

#
Slices

#
DSPs

#
BRAMs

Freq.
(MHz)

Latency
(cc� 106)

Total
time (ms)

Koziel et al. [16] 511 30,031 24,499 10,298 192 27 177 5.967 33.7
Koziel et al. [17] 503 26,659 19,882 8,918 192 40 181.4 3.80 20.9
This Work 503 24,908 18,820 7,491 192 43.5 202.1 3.34 16.5
Improvement over [17] - �7.0% �5.6% �19% - +8.1% +10.3% �13.8% �27%

KOZIEL ETAL.: A HIGH-PERFORMANCE AND SCALABLE HARDWARE ARCHITECTURE FOR ISOGENY-BASED CRYPTOGRAPHY 1605

also performance focused. However, the focus of this
McBits work was to only generate public keys, which is a
very large invertible matrix. Not all generated matrices are
invertible, so there is approximately a 29 percent chance of
success. This large matrix means a much larger public key,
which is approximately 1800 times larger than that of SIDH.
In terms of hardware, the evaluation FPGA’s are different,
but our SIDH implementation appears to use a fraction of
LUTs and BRAMs. Lastly, the key generation of this McBits
works is faster by a factor of 4 and 9 for our 83 and 124-bit
quantum security implementations, respectively.

When comparing to the NewHope-Simple work from
Oder and G€uneysu [37], we note that this NewHope imple-
mentation was geared towards a compact design for server
and client, completely the opposite of our design rationale.
They provide separate implementations for the server and cli-
ent side. Since our implementation performs the entire proto-
col, we added separate entries for the server and client
results. Directly combining both results results in hardware
that uses approximately 3 times fewer LUTs and 4 times fewer
FFs when compared to our 124-bit quantum security imple-
mentation. Nevertheless, this NewHope-Simple work per-
forms the entire protocol 5 and 12 times faster than our p503

and p751 implementations, respectively, with very few resour-
ces. The primary upside of our implementation is that the
public keys are about 4 times smaller and has a simpler selec-
tion of public parameters for a particular security level.

6 REAL-WORLD IMPLEMENTATION

CONSIDERATION

Here, we discuss aspects related to the deployment of our
supersingular isogeny accelerator. Notably, we discuss the
security of our SIDH implementation and other isogeny-
related applications. We present this implementation as an
FPGA rapid prototype. The same architecture could be
applied to an application-specific integrated circuit (ASIC)
security coprocessor. The resulting deployment to smart
card or less constrained environments determines certain
security measures and side-channel countermeasures to
ensure that the cryptosystem is not broken by the physical
phenomena emitted by a real-world implementation.

6.1 Security Considerations

In this implementation, the only building block missing is a
true-random number generator. Based on the oracle attack

TABLE 11
Hardware Comparison of PQC Public Encryption and Key-Exchange Schemes on FPGA

Work Scheme Platform
Quan.
Sec.
(bits)

Public
Key Size
(Bytes)

Area Time

#
FFs

#
LUTs

#
DSPs

#
BRAMs

Freq.
(MHz)

Total
(ms)

Wang et al. [36] McBits1 Ultrascale+ 128 1,046,739 - 112,845 - 375 225 3,980

Oder and G€uneysu [37] NewHope- Artix-7 128 2,176 4,452 5,142 2 4 125 1,369
Simple2 4,635 4,498 2 4 117 1,532

This Work (6 Mults) SIDH Virtex-7 83 378 24,908 18,820 192 43.5 202 16,533
This Work (6 Mults) SIDH Virtex-7 124 564 38,489 27,713 288 60.5 205 36,440

1. Performs key generation only, which has a 29% chance of success.
2. Row 1 is server-side results and row 2 is client-side results.

