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Abstract—We present an efficient implementation of the supersingular isogeny Diffie-Hellman (SIDH) key exchange protocol on 64-bit

ARMv8 processors for 125- and 160-bit post-quantum security levels. We analyze the use of both affine and projective SIDH formulas

and provide a comprehensive analysis of both approaches based on the inversion-to-multiplication ratio. Implementation results show

that regardless of security concerns, affine SIDH is competitive with the projective coordinates implementation, and even outperforms

projective implementation in the final round of SIDH; however, projective SIDH shows better overall performance for the whole key

exchange protocol. Notably, over larger finite fields, using optimized field multiplication leads to the much better performance of

projective compared to affine formulas. We integrate our optimized software into the open quantum-safe OpenSSL library and compare

our software with other available post-quantum primitives. The benchmark results on ARMv8 demonstrate speedup of up to 5X over the

generic version of SIDH implementation which is available inside the OQS library for the same quantum security level. We observe that

our highly-optimized implementation still suffers from a large number of operations for computing isogenies of elliptic curves. However,

in terms of communication overhead, supersingular isogeny-based cryptosystem provides significantly smaller key size compared to its

counterparts.

Index Terms—ARM assembly, elliptic curve cryptography, finite field, isogeny-based cryptosystems, OpenSSL, post-quantum cryptography
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1 INTRODUCTION

THE possible impending arrival of large-scale quantum
computers capable of practically performing Shor’s algo-

rithm [1] in the near future has motivated intensive research
on the topic of post-quantum cryptosystems. NIST’s
recently-published draft report on post-quantum cryptogra-
phy (PQC) [2] provides the guidance for researchers to
develop practical candidates for post-quantum cryptosys-
tems in various applications. PQC research deals with inves-
tigation and study of cryptographic algorithms that are
believed to be secure against quantum attacks. There exist
several promising quantum-resistant cryptography primi-
tives which are claimed to be secure against quantum com-
puter attacks. Among all of them, the NIST report identifies
five classes of cryptographic primitives which are regarded
as leading candidates for post-quantum cryptography,
namely code-based cryptography [3], multivariate cryptog-
raphy [4], hash-based cryptography [5], lattice-based cryp-
tography including the NTRU encryption scheme [6], and
isogeny-based cryptography [7].

In this paper, we consider the supersingular isogeny Dif-
fie-Hellman (SIDH) key-exchange protocol which was first
introduced by Jao and De Feo [8]. SIDH key exchange, like
the classical Diffie-Hellman key exchange protocol, is based
on the difficulty of solving a certain number-theoretic prob-
lem, in this case, to construct an isogeny of a particular
degree between two given isogenous supersingular elliptic
curves, defined over a finite field of characteristic p. To date,
classical [9] and quantum [10] attacks on isogeny-based
cryptosystems and its related problem, using claw-finding

algorithms ([11] and [12]) solve this problem in Oðp1=4Þ and
Oðp1=6Þ complexity on a classical and quantum computer,
respectively. We believe SIDH is worth considering as an
alternative to the four leading PQC candidates because it
features significantly smaller key size [13], easier parameter
generation, and a direct relationship between parameter
size and security level. Additionally, it provides security
assumptions based on elliptic curves and the isogeny con-
struction problem which have already been well-studied in
other contexts prior to the publication of SIDH such as cryp-
tographic hash functions [14].

The SIDH key exchange protocol was first implemented
by De Feo et al. [15]. Recently, a full-fledged, optimized
implementation of SIDH has been proposed by Costello
et al. [16] which is targeted Intel x86-64 platforms, using
projective coordinates formulae. Their implementation is a
constant-time, almost inversion-free version of the SIDH
protocol which yields efficient performance on Intel-based
devices. However, on ARM platforms, the status of SIDH
implementation is currently less well-defined. Early efforts
by Azarderakhsh et al. [17] suffered from the excessive num-
ber of operations caused by adopting generic approaches for
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finite field arithmetic. Recently, a highly-optimized affine
SIDH implementation on 32-bit ARMv7 using NEON vecto-
rization by Koziel et al. [18] still showed an order of magni-
tude difference between Intel and ARM processors in terms
of SIDH performance as measured by cycle counts (with the
caveat that direct comparisons between different architec-
tures with different word sizes are only marginally useful).
Therefore, in this work, we address this gap and develop an
optimized implementation of both projective and affine
SIDH protocol for two quantum security levels on the high-
performance 64-bit ARMv8 Cortex-A57 core; a massively
popular platform with 65 percent worldwide market share
among smart phones and growing importance in the server
market [19]. We plan to make all our source codes publicly
available in the near future.

To the best of our knowledge, this paper is the first effi-
cient implementation of SIDH on ARMv8 processors over
two different quantum security levels, and the first compar-
ative implementation of SIDH using projective and affine
curve arithmetic on any platform. Our main contributions
are as follows:

� Efficient, hand-optimized assembly implementation
of finite field arithmetic on ARMv8 devices, includ-
ing comparison between the capabilities of ARMv8
Advanced Single Instruction Multiple Data (Adv.
SIMD) and A64 instruction sets.

� Optimized algorithms and libraries for both projective
and affine SIDH protocol on cutting-edge ARMv8
platforms.

� Efficient implementation of projective and affine
SIDH for two different quantum security levels
using implementation-friendly primes.

� Comprehensive analysis and comparison between
affine and projective SIDH formulas in terms of per-
formance and security.

� Detailed performance comparison of SIDH key
exchange protocol with other post-quantum algo-
rithms using the open quantum safe standard frame-
work on ARMv8 processors.

2 PRELIMINARIES

This section describes the abstract concepts and features of
Diffie-Hellman key exchange from supersingular elliptic
curve isogenies. We refer the readers to [8] for the detailed
explanation of the protocol and underlying mathematics.

2.1 Supersingular Elliptic Curve Isogenies

Isogeny. Suppose E1 and E2 are elliptic curves defined over a
finite fieldFq. An isogeny f : E1 ! E2 is a non-constant ratio-
nal map defined over Fq such that f is a group homomor-
phism from E1ðFqÞ to E2ðFqÞ [20]. Two elliptic curves E1 and
E2 defined over Fq are isogenous if there exists an isogeny
f : E1 ! E2 over Fq; two elliptic curves are isogenous over
Fq if and only if they have the same cardinality [21]. Isoge-
nous elliptic curves are either all supersingular or all ordi-
nary and in the case of SIDH protocol, only supersingular
elliptic curves are considered. Moreover, among all super-
singular elliptic curves, only curves with smooth orders are
used in the protocol, because isogenies of exponentially large
degree can be efficiently constructed based on compositions

of low degree isogenies. More precisely, let p be a prime of

the form p ¼ ‘
eA
A ‘

eB
B f � 1 such that ‘A and ‘B are small prime

numbers and f is an integer cofactor. In this case, a supersin-
gular elliptic curve E can be efficiently constructed over Fp2 ,
having smooth order ‘

eA
A ‘

eB
B f

� �2
[22].

‘-Torsion Subgroup. The ‘-torsion subgroup of an elliptic
curve (E ‘½ �) is defined as the set of all geometric points P on
the curve E, i.e., points defined over the algebraic closure of
the field of definition ofE, such that ‘P ¼ O. In case of super-

singular curves and a prime of the form p ¼ ‘
eA
A ‘

eB
B f � 1,

the ‘
eA
A -torsion and ‘

eB
B -torsion groups are defined over Fp2

(E½‘eAA �; E½‘eBB � � EðFp2Þ). Since ‘A; ‘BPp, we can conclude

E½‘eAA � ffi ðZ=‘eAA ZÞ � ðZ=‘eAA ZÞ and E½‘eBB � ffi ðZ=‘eBB ZÞ � ðZ=‘eBB ZÞ
[20]. Now, let m and n be two random integers, and P , Q be

two points on the supersingular elliptic curve E which gen-

erate E½‘eAA � (or E½‘eBB �) as an Abelian group, of order ‘
eA
A (or

‘
eB
B , respectively). A point of the form ½m�P þ ½n�Q has order
dividing ‘

eA
A (or ‘

eB
B ) and this point generates a finite sub-

group which we use as the kernel of an isogeny in the SIDH
protocol. For a given finite subgroupR of E, an isogeny over
E having kernel R, i.e., f : E ! E=hRi, can be efficiently
computed using Vêlu’s formulas [23].

2.2 Diffie-Hellman Key Exchange Protocol

In the first round of SIDH key exchange, Alice and Bob com-
pute the graphs of isogenies of degree ‘

eA
A and ‘

eB
B separately

to construct two isogenous elliptic curves [8]. In the second
round, they “trade” kernels and each computes a second iso-
geny which lands on the same (isomorphic) curve, with the
same j-invariant value, which can then be used as the shared
secret key for a secure session. Alice and Bob decide on some
public parameters before the key exchange procedure. These
parameters are a supersingular elliptic curve E0 defined over
Fp2 with smooth cardinality ð‘eAA ‘

eB
B fÞ2, two independent

pointsPA andQA which together generate the ‘
eA
A -torsion sub-

group, i.e., E½‘eAA �, and two independent points PB and QB

which together generate the ‘
eB
B -torsion subgroup, i.e., E½‘eBB �.

The key exchange protocol consists of four steps to generate
the secure shared key between two parties as follows:

1) Alice chooses two secret integers mA; nA 2 Z=‘
eA
A Z,

not both divisible by ‘A. She computes the double
point multiplication RA ¼ ½mA�PA þ ½nA�QA to com-
pute a point RA of order dividing ‘

eA
A . Using her pri-

vate key, i.e., ðmA; nAÞ, she computes the secret
isogeny fA : E0 ! EA=hRAi. She also computes the
image points fAðPBÞ and fAðQBÞ. Her public key is
the curve EA, fAðPBÞ, and fAðQBÞ together which
are sent to the other party.

2) Bob similarly chooses two secret integers mB; nB 2
Z=‘

eB
B Z, not both divisible by ‘B. He computes the

secret isogeny fB : E0 ! EB=hRBi, using the kernel

RB ¼ ½mB�PB þ ½nB�QB of order dividing ‘
eB
B , while

ðmB; nBÞ is his private key. He then computes

fBðPAÞ and fBðQAÞ, and publishes his public key

EB, together with fBðPAÞ and fBðQAÞ.
3) Alice computes another isogeny f0

A : EB ! EAB=

hfBðRAÞi, such that fBðRAÞ ¼ ½mA�fBðPAÞþ ½nA�fBðQAÞ.
Bob computes the isogeny f0

B : EA ! EBA=hfAðRBÞi,
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whose kernel is the point fAðRBÞ ¼ ½mB�fAðPBÞþ
½nB�fAðQBÞ.

4) Alice and Bob now compute two isomorphic curves
with the same j-invariants, i.e., jðEABÞ ¼ jðEBAÞ,
and they use this value as their shared secret key.

Fig. 1 illustrates the required “steps” which Alice and
Bob take to construct two isomorphic curves with the same
j-invariants. A detailed discussion of SIDH security is given
in [8], [15].