TABLE 10
Comparison to Other SIDH Implementations

Work Quantum
Security
(bits)

Platform Smooth Isogeny
Prime

Time (ms)

Alice
Rnd. 1

Bob
Rnd. 1

Alice
Rnd. 2

Bob
Rnd. 2

Total
Time

	85-bit Quantum Security Level

Jao and De Feo [5] 84 2.4 GHz Opt. 225331617� 1 365 318 363 314 1360
Jao et al. [6] 85 2.4 GHz Opt. 22583161186� 1 28.1 28.0 23.3 22.7 102.1
Azarderakhsh et al. [10] 85 4.0 GHz i7 22583161186� 1 - - - - 54.0
Koziel et al. [16] 84 Virtex-7 225331617� 1 9.35 8.41 8.53 7.41 33.70
Koziel et al. [17] 83 Virtex-7 22503159 � 1 4.83 5.25 4.41 4.93 19.42
This Work (12 Mults.) 83 Virtex-7 22503159 � 1 3.59 3.87 3.22 3.53 14.22

	128-bit Quantum Security Level

Jao et al. [6] 128 2.4 GHz Opt. 23873242 � 1 65.7 54.3 65.6 53.7 239.3
Azarderakhsh et al. [10] 128 4.0 GHz i7 23873242 � 1 - - - - 133.7
Costello et al. [7] 124 3.4 GHz i7 23723239 � 1 15.0 17.3 13.8 16.8 62.9
Koziel et al. [17] 124 Virtex-7 23723239 � 1 10.6 11.6 9.5 10.8 42.5
This Work (12 Mults.) 124 Virtex-7 23723239 � 1 7.99 8.63 7.14 7.86 31.61

	170-bit Quantum Security Level

Jao et al. [6] 170 2.4 GHz Opt. 25143323353� 1 122 101 125 102 450
Azarderakhsh et al. [10] 170 4.0 GHz i7 25143323353� 1 - - - - 266.9
This Work (12 Mults.) 168 Virtex-7 2508331935� 1 14.97 15.72 13.43 14.28 58.4

1606 IEEE TRANSACTIONS ON COMPUTERS, VOL. 67, NO. 11, NOVEMBER 2018

proposed in [38] and fault attacks proposed in [39], [40],
there are many uncertainties to using static keys. Thus, a
random number generator, whether it is accessible to the
hardware or a host CPU, is necessary to generate safe keys
for use with isogeny-based cryptosystems.

6.1.1 Static Key Considerations

If a static key is to be used, then the Kirkwood et al. [41] vali-
dation model must be used to ensure that maliciously crafted
keys will not divulge bits of the key, as is illustrated in [38].
This validation model requires the ephemeral key user to use
a seed to generate a key from a key derivation function, com-
pute the shared secret key with the static user’s public keys,
and encrypt the seed to the key derivation function with the
resulting shared secret. The static user will then perform the
SIDH protocol as normal and use the shared secret to decrypt
the seed for the key derivation function. Upon retrieving the
ephemeral user’s private key, the static key user will then
recompute the first round of the ephemeral user to ensure
that the ephemeral user transmitted honestly generated pub-
lic keys. If the two sets of ephemeral public keys do notmatch,
then the static user rejects the key exchange session. This vali-
dation model is expensive as it requires the static key user to
perform two rounds and only protects against the Galbraith
et al. [38] oracle attack.

6.1.2 Side-Channel Attacks

Side-channel attacks attempt to break a cryptosystem by tak-
ing advantage of physical phenomena emitted in a physical
implementation of a cryptosystem, such as power consump-
tion, timing information, and electromagnetic radiation. Since
isogeny-based cryptography resembles elliptic curve cryptog-
raphy,much of the ECC side-channel literature can be applied
to its isogeny-based cryptography counterpart. Notably, since
this is a constant-time implementation with a constant set of
operations, this architecture is naturally resistant to simple
power analysis and timing attacks. Differential power analy-
sis is only a consideration if a static key is used. In this case,
one could perform the random (with values from the random
number generator) projectivization of the input torsion basis
to change the power signature of multiple runs [42]. This
would add onemultiplication per step for the standardMont-
gomery ladder and twomultiplications per step for the three-
point Montgomery ladder, which would be effectively paral-
lelized since they do not increase data dependencies of the
ladder step.