3 IMPLEMENTATION-FRIENDLY PRIMES

The SIDH key-exchange protocol is constructed on the iso-
geny classes of supersingular elliptic curves with smooth
orders, taking advantage of their special shape to compute
isogenies of large degree efficiently. Since all the arithmetic
are performed in Montgomery space, for efficiency reasons
which will be discussed later, we choose to use primes of
the form p ¼ 2eA‘

eB
B f � 1 in our implementation. Recently,

Bos et al. [24] provided a systematic overview of techniques
to compute efficient arithmetic over SIDH key-exchange
protocol. Their findings illustrate that for the fast arithmetic
computation inside the SIDH key-exchange protocol,
regardless of affine or projective formulas, it is more conve-
nient to use the primes of the form p ¼ 2eA‘

eB
B � 1, since they

make the Montgomery reduction computation much more
optimized because of their special shape. We set the second
base prime of our smooth prime equal to ‘B ¼ 3 for the sake
of simplicity in the implementation of our isogeny computa-
tions compared to larger degrees like ‘B ¼ 19 which is sug-
gested in [24]. We also ensure that our implementation
primes satisfy the security balance between Alice and Bob.
That is, the difference between the size of the two prime
powers is not too large, i.e., j2eA � 3eB j < 240.

Below, we discuss the properties of two moduli which
we use in our implementation. The 751-bit prime was first
proposed by Costello et al. [16] in the first version of projec-
tive SIDH implementation. We optimize their implementa-
tion on ARMv8 processors using our efficient arithmetic
library to investigate the efficiency of their software on
ARM processor and provide a full comparison of recent
attempts on SIDH key-exchange implementations.

3.1 The Modulus p751 ¼ 2372 	 3239 � 1

The prime field provides 125-bit post-quantum security
level and the arithmetic computations can be implemented
efficiently using 12� 64-bit words on 64-bit platforms.
The first performance evaluation of projective SIDH key-
exchange software using this prime was optimized for Intel
processors. In this work, we independently implemented
the same software using our ARMv8 optimized library to

explore the performance of projective SIDH on 64-bit ARM
processors as a reference. We remark that recently pub-
lished optimized library [25] of projective SIDH on ARMv8
platforms over this finite field, and efficient ARMv8 filed
arithmetic library [26] for SIDH key compression demon-
strate comparable performance results with this work.

3.2 The Modulus p964 ¼ 2486 	 3301 � 1

We introduce our 964-bit implementation-friendly prime
which provides theoretical 160-bit post-quantum security
level. At first sight, this prime does not seem to be an effi-
cient prime for implementing on 64-bit platforms since in
the normal representation, it takes 16 � 64-bit words with
only 4 bits in the last word. Nonetheless, as we will show in
the following section, arithmetic over this prime can be effi-
ciently implemented using redundant radix representation
technique and delayed carry propagation. Furthermore,
since the 7 least significant words of the prime are all equal
to “1”, as it will be discussed later, the Montgomery reduc-
tion implementation can be significantly optimized.

4 IMPLEMENTATION METHODOLOGY ON ARMV8

This section presents the implementation methods and algo-
rithms used in our finite field library. The proposed imple-
mentation methodology provides a detailed performance
comparison between two different sets of instruction based
on ARMv8 platform capabilities: A64 instructions using gen-
eral registers andAdv. SIMD instructions using vectorization.

4.1 Targeted Architecture

The proposed implementation is optimized for the 64-bit
Cortex-A series with ARMv8 support, with a special focus
on the high-performance Cortex-A57 processor. This pro-
cessor is equipped with fully out-of-order execution pipeline
on both ARM and Adv. SIMD units. In many platforms,
Cortex-A57 cores are combined with Cortex-A53 cores in
the ARM big.LITTLE architecture, with the power-efficient
A53 core used for standby tasks.

ARMv8 processors are capable of performing fast integer
arithmetic using Adv. SIMD and A64 instructions. Table 1
presents a list of both Adv. SIMD andA64 arithmetic instruc-
tions that are required for finite field arithmetic implementa-
tion together with their latencies in clock cycles. In this table,
execution latency is defined as the minimum latency seen by
an operation, while execution throughput is referred to the
maximum throughput of a specific instruction (instruction/
cycle) [27]. The instruction descriptions are as follows:

� UMULL performs 2 unsigned 32� 32 multiplications
and produces a pair of 64-bit products.

Fig. 1. SIDH key exchange protocol [8]. Alice and Bob generate their public keys based on the public parameters. They exchange their public keys
and both compute the final isomorphic curves. The computed curves have the same common j-invariant value.
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� ADD (Adv. SIMD) performs 2 unsigned 64-bit
additions.

� LD4, ST4 load and store 4 128-bit vectors of data
simultaneously.

� MUL performs an unsigned 64� 64 multiplication
and produces a single 64-bit register as the least sig-
nificant half of the product.

� UMULH performs an unsigned 64� 64 multiplication
and produces a single 64-bit register as the most sig-
nificant half of the product.

� ADD (A64) performs one unsigned 64-bit addition.
� LDP, STP load and store a pair of 64-bit general pur-

pose registers simultaneously.
In the following section, we will present our implementa-

tion approach based on these instructions and their timings
in more details.

4.1.1 ARMv8 A64 versus Adv. SIMD Arithmetic

Implementation

The Adv. SIMD instruction set and its capabilities in ARMv8
are very similar to ARMv7 NEON capabilities except for the
number of vector registers. AArch64 provides 31 � 64-bit
general-purpose registers as well as 32� 128-bit vector regis-
ters which is almost twice as the number of available regis-
ters in ARMv7 platforms [19]. This large number of registers
reduces data transfer operations between registers andmem-
ory significantly, and offer more efficient implementation of
relatively-large finite field arithmetic.

ARMv8 Adv. SIMD is capable of computing multiplica-
tions over two pairs of 32-bit values to produce one pair of
64-bit products at a time. On the other hand, A64 multiplica-
tion instruction is capable of computing one pair of 64-bit
products using two multiplication instructions, one for the
least significant half (LSH) using MUL instruction, and one for
the most significant half (MSH) using UMULH instruction. As
a result, each 128-bit partial product can be computed using a
single multiplication instruction in Adv. SIMD and two mul-
tiplication instructions using A64 general-purpose registers.
However, regardless of the difference between latency and
throughput of multiplication instructions in A64 and Adv.
SIMD, as it is illustrated in Fig. 2, the computing word size
in A64 general-purpose architecture is twice as Adv. SIMD
registers. In contrast to ARMv7 32-bit platform where both
A32 general-purpose registers and NEON vectorization
architecture provide the same 232-radix representation of

operands and taking advantage of parallel 32� 32 multi-
plication of NEON instruction results in remarkable
performance improvement in finite field arithmetic
implementation [18], [28], [29].

The extra number of words in ARMv8 Adv. SIMD
requires twice as many single-precision multiplication com-
pared to A64 which has a considerable effect on perfor-
mance. However, as it is discussed, since 128-bit partial
products can be computed using single Adv. SIMDmultipli-
cation instruction, the total number of multiplication instruc-
tions for a multi-precision multiplication function will be the
same for both designs. This factmakes the SIMDdesign com-
parable to A64 implementation; however, based on execu-
tion latencies in Table 1, the total cycle counts for two
multiplication instructions in Adv. SIMD is more than the
overall execution cycles for MUL and UMULH instructions on
Cortex-A57 processors; thus, we remark that using A64 gen-
eral-purpose registers should provide faster timing results
compared to Adv. SIMD implementation on ARMv8 plat-
forms. To confirm this claim, we implemented two versions
of optimized 751-bit school-book multiplication and Mont-
gomery reduction over p751 finite field in assembly using
A64 and Adv. SIMD instruction sets. For Adv. SIMD imple-
mentation, we deployed the same strategy which was first
introduced in [28] and deployed in [18] for SIDH implemen-
tation. The performance results on a Cortex-A57 core in
Table 2 show that unlike ARM-NEON implementation on
ARMv7 platforms, ARMv8 Adv. SIMD performance suffers
from extra radix representation and does not provide any
improvement compared to A64 design. Therefore, we choose
to implement our ARMv8 optimized finite field arithmetic
library using ARMv8 A64 assembly instructions, taking
advantage of its wide 64-bit general-purpose registers.

Fig. 2. Multiplication using (a) Adv. SIMD and (b) A64 instructions.

TABLE 1
Instructions Performance Comparison for ARMv8

Cortex-A57 A64 and Adv. SIMD [27]

Architecture Instruction Execution
Latency

Execution
Throughput

Adv. SIMD

UMULL 5/4 1
ADD 3 2
LD4 11 1/4
ST4 8 1/8

A64

MUL 3 1
UMULH 6 1/4
ADD 1 2
LDP 4 1
STP 1 1
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4.2 Arithmetic in Fp

Finite field arithmetic is the fundamental building block in
number-theoretic cryptographic protocols. The SIDH proto-
col implementation works over quadratic extension fields
Fp2 [15]. However, the arithmetic over this field is imple-
mented based on finite field arithmetic over the base field
Fp. Thus, highly-optimized field arithmetic modulo p is nec-
essary for developing SIDH fast implementation. The
needed operations are finite field addition, squaring, multi-
plication, and inversion.

4.2.1 Finite Field Addition and Subtraction

For ARMv8, field addition can be implemented efficiently
using A64 instructions since addition and subtraction
instructions are capable of adding and subtracting 64-bit
operands, respectively, using a single instruction.

The multi-precision field addition is implemented by
loading operands into two 64-bit registers at a time using
LDP instruction and adding the carry bit. For constant-time
implementation, at the end of addition operations, the nega-
tive of the prime value is added to the result. Based on a bit-
mask, the prime value or zero is re-added to this result
again in order to correct the final result if it is larger than
the prime value.

Similarly, the field subtraction is implemented using sub-
traction instruction with borrow. For constant-time imple-
mentation, the prime value is added to the result and,
according to a bit-mask, the final result is computed.

4.2.2 Finite Field Multiplication

In this work, finite field multiplication is performed over
two different fields. We adopt different approaches for com-
puting finite field multiplication for each field, taking
advantage of the special form of the primes.

751-Bit Multiplication. Each 751-bit element can be repre-
sented using 12 � 64-bit registers on 64-bit platforms. The
large number of 64-bit registers on ARMv8 processors pro-
vides the capability of optimized arithmetic implementation

over relatively large finite fields. Specifically, since data load
instructions from memory into registers take a considerable
amount of execution time on the ARM platform, compact
implementation ofmulti-precisionmultiplication is desirable.
To this end, we implemented 751-bit multiplication using
Comba multiplication algorithm. We notice that the number
of registers on ARMv8 processors is redundant enough to
implement multiplication over this field only with a small
number of data transfers between memory and registers.
However, over larger finite fields, the Comba multiplication
performance deprecates due tomemory transfer instructions.

964-Bit Multiplication. 964-bit operands can be repre-
sented using 16 � 64-bit registers on ARMv8 processors.
The main disadvantage of this representation is that the
most significant word only contains 4-bit data which leads
to considerable redundancy in the representation and
thereby performance downgrading. However, in this sec-
tion, we explain how to take advantage of this redundant
representation to reduce the cost of carry propagation using
two-level Karatsuba multiplication. A similar approach has
been used before in [30] by merging “refined Karatsuba”
multiplication with a subsequent modular reduction,
targeting ARMv7 Cortex-A8 processors. However, their
implementation benefits significantly from intermediate
reduction over a Mersenne prime which cannot be utilized
in our setting.