As a quick experiment for this random projectivization,
we calculated the additional cost of randomizing the input
torsion points. For our test, we first used p751 with 8 multi-
pliers. Our Montgomery ladder over the base field increased
from 485 cycles to 488 cycles and our 3-point Montgomery
ladder increased from 715 cycles to 804 cycles. This increased
the total runtime of our SIDH protocol by 69,092 cycles,
which translated to an extra 1.008 percent of the protocol.
When we tested p751 with 12 multipliers, the Montgomery
ladder again increased from 485 cycles to 488 cycles, but the
3-point Montgomery ladder only increased from 685 to 693
cycles. Thus, the extra DPA countermeasure only cost an
extra 0.13 percent in this scenario as the extra multiplications
were effectively interleaved. This additional cost, however,

does not include the cost of using a true randomnumber gen-
erator to generate the randomprojectivization.

In [43], the authors propose three different zero value
attacks to reveal a user’s secret key. We note that the random
projectivizationwill help defend against the partial-zero attack
on the 3-point Montgomery ladder. Defending against the
zero-point attack on the 3-point Montgomery ladder requires
dynamic keys or key validation, which we discuss in the fol-
lowing section. Lastly, to defend against the refined power
analysis attack on the large-degree isogeny computation,
dynamic keys or a random curve isomorphism could be used.

6.1.3 Fault and Active Attacks

Lastly, fault and active attacks are a tricky topic in that it again
depends on the application of the device. To protect against
invalid public keys, such as points of invalid order or invalid
curves, Costello et al. [7] propose to validate the public keys.
They propose validating that the transmitted torsion basis
points have the correct order, a Weil pairing with the maxi-
mum possible order, and have a valid supersingular elliptic
curve. Of these operations, the most expensive operations are
the Weil pairing, two scalar multiplications by ‘e, and a point
multiplication by ‘

eA
A ‘

eB
B f . In general, these are fairly serial

operations, but we could parallelize these computations by
performing each of the scalar multiplications in parallel. If
needed, this isogeny accelerator could efficiently implement
key validation to help protect against invalid public keys. For
the loop-abort fault attack proposed in [39], extra hardware is
required to ensure that the isogeny controller is not faulted to
finish early. The secret kernel point fault attack proposed in
[40] could be used in the case that this hardware has a static
key and recomputes the static public key, whichwould not be
a typical use-case as the static public key would most likely
simply be inserted into the RAMfile.

6.2 Isogeny Cryptography Applications

In this implementation, we centered our results on the tim-
ing of SIDH round times. There are various other isogeny-
based cryptosystems that this architecture could apply,
notably SIDH compression, undeniable signatures, and dig-
ital signatures.

6.2.1 SIDH Key Compression

To continue the discussion of SIDH, public key compression
and decompression [10], [11] appear to have useful applica-
tions for the transmission or long-term storage of SIDH keys.
Compression is done by methodically generating a torsion
basis from the j-invariant of the original public key’s elliptic
curve and performing two double-point multiplication dis-
crete logarithms on the image of the other party’s torsion basis
to generate scalars. The j-invariant, double-point multiplica-
tion scalars, and a bit indicating if there is a twist are sent over
the public channel instead of the normal public keys. Then, the
other party would use the same method to generate a torsion
basis from the transmitted j-invariant and perform two dou-
ble-point multiplications to recover the supersingular elliptic
curve and image of their torsion basis. This procedure com-
presses the size of the public key by a factor of 5=12 in [11].

When assessing the viability of decompression and com-
pression in this implementation, we note that the three

KOZIEL ETAL.: A HIGH-PERFORMANCE AND SCALABLE HARDWARE ARCHITECTURE FOR ISOGENY-BASED CRYPTOGRAPHY 1607

primary computations in compression and decompression
include systematically constructing an n-torsion basis, per-
forming various pairing computations, and solving a dis-
crete logarithm with Pohlig-Hellman. The two main
problems when implementing all of this functionality is that
it requires a much larger amount of program ROM and
many serial functionalities. Since our architecture explicitly
instructs the addition, multiplication, and memory units
each cycle, our program ROM grows very quickly, but
allows a large amount of parallelism. One could change the
controller to issue instruction by instruction at the cost of a
massive slowdown if the number of memory units is a prob-
lem. Otherwise, the designer could bite the bullet and
include all functionalities in the program ROM. For simple
SIDH, only 6 percent of block RAM’s were utilized for p1533.
Otherwise, there are many serial operations in solving each
of the primary computations, including exponentiations,
square roots, and Pohlig-Hellman. As was shown for the
simple exponentiation for inversion in SIDH, it is difficult to
achieve high speeds in serial computations since data
dependencies restrict the usage of all available resources.

Although it is shown in [11] that compression and
decompression increase the total protocol time by a factor of
2.7, it is expected that for our hardware implementation,
this protocol time would be higher as a result of the loss in
parallelism. More than likely, decompression can be added
to the protocol and increase the total protocol time by a
small margin, but compression does not seem practical as it
requires a large amount of program ROM, temporary val-
ues, and serial calculations.

6.2.2 Undeniable and Digital Signatures Based on

Isogenies

Undeniable signatures based on isogenies [8] are interesting
in that the signer has the freedom to select who can verify
the signature. This scheme can be thought of as a 3-dimen-
sional equivalent of SIDH, whereby multiple isogenies are
computed over 3 different isogeny graphs. The prime p is of
the form p ¼ ‘

eA
A ‘

eM
M ‘

eC
C f � 1. In this scheme, the primary

computations are double-point multiplications and large-
degree isogenies, the same as SIDH. Since the modular
arithmetic works for a generic prime, the isogeny-based
architecture presented here will also efficiently perform
computations in a prime of this form. After adding more
optimized isogeny formulas, such as ‘ ¼ 5 or ‘ ¼ 7, this
architecture can efficiently support undeniable signatures.

Digital signature schemes have recently been proposed
in [14] and [13]. The first scheme in [14] and only scheme in
[13] are both based on utilizing Unruh’s construction [44] to
transform the interactive zero-knowledge proof of isogeny-
based cryptography to a non-interactive zero-knowledge
proof to generate proofs for a signature. In this signature
scheme, the public parameters are similar to SIDH, but
requires only one torsion basis for the isogeny graph of ‘eBB .
Thus, this isogeny accelerator could be used to efficiently
compute digital signatures.

7 CONCLUSION

In this work, we presented an efficient and scalable supersin-
gular isogeny accelerator for isogeny-based cryptography.

We illustrated a high-performance field arithmetic unit, effi-
cient scheduling methodology, and achievable parallelization
schemes in isogeny evaluations and Fp2 arithmetic. When
applied to the supersingular isogeny Diffie-Hellman key
exchange protocol, our architecture on FPGA is 2 times faster
than aHaswell software implementation and 1.36 times faster
than the fastest other FPGA implementation. We demon-
strated the scalability of our hardware architecture by imple-
menting over four different finite fields, ranging from a low
level of quantum security to a high level of quantum security.
Lastly, we showed that the same isogeny accelerator could
also be used to efficiently accelerate undeniable signatures
and digital signatures. Overall, isogeny-based cryptography
appears to be a strong candidate for standardization since it
utilizes small keys and this work demonstrates that hardware
accelerators are indeed viable and can achieve a high degree
of parallelization.

ACKNOWLEDGMENTS

The authors would like to thank the reviewers for their com-
ments. This work is supported in parts by the grants NIST-
60NANB16D246, AROW911NF-17-1-0311, and US National
Science Foundation CNS-1661557.

REFERENCES

[1] P. W. Shor, “Algorithms for quantum computation: Discrete loga-
rithms and factoring,” in Proc. Symp. Found. Comput. Sci., 1994,
pp. 124–134.

[2] L. Chen and S. Jordan, “Report on post-quantum cryptography,”
Nat. Inst. Standards Technol., Gaithersburg, MD, USA, Tech. Rep.
NISTIR 8105, 2016.

[3] A. Rostovtsev and A. Stolbunov, “Public-key cryptosystem based
on isogenies,” Cryptology ePrint Archive, Tech. Rep. 2006/145,
2006.

[4] A. Childs, D. Jao, and V. Soukharev, “Constructing elliptic curve
isogenies in quantum subexponential time,” 2010. [Online]. Avail-
able: https://arxiv.org/abs/1012.4019

[5] D. Jao and L. De Feo, “Towards quantum-resistant cryptosystems
from supersingular elliptic curve isogenies,” in Proc. Post-Quan-
tum Cryptography, 2011, pp. 19–34.