We decompose an integer a modulo p964 into 16 � 64-bit
registers in mixed, yet symmetric radix representation.
We represent a as a0 þ 264a1 þ 2128a2 þ 2192a3 þ 2241a4 þ 2305a5þ
2369a6 þ 2433a7 þ 2482a8 þ 2546a9 þ2610a10 þ2674a11 þ 2723a12þ
2787a13 þ 2851a14 þ 2915a15. Note that since Adv. SIMD vecto-
rization does not provide any performance benefits on
ARMv8 platforms, as it is illustrated in Fig. 3, we only set
a3; a7; a11; and a15 in redundant representation. These limbs
contain 49 bits, while other limbs include 64 bits. With this
decomposition, we are able to design our tailored two-level
Karatsuba multiplication for 964-bit elements. Each limb
a3; a7; a11; and a15 is smaller than 64 bits and can be fit into
ARMv8 general-purpose registers. Moreover, there is enough
space available in these limbs that can be exploited to delay
carry propagation operations in Karatsubamultiplication.

For the first level of Karatsuba multiplication, one 16-
word integer a is divided into two eight-word integers A0

and A1, i.e., a ¼ A0 þ 2482A1 as

A0 ¼ a0 þ 264a1 þ 2128a2 þ 2192a3

þ 2241a4 þ 2305a5 þ 2369a6 þ 2433a7;

TABLE 2
Performance Comparison (CPU Clock Cycles) of
751-Bit Finite Field School-Book Multiplication on a
Single ARM Cortex-A57 Core Using A64 General

Registers versus Adv. SIMD vectorization

Operation A64 Adv. SIMD

Multiplication 1,041 1,363
Montgomery Reduction 627 820

Fig. 3. Two-level Karatsuba multiplication for 964-bit operands.
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A1 ¼ a8 þ 264a9 þ 2128a10 þ 2192a11

þ 2241a12 þ 2305a13 þ 2369a14 þ 2433a15:

We also decompose the other operand b applying the
same strategy and we have

a 	 b ¼ A1B12
964 þ ½ðA0 þA1Þ 	 ðB0 þB1Þ

�A1B1 �A0B0�2482 þA0B0:

For the second level of Karatsuba multiplication, we split
each 8 words of A0 and A1into two four-limb integers
(A00; A01; A10; A11). Now, we show A0 ¼ A00 þ 2241A01 and
A1 ¼ A10 þ 2241A11 as

A00 ¼ a0 þ 264a1 þ 2128a2 þ 2192a3;

A01 ¼ a4 þ 264a5 þ 2128a6 þ 2192a7;

A10 ¼ a8 þ 264a9 þ 2128a10 þ 2192a11;

A11 ¼ a12 þ 264a13 þ 2128a14 þ 2192a15:

We apply the same decomposition for B0 and B1 to
acquire B00; B01; B10, and B11. Now, we compute A0B0 and
A1B1 as

A0B0 ¼ A01B012
482 þ ½ðA00 þA01Þ 	 ðB00 þB01Þ

�A01B01 �A00B00�2241 þA00B00;

A1B1 ¼ A10B102
482 þ ½ðA10 þA11Þ 	 ðB10 þB11Þ

�A11B11 �A10B10�2241 þA10B10:

On the lowest level, we compute four-limb integer multi-
plication using Comba multiplication which can be effi-
ciently implemented using A64 general-purpose registers
on ARMv8 without extra memory transfer instructions.

To evaluate the performance of our proposed multiplica-
tion strategy, we also implemented 964-bit multiplication
using Comba multiplication algorithm in ARM assembly
and provided the timing results in Table 3. We verified that
our tailored two-level Karatsuba multiplication performs
almost 24 percent faster than Comba multiplication on our
targeted processor.

4.2.3 Finite Field Reduction

We choose to use prime of the form p ¼ 2a 	 3b � 1 for our
ARM-based software because of its efficient features. We
deployed the same reduction technique mentioned in [16]
instead of generic Montgomery [31] or Barret [32] reduction
algorithms. The proposed technique is novel and yet
straightforward to implement. That is, instead of computing

the Montgomery residue c ¼ aR�1mod p for an input
a < pR; by using

c ¼ aþ ap0 mod 2R
� � 	 p� �

=2R;

which requires roughly s2 þ s multiplications for a 2s-limb
value a in generic form, computations can be simplified to

c ¼ aþ ap0 mod2R
� � 	 2a 	 3b � ap0 mod 2R

� �� �
=2R

¼ a=2R þ ap0 mod 2R
� � 	 3b� �

=2R�a;

for p ¼ 2a 	 3b � 1. Based on the above formula, instead of
multiplication with the prime value, the multiplication with
pþ 1 ¼ 2a 	 3b is computedwhich has exactly a

r

� �
least signifi-

cant words equal to “0” for 2r-radix representation of ele-
ments. For instance, p751þ 1 and p964þ 1 have five and
seven least significantwords equal to “0”, respectively, which
can simply be eliminated. Additionally, one can simply notice
that the primes of this form are also Montgomery-friendly
primes [33] which reduces the s2 þ s multiplications to s2

multiplications for a 2s-limb value, since p0 ¼ �p�1 mod2R is
equal to 1 and s multiplications are eliminated. We imple-
mented optimized Comba-based Montgomery reduction in
product scanning form for both primes.

4.2.4 Finite Field Inversion

There exist different approaches to compute the inverse of
an operand over a finite field. These approaches differ in
complexity as well as security due to constant or non-
constant implementations. Constant-time modular inver-
sion algorithms are significantly slower than their non-con-
stant counterparts, but since they are resistant against
power analysis attacks, they are more desirable for cryptog-
raphy applications. For instance, as it was pointed out in
[34], using projective representation can reveal information
about secret data during the conversion from projective to
affine coordinates. Therefore, regardless of performance
degradation, a constant-time inversion method should be
adopted in projective settings.

One constant-time approach is Fermat’s Little Theorem
(FLT) which computes the field inversion based on
x�1 ¼ xp�2 mod p, using field multiplication and squaring in
Oðlog 3pÞ. This method of computing inversions is computa-
tionally intensive, and it is mostly deployed when the use of
field inversion is scarce inside the protocol since otherwise
the performance degradation would be catastrophic. As an
alternative, Bos’s constant-time inversion algorithm [35]
computes the inversion of an element based on the binary
GCDwithout using any fieldmultiplication or squaring.