[6] L. De Feo, D. Jao, and J. Plut, “Towards quantum-resistant crypto-
systems from supersingular elliptic curve isogenies,” J. Math.
Cryptology, vol. 8, no. 3, pp. 209–247, Sep. 2014.

[7] C. Costello, P. Longa, and M. Naehrig, “Efficient algorithms for
supersingular isogeny Diffie-Hellman,” in Proc. Annu. Int. Cryptol-
ogy Conf. Advances Cryptology, 2016, pp. 572–601.

[8] D. Jao and V. Soukharev, “Isogeny-based quantum-resistant
undeniable signatures,” in Proc. Post-Quantum Cryptography, 2014,
pp. 160–179.

[9] X. Sun, H. Tian, and Y. Wang, “Toward quantum-resistant strong
designated verifier signature from isogenies,” in Proc. Int. Conf.
Intell. Netw. Collaborative Syst., 2012, pp. 292–296.

[10] R. Azarderakhsh, D. Jao, K. Kalach, B. Koziel, and C. Leonardi,
“Key compression for isogeny-based cryptosystems,” in Proc.
ACM Int. Workshop ASIA Public-Key Cryptography, 2016, pp. 1–10.

[11] C. Costello, D. Jao, P. Longa, M. Naehrig, J. Renes, and
D. Urbanik, “Efficient compression of SIDH public keys,” in Proc.
Annu. Int. Conf. Theory Appl. Cryptographic Techn., 2017, pp. 679–
706.

[12] R. Azarderakhsh, D. Jao, and C. Leonardi, “Post-quantum static-
static key agreement using multiple protocol instances,” in Proc.
Int. Conf. Sel. Areas Cryptography, 2017, pp. 45–63.

[13] Y. Yoo, R. Azarderakhsh, A. Jalali, D. Jao, and V. Soukharev, “A
post-quantum digital signature scheme based on supersingular
isogenies,” in Proc. Int. Conf. Financial Cryptography Data Secur.,
2017, pp. 163–181.

[14] S. D. Galbraith, C. Petit, and J. Silva, “Identification protocols and
signature schemes based on supersingular isogeny problems,” in
Proc. Int. Conf. Theory Appl. Cryptology Inf. Secur., 2017, pp. 3–33.

1608 IEEE TRANSACTIONS ON COMPUTERS, VOL. 67, NO. 11, NOVEMBER 2018

https://arxiv.org/abs/1012.4019

[15] B. Koziel, A. Jalali, R. Azarderakhsh, D. Jao, and M. Mozaffari
Kermani, “NEON-SIDH: Efficient implementation of supersingu-
lar isogeny Diffie-Hellman key exchange protocol on ARM,” in
Proc. Int. Conf. Cryptology Netw. Secur., 2016, pp. 88–103.

[16] B. Koziel, R. Azarderakhsh, M. Mozaffari Kermani, and D. Jao,
“Post-quantum cryptography on FPGA based on isogenies on
elliptic curves,” IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 64,
no. 1, pp. 86–99, Jan. 2017.

[17] B. Koziel, R. Azarderakhsh, and M. Mozaffari Kermani, “Fast
hardware architectures for supersingular isogeny Diffie-Hellman
key exchange on FPGA,” in Proc. Int. Conf. Cryptology India, 2016,
pp. 191–206.

[18] A. Jalali, R. Azarderakhsh, and M. Mozaffari Kermani, “Efficient
post-quantum undeniable signature on 64-bit ARM,” in Proc. Sel.
Areas Cryptography, 2017, pp. 281–298.

[19] P. S. Hirschhorn, J. Hoffstein, N. Howgrave-Graham, and
W. Whyte, “Choosing NTRUEncrypt parameters in light of com-
bined lattice reduction and MITM approaches,” in Proc. Int. Conf.
Appl. Cryptography Netw. Secur., 2009, pp. 437–455.

[20] E. Alkim, L. Ducas, T. P€oppelmann, and P. Schwabe, “Post-quan-
tum key exchange—A new hope,” in Proc. USENIX Secur. Symp.,
2016, pp. 327–343.

[21] D. J. Bernstein, T. Chou, and P. Schwabe, “McBits: Fast constant-
time code-based cryptography,” in Proc. Int. Workshop Crypto-
graphic Hardware Embedded Syst., 2013, pp. 250–272.