The first projective based SIDH key exchange implemen-
tation [16] includes only one field inversion at the very end
of each key exchange step. Moreover, inversion computa-
tion using addition chains significantly benefits from Mont-
gomery arithmetic inside the protocol. Therefore, using
constant-time FLT algorithm for inversion seems to be rea-
sonable in their settings leading to only minor performance
degradation. Nevertheless, since the proposed method in
[35] also provided more efficient timings on ARM-powered
devices compared to FLT, we explored the performance
impact of using this approach in our projective SIDH

TABLE 3
Performance Comparison (CPU Clock Cycles)
of 964-Bit Finite Field Multiplication on a Single

ARM Cortex-A57 Core

Algorithm Cycles

Two-level Karatsuba 1,244
Comba 1,636
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software for both security levels. In particular, since ARM
processors are not as resource-rich as Intel processors, even
a small fraction of optimization is desirable.

We have implemented the binary GCD inversion algo-
rithm using hand-written assembly instructions on our tar-
get processor. The proposed constant-time implementation
in [35] includes multi-precision addition, subtraction, and
shift operations over the finite field as well as simple logic
operations on word-size operands. Since the proposed
implementation is constant-time, the total number of
2 log 2ðpÞd e iterations are performed for every input. Based
on the implementation results in [35], we expected to see
more than 2 times faster inversion software compared to
FLT algorithm. However, we observed significant difference
in our implementation results on 64-bit ARM processor.
Table 4 summarizes the performance cost on our bench-
mark platform over the 751-bit and 964-bit finite field inver-
sion. We observe that using FLT algorithm provides faster
results compared to binary GCD algorithm for both 751-bit
and 964-bit primes. Note that these timing results are
obtained using our highly-optimized arithmetic library for
both inversion methods. Furthermore, for constructing
addition chains inside FLT algorithm, we used 6-bit win-
dow method with precomputed table. In this case, the table
includes only required exponents of an element a up to a63.
We address the difference between our timing results and
the results presented in [35], regardless of the target plat-
form, as in our implementation, we use highly-optimized
multiplication and squaring functions as well as using
Montgomery arithmetic for computing large exponentia-
tion. Moreover, the presented results in [35] are based on
binary method for computing exponentiation in FLT which
requires almost b modular squarings and b

2 modular multi-
plications for generic b-bit prime moduli p, in contrast to
our window-based implementation which includes much
less modular multiplications and thereby is more efficient.

In contrast to projective SIDH formulas, affine SIDH soft-
ware requires hundreds of modular inversions for each step
of the key exchange protocol. As a result, the only compara-
tive implementation of affine SIDH software can be devel-
oped using a non-constant time inversion method as it is
used in [15], [17], and [18]. Among different non-constant
time methods of computing modular inversion, the
Extended euclidean Algorithm (EEA) can be deployed to
compute the inverse of an operand at a significantly lower
time complexity ofOðlog 2pÞ compared to FLT, but with leak-
ing some information about the value being inverted from
simple power analysis and timing attacks [36]. However, to
provide some level of protections against timing attacks in
affine SIDH software, a random value can be multiplied to
the operand before and after the inversion. This requires two
extra modular multiplications, but the additional defense

against timing attacks necessitates this minor performance
degradation. Like the previous versions of affine SIDH
implementations, we also choose to use EEA method inside
our affine SIDH software for modular inversions. The EEA
implementation deploys our optimized arithmetic library
for multiplication and reduction besides the GNU multi-
precision library for computing the inverse of an element.
We included the performance cost of this method on our
benchmark platform in Table 4 for both finite fields.

Since the proposed primes in this work have the number
of bits smaller than the multiple of 64-bit word, we adopt a
combination of Karatsuba multiplication, carry-handling
elimination, and lazy reduction in extension field arithmetic
for achieving better performance similar to [16] and [37].

5 AFFINE VERSUS PROJECTIVE SIDH

This section compares two different approaches of imple-
menting SIDH protocol, namely the projective isogeny for-
mulas presented by Costello et al. [16] and affine isogeny
formulas introduced by De Feo et al. [15]. From the security
point of view, the most significant distinction between these
two formulas is that the projective isogeny provides con-
stant-time, almost inversion-free point and isogeny arithme-
tic. However, in terms of performance, we need to look at
the relative cost of an inversion which is used in the affine
formulas and compare it with the cost of additional multi-
plications needed for projective formulas. To this end, we
use the inversion/multiplication ratio, denoted as Rp ¼
Ip=Mp over Fp and Rp2 ¼ Ip2=Mp2 over Fp2 . The Rp ratio indi-
cates the cost of an inversion to the cost of a multiplication
over Fp, while Rp2 denotes the cost of an inversion to the
cost of a multiplication over extension field Fp2 . In the case
of constant-time inversion such as FLT for generic b-bit
prime moduli p, using the addition chains method, the Rp

ratio is equal to several hundreds and almost a thousand
over our 751-bit and 964-bit prime fields, respectively; in
contrast to non-constant time inversion algorithms like
EEA, in which the cost of an inversion to the cost of a multi-
plication is significantly smaller. Since the only required
inversion in SIDH protocol is over the quadratic extension
field Fp2 , the Rp2 ratio should be taken in consideration.

Let b ¼ b0 þ b1a 2 Fp2 be a non-zero element, where
a2 ¼ g 2 Fp. The multiplicative inverse of b can be com-
puted as follows:

b�1 ¼ 1

b0 þ b1a
¼ b0 � b1a

b20 � b21g
¼ b0

b20 � b21g
� b1a

b20 � b21g
:

The inverse of b can be computed in Ip2 ¼ Ip þ 2Mp þ
Mg þ 2Sp þ subp þ negp. Roughly, we can assume
Ip2 
 Ip þ 6Mp. On the other hand, the cost of multiplication
in the quadratic extension field is Mp2 � 3Mp, since
Mp2 ¼ 3Mp þMg þ 2addp þ 2subp. Thus,

Rp2 ¼ Ip2=Mp2 
 ðIp=3MpÞ þ 2 ¼ Rp=3þ 2;

which implies that for large ratio Rp, the Rp2 ratio is almost
equal to Rp=3. Note that relatively-small Rp2 ratios make
affine formulas faster than projective formulas in some
implementations and settings, while larger values of Rp2

indicate projective formulas outperform its counterpart.

TABLE 4
Performance Numbers in 103 Cycles for Finite Field Inversion
Modulo 751-Bit and 964-Bit SIDH Primes on ARM Cortex-A57

Constant time Non-constant time
Prime FLT Binary GCD EEA

p751 1,368 1,792 31
p964 2,570 2,939 40
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Based on [16], SIDH projective formulas show much better
performance on x86-64 Intel processors. However, the
inversion to multiplication ratio on other platforms and
architectures might lead to performance improvements for
affine SIDH implementations. To investigate this possibility,
we give detailed performance numbers for both base field
and quadratic extension field modular arithmetic on our tar-
get platform. This includes the inversion to multiplication
ratios for both fields. In Table 5, we provide performance in
terms of cycle counts for the SIDH required modular field
arithmetic over Fp and Fp2 ; results represent both generic C
implementation using GMP1library and optimized assem-
bly using our assembly library.

The last column in Table 5 shows the inversion to multi-
plication ratio cost for each implementation. As it is indi-
cated in this table, the ratios are much smaller for the
quadratic extension field than the base field and as we
expected Rp2 
 Rp=3þ 2.

Recall that the large values of Rp2 indicate that affine
SIDH performance suffers from excessive number of inver-
sions. Thus, the projective SIDH is expected to show more
efficient results. Table 5 shows that the Rp2 ratio for our
optimized implementation is almost twice as the C imple-
mentation for both finite fields. Notably, efficient implemen-
tation of finite field multiplication over p964 field increases
the Rp2 ratio significantly which should translate to better
speedup of using projective SIDH over p964 compared to
p751 implementation.

Based on these observations, we claim that projective for-
mulas performance benefits significantly from optimized
implementation of finite field multiplication. Thus, compar-
ison between affine and projective SIDH performance is
directly related to the target platform and field multiplica-
tion implementation. In the next Section, we evaluate per-
formance results of the SIDH protocol for both affine and
projective implementations on ARM Cortex-A57 processor.

6 IMPLEMENTATION RESULTS AND DISCUSSION

In this section, we present the performance results of both
affine and projective SIDH key exchange protocol software
on the high-performance ARM Cortex-A57 processor. We
use the exact same optimized field library for both affine
and projective implementations over each finite field. More-
over, we set curve parameters a ¼ 0 and b ¼ 1 to construct
the elliptic curve E=Fp2 : y

2 ¼ x3 þ x as the starting Mont-
gomery curve.

To evaluate the performance of the SIDH key exchange
protocol, both affine and projective codes are compiled
using the standard operating system on the Juno ARM
Development Platform. The software is compiled with
Linaro GCC v4.9.4 on a single core 1.1 GHz ARM Cortex-
A57 running OpenEmbedded Linux v4.5.0. Results repre-
sent the average of 103 iterations, reported in clock cycles to
ease comparison. We measured CPU time and scaled the
number to clock cycles using the processor frequency;
accordingly, the cycle counts reported here represent an
upper bound on the actual execution time.

6.1 Benchmark Results

Table 6 includes the benchmark results of our affine
and projective software over two security levels. As we
expected, the optimized version of projective formulas com-
putes the key exchange protocol faster than affine formulas
over both finite fields. However, we notice that affine soft-
ware slightly outperforms its projective counterparts for the
final round of the protocol and show better performance.
Furthermore, the difference between projective and affine
formulas are more dominant over p964 finite field as we
expected based on our I=M analysis. Timing results indi-
cate that the optimized projective SIDH performs almost 14
and 20 percent faster than affine SIDH over p751 and p964
fields, respectively.

6.2 Comparison

Since this work provides efficient implementation of the
SIDH protocol on ARMv8 processors, we compare our
results with previous implementations on ARM-powered
devices at the same level of security. The only other publicly
available optimized implementations of SIDH are [16],
[17], [18] which only provide generic implementations on
ARMv8 platforms. As we expected, our optimized software
performs much better than generic implementations. In par-
ticular, although the optimized SIDH projective implemen-
tation of [16] only targets x86_64 Intel processors, we
compiled their generic implementation on our target plat-
form for comparison, with the understanding that their por-
table version is not optimized for our platform.

If we compare our implementation to that of [16] on dif-
ferent target platforms, our optimized implementations are
2 times slower in terms of cycle counts, mainly because of
differences between ARM and Intel processor architectures.
ARM processors are based on RISC (Reduced Instruction
Set Computing) architecture which focuses on power-
efficiency, while Intel processors are based on CISC

TABLE 5
Field Arithmetic Timings over the p751 and p964 Prime Fields on a Single Core

ARM Cortex-A57 (Average Over 104 Operations in CPU Cycles (cc))

C ASM

Prime Field Add Mul Inv (EEA) R=I/M Add Mul Inv (EEA)� R = I/M

p751 Fp 53 2,966 31,592 10.65 46 1,636 31,592 19.31
Fp2 645 10,560 40,205 3.81 130 6,101 38,623 6.33

p964 Fp 74 4,499 40,425 8.98 61 2,312 40,425 17.48
Fp2 728 15,563 59,541 3.82 167 7,647 55,979 7.32

* Inversion over Fp is implemented only using GMP library.