[22] J. H. Silverman, The Arithmetic of Elliptic Curves, New York, NY,
USA: Springer, 1992.

[23] J. Tate, “Endomorphisms of abelian varieties over finite fields,”
Inventiones Mathematicae, vol. 2, pp. 134–144, 1966.

[24] J. V�elu, “Isog�enies entre courbes elliptiques,” Comptes Rendus de
l’Acad�emie des Sciences Paris S�eries A-B, vol. 273, pp. A238–A241, 1971.

[25] C. Petit, “Faster algorithms for isogeny problems using torsion
point images,” in Proc. Int. Conf. Theory Appl. Cryptology Inf. Secur.,
2017, pp. 330–353.

[26] P. L. Montgomery, “Speeding the Pollard and elliptic curve meth-
ods of factorization,” J. Math. Comput., vol. 48, pp. 243–264, 1987.

[27] J.-M. Couveignes, “Hard homogeneous spaces,” Cryptology
ePrint Archive, Tech. Rep. 2006/291, 2006.

[28] P. L. Montgomery, “Modular multiplication without trial divi-
sion,” J. Math. Comput., vol. 44, no. 170, pp. 519–521, 1985.

[29] G. Sutter, J.-P. Deschamps, and J. L. Ima~na, “Modular multiplica-
tion and exponentiation architectures for fast RSA cryptosystem
based on digit serial computation,” IEEE Trans. Ind. Electron.,
vol. 58, no. 7, pp. 3101–3109, Jul. 2011.

[30] G. Perin, D. G. Mesquita, and J. B. dos Santos Martins,
“Montgomery modular multiplication on reconfigurable hard-
ware: Systolic versus multiplexed implementation,” Int. J. Recon-
figurable Comput., vol. 2011, pp. 1–10, 2011.

[31] A. Mrabet, N. E. Mrabet, R. Lashermes, J.-B. Rigaud, B. Boual-
legue, S. Mesnager, andM. Machhout, “A systolic hardware archi-
tectures of Montgomery modular multiplication for public key
cryptosystems,” J. Hardware Syst. Secur., vol. 1, no. 3, pp. 219–236,
Sep. 2017.

[32] J. W. Bos and S. Friedberger, “Fast arithmetic modulo 2xpy � 1,”
Cryptology ePrint Archive, Tech. Rep. 2016/986, 2016.

[33] T. Blum and C. Paar, “High-radix montgomery modular exponen-
tiation on reconfigurable hardware,” IEEE Trans. Comput., vol. 50,
no. 7, pp. 759–764, Jul. 2001.

[34] C. McIvor, M. McLoone, and J. V. McCanny, “High-radix systolic
modular multiplication on reconfigurable hardware,” in Proc.
IEEE Int. Conf. Field-Programmable Technol., Dec. 2005, pp. 13–18.

[35] B. Koziel, R. Azarderakhsh, D. Jao, and M. Mozaffari Kermani,
“On fast calculation of addition chains for isogeny-based
cryptography,” in Proc. Int. Conf. Inf. Secur. Cryptology, 2016,
pp. 323–342.

[36] W. Wang, J. Szefer, and R. Niederhagen, “FPGA-based key gener-
ator for the Niederreiter cryptosystem using binary Goppa
codes,” in Proc. Int. Conf. Cryptographic Hardware Embedded Syst.,
2017, pp. 253–274.

[37] T. Oder and T. G€uneysu, “Implementing the NewHope-Simple
key exchange on low-cost FPGAs,” in Proc. Int. Conf. Cryptology
Inf. Secur. Latin America, 2017.

[38] S. D. Galbraith, C. Petit, B. Shani, and Y. B. Ti, “On the security of
supersingular isogeny cryptosystems,” in Proc. Int. Conf. Theory
Appl. Cryptology Inf. Secur., 2016, pp. 63–91.

[39] A. G�elin and B. Wesolowski, “Loop-abort faults on supersingular
isogeny cryptosystems,” in Proc. Int. Workshop Post-Quantum Cryp-
tography, 2017, pp. 93–106.

[40] Y. B. Ti, “Fault attack on supersingular isogeny cryptosystems,” in
Proc. Int. Workshop Post-Quantum Cryptography, 2017, pp. 107–122.

[41] D. Kirkwood, B. C. Lackey, J. McVey, M. Motley, J. A. Solinas, and
D. Tuller, “Failure is not an option: Standardization issues for
post-quantum key agreement,” in Talk Workshop Cybersecurity
Post-QuantumWorld, Apr. 2015.

[42] J.-S. Coron, “Resistance against differential power analysis for
elliptic curve cryptosystems,” in Proc. Int. Workshop Cryptographic
Hardware Embedded Syst., 1999, pp. 292–302.

[43] B. Koziel, R. Azarderakhsh, and D. Jao, “Side-channel attacks on
quantum-resistant supersingular isogeny Diffie-Hellman,” in
Proc. Int. Conf. Sel. Areas Cryptography, 2017, pp. 64–81.

[44] D. Unruh, “Non-interactive zero-knowledge proofs in the quan-
tum random oracle model,” in Proc. Annu. Int. Conf. Theory Appl.
Cryptographic Techn., 2015, pp. 755–784.

Brian Koziel received the BSc and MSc degrees
in computer engineering from the Rochester Insti-
tute of Technology, in 2016. Currently, he is a
cryptographic designer at Texas Instruments. His
current research interests include efficient soft-
ware and hardware implementations of elliptic
curve cryptography and post-quantum cryptogra-
phy. At RIT, he was a recipient of the prestigious
Outstanding Undergraduate Scholar award.

Reza Azarderakhsh received the PhD degree in
electrical and computer engineering from the
Western University, in 2011. He was a recipient of
the NSERC Post-Doctoral Research Fellowship
working with the Center for Applied Cryptographic
Research and the Department of Combinatorics
and Optimization, University of Waterloo. Currently,
he is an assistant professor with the Department of
Electrical and Computer Engineering, Florida
Atlantic University. His current research interests
include finite field and its application, elliptic curve

cryptography, pairing based cryptography, and post-quantum cryptography.
He is serving as an associate editor of the IEEE Transactions on Circuits
and Systems (TCAS-I). He is amember of the IEEE.

Mehran Mozaffari Kermani (S’00-M’11-SM’16)
received the BSc degree in electrical and computer
engineering from the University of Tehran, Tehran,
Iran, in 2005, and theMESc and PhD. degrees from
the Department of Electrical and Computer Engi-
neering, University of Western Ontario, London,
Canada, in 2007 and 2011, respectively. He joined
the Advanced Micro Devices as a senior ASIC/lay-
out designer, integrating sophisticated security/
cryptographic capabilities into accelerated process-
ing. In 2012, he joined the Electrical Engineering

Department, Princeton University, New Jersey, as an NSERC post-doctoral
research fellow. From 2013-2017, he was an assistant professor with
Rochester Institute of Technology and starting 2017, he has joined theCom-
puter Science and Engineering Department, University of South Florida.
Currently, he is serving as an associate editor for the IEEE Transactions on
VLSI Systems, the ACM Transactions on Embedded Computing Systems,
the IEEE Transactions on Circuits and Systems I, and the guest editor for
the IEEE Transactions on Dependable and Secure Computing for the spe-
cial issue of Emerging Embedded and Cyber Physical System Security
Challenges and Innovations (2016 and 2017). He was the lead guest editor
for the IEEE/ACM Transactions on Computational Biology and Bioinformat-
ics and the IEEE Transactions on Emerging Topics in Computing for special
issues on security. He has been the TPCmember for a number of conferen-
ces including HOST (Publications Chair), DAC, DATE, RFIDSec, LightSec,
WAIFI, FDTC, and DFT. He was a recipient of the prestigious Natural Scien-
ces and Engineering Research Council of Canada Post-Doctoral Research
Fellowship in 2011 and the Texas Instruments Faculty Award (Douglas
Harvey) in 2014. He is a senior member of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

KOZIEL ETAL.: A HIGH-PERFORMANCE AND SCALABLE HARDWARE ARCHITECTURE FOR ISOGENY-BASED CRYPTOGRAPHY 1609

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