1. GNUMP Bignum Library
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(Complex Instruction Set Computing), making direct cross-
architecture comparisons of limited utility.

In comparison with other ARM-based implementations,
our software is the fastest SIDH key exchange implementa-
tion for a given post-quantum security level.

6.3 Open Quantum Safe Benchmark

In this section, we compare other quantum-resistant crypto-
graphic primitives with SIDH in terms of performance,
security and communication overhead. Bos et al. [41]
recently proposed a new quantum-resistant primitive based
on lattices. They compared the implementation metrics of
their proposed key exchange protocol with other quantum-
resistant primitives on the x86_64 architecture.

To evaluate the efficiency of our software, we inte-
grated our optimized implementation of projective SIDH
key exchange into both liboqs and Open Quantum Safe
OpenSSL projects [42]. The OpenSSL library is compiled
with Linaro GCC v4.9.4 on a single core 1.1 GHz ARM
Cortex-A57 running OpenEmbedded Linux v4.5.0. We
are following the same strategy in [41] and [38] as com-
paring performance of standalone cryptographic opera-
tions with other post-quantum cryptosystem candidates

on our targeted platform. Table 7 demonstrates the over-
all comparison of different post-quantum cryptosystems.
In this table, Alice0 shows Alice’s key and message gen-
eration operations; Bob denotes Bob’s key and message
generation and his shared key computations; and finally
Alice1 represents the final shared key computations by
Alice.

Our optimized software demonstrates the speedup of up
to 5X over the generic C implementation of SIDH [16] for
the same security level. However, note that the large num-
ber of operations to calculate the isogeny map between
elliptic curves, even inside our optimized implementation
of SIDH, affects the overall performance of this scheme and
makes it slower compared to its counterparts. However, sig-
nificantly smaller key size makes the SIDH key exchange
protocol suitable for the applications where the communica-
tion overhead is a concern.

Moreover, most of the other post-quantum primitives are
based on the hardness of lattice problem on ideal lattices
and as it is stated in [41], recent cryptanalysis efforts show
that their underlying security might be influenced. Nonethe-
less, RLWE-based cryptosystems show remarkable results
in terms of performance.

TABLE 6
Performance Results (�106 CPU Clock Cycles) of Affine and Projective Coordinates for SIDH Key Exchange Protocol on Different

Platforms for Various Quantum Security Level

Work Lang. Device Field size PQ Security Coordinate Timings [cc �106 ]

Alice R1 Bob R1 Alice R2 Bob R2 Total

Costello et al. [16] ASM Haswell 751 125 Proj. 51 59 47 57 214
Sandy Bridge 54 64 51 61 230

Koziel et al. [18] C Cortex-A15 751 125 Affine 437 474 346 375 1,632
ASM 1008 167 603 657 516 484 2,259

Azarderakhsh et al. [17] C Cortex-A15 771 128 Affine N/A N/A N/A N/A 3,009
1035 170 N/A N/A N/A N/A 6,477

This Work

ASM

Cortex-A57

751 125 Affine 132 143 106 112 493
Proj. 103 118 97 113 431

964 160 Affine 276 291 223 231 1,021
Proj. 201 226 188 233 848

C

751 125 Affine 210 225 168 180 783
Proj.� 568 671 528 633 2,400

964 160 Affine 436 455 350 365 1,606
Proj. 1,323 1,502 1,230 1,421 5,476

* The main portable C code from [16] is evaluated on ARM Cortex-A57 processor. The radix was changed to 264 on ARM paltform.

TABLE 7
Performance Evaluation of Post-Quantum Cryptography Key Exchange Protocols

Protocol Lang. Alice0 (ms) Bob (ms) Alice1 (ms) Communication
(bytes)

A ! B B ! A

PQ Security

RLWE BCNS [38] C 2.85 4.65 0.695 4,096 4,224 76
RLWE NewHope [39] C 0.284 0.442 0.106 1,824 2,048 206
RLWEMSR [40] C 0.199 0.361 0.065 1,824 2,048 206
LWE Frodo Recomm. [41] C 59.3 59.9 0.427 11,280 11,288 130
SIDH [16] C 497 1114 468 564 564 125

SIDH (This Work) C/ASM 97 216 90 564 564 125
C/ASM 178 376 183 726 726 160

All the results are generated by Open Quantum Safe OpenSSL library, compiled and evaluated on a single core ARMv8 Cortex-A57 processor.
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7 CONCLUSION

In this paper, we have presented two optimized SIDH key
exchange implementations for two different quantum secu-
rity levels on the ARMv8 platforms. Our implementations
provided both 125-bit and 160-bit quantum security.
We investigated different implementation approaches on
ARMv8 processors based on its architecture capabilities. Our
field arithmetic library computes field-level SIDH operations
faster than all other prior implementations on ARM plat-
forms found in the literature. We introduced a new imple-
mentation-friendly prime for higher security level
implementation of SIDH on ARM platforms. Moreover, we
provided a comprehensive comparison between affine and
projective SIDH formulas based on inversion-to-multiplica-
tion ratio, and concluded that the optimized projective SIDH
always shows better performance compared to optimized
affine SIDHonARMv8 platforms.

We integrated our optimized software into open quan-
tum safe OpenSSL project to compare its overall perfor-
mance with other post-quantum cryptography primitives.
Our benchmarked results demonstrate that although SIDH
key exchange protocol shows slower timings compared to
RLWE-based primitive, its significantly smaller key size
makes this scheme suitable for the applications where the
communication bandwidth is restricted.

We remark that since isogeny-based cryptosystems are
younger than other post-quantum cryptography candidates,
their performance and security are still required to be stud-
ied widely. Nevertheless, the key size and performance of
our software demonstrate the strong potential of SIDH as a
quantum-resistant key exchange candidate. We hope that
this work would be a paradigm shift towards motivating
more investigation in this area.
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