
696 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 3, MARCH 2018

Reliable Inversion in GF(28) With Redundant
Arithmetic for Secure Error Detection of

Cryptographic Architectures
Mehran Mozaffari Kermani, Senior Member, IEEE, Amir Jalali, Reza Azarderakhsh, Member, IEEE,

Jiafeng Xie, Member, IEEE, and Kim-Kwang Raymond Choo, Senior Member, IEEE

Abstract—In secure cryptographic primitives, such as block
ciphers, the reliability of hardware implementations needs to
be closely considered because faults in the hardware imple-
mentations can potentially reduce or impact on the underlying
security. In this paper, we present approaches to detect errors
in hardware implementations of the inversion in GF(28). The
proposed approaches are based on both nonredundant and
redundant arithmetic, utilizing normal basis (nonredundant)
and two redundant Galois field representations, i.e., polynomial
ring representation and redundantly represented basis through
tower fields. To the best of our knowledge, this is the first
work focusing on the error detection architectures for redundant
arithmetic-based inversion in GF(28). The presented signature-
based schemes in this paper are general and can be applied
to block ciphers with 8-bit S-boxes, such as Camellia, SMS4,
the advanced encryption standard, and CLEFIA. We present
the results of error simulations and application-specific inte-
grated circuit implementations to demonstrate the utility of the
presented schemes. Based on the specific implementation’s secu-
rity/reliability objectives and the overhead/degradation tolerance
for implementation/performance metrics, one can fine-tune and
tailor the proposed work to achieve more reliable inversions in
GF(28).

Index Terms—Application-specific integrated circuit
(ASIC), block cipher, error detection, inversion in GF(28),
reliability.

I. INTRODUCTION

CRYPTOGRAPHIC block ciphers are effective solu-
tions for ensuring confidentiality in resource-constrained

Manuscript received January 1, 2017; revised March 23, 2017 and
May 27, 2017; accepted June 9, 2017. Date of publication June 20, 2017;
date of current version February 16, 2018. This work was supported by the
National Institute of Standards and Technology through the U.S. Federal
Agency under Award 60NANB16D245. This paper was recommended by
Associate Editor Q. Xu. (Corresponding author: Mehran Mozaffari Kermani.)

M. Mozaffari Kermani is with the Department of Computer Science and
Engineering, University of South Florida, Tampa, FL 33620 USA (e-mail:
mmozaff@gmail.com).

A. Jalali and R. Azarderakhsh are with the Department of Computer
and Electrical Engineering and Computer Science, Florida Atlantic
University, Boca Raton, FL 33431 USA (e-mail: ajalali2016@fau.edu;
razarderakhsh@fau.edu).

J. Xie is with the Department of Electrical Engineering, Wright State
University, Dayton, OH 45435 USA (e-mail: jiafeng.xie@wright.edu).

K.-K. R. Choo is with the Department of Information Systems and Cyber
Security, University of Texas at San Antonio, San Antonio, TX 78249 USA
(e-mail: raymond.choo@fulbrightmail.org).

Digital Object Identifier 10.1109/TCAD.2017.2717791

applications, e.g., deeply embedded systems in human
body, such as sensitive implantable and wearable medical
devices [1]. In lightweight cryptography, the S-boxes are usu-
ally small whose implementations can be achieved efficiently.
The S-box sizes in lightweight block ciphers are usually
with the size of 4-input, 4-output and can be implemented
efficiently through logic gates or look-up tables. In applica-
tions, where memory macros on application-specific integrated
circuit (ASIC) and block memories on field-programmable
gate array (FPGA) are utilized, one can realize such look-up
tables efficiently. Such variants of S-boxes typically have high
performance but also require a larger area and a higher power
consumption. On the other hand, there have also been exten-
sive work on the realization of S-boxes based on multiplicative
inversion in GF(28) used for cryptographic algorithms, such
as the advanced encryption standard (AES) [2], Camellia [3],
SMS4 [4], and CLEFIA [5].

S-boxes need to be implemented efficiently and can be
realized through two different (and diverse) approaches in
hardware. To alleviate such limitations, on the other hand,
one can utilize composite field-based architectures. The latter
have low complexity, but require subpipelining to achieve high
throughput and efficiency. For high-performance applications,
e.g., server or game console security, the implementations of
the S-boxes can be done on FPGAs and through look-up table-
based approaches to achieve high speed and performance.
Nevertheless, such schemes can be replaced with composite
field implementations to achieve low area and power con-
sumption for deeply embedded systems. However, for either
of these implementations, there might exist naturally occurring
and malicious faults which undermine the reliability of block
ciphers; consequently, impacting on their capability to assure
confidentiality. A number of concurrent error detection tech-
niques have been proposed to account for reliable hardware
architectures (including cryptographic block ciphers) [6]–[19].
Such schemes are based on hardware/information/time/hybrid
redundancy. Nevertheless, it is possible to leverage the error
detection schemes which are tailored for specific implemen-
tations of the S-boxes to strike a balance between reliability
and overhead tolerance.

The multiplicative inversion in GF(28) through compos-
ite fields can be realized using polynomial basis, normal
basis, or mixed basis [20]–[22]. Although mixed basis can

0278-0070 c© 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:mmozaff@gmail.com
mailto:ajalali2016@fau.edu
mailto:razarderakhsh@fau.edu
mailto:jiafeng.xie@wright.edu
mailto:raymond.choo@fulbrightmail.org
http://www.ieee.org/publications_standards/publications/rights/index.html

MOZAFFARI KERMANI et al.: RELIABLE INVERSION IN GF(28) WITH REDUNDANT ARITHMETIC FOR SECURE ERROR DETECTION 697

achieve high-performance implementations for the S-boxes,
in [23], redundant basis is used for the S-boxes in composite
fields to ameliorate the efficient realization of the architec-
tures (40% higher efficiency in terms of area-time product
compared to other bases). In this paper, we propose diagno-
sis approaches for the multiplicative inversion in GF(28). We
note that permanent faults are caused by very-large-scale inte-
gration manufacturing defects (and of course if the intention
is to break the entire device, such faults can be injected at
run-time). On the other hand, “long transient faults” can lead
to information leakage [24]. Simple time redundancy cannot
detect long transient faults that last for the normal computa-
tion and recomputation, and it has been shown that one could
successfully inject long transient faults to circumvent this
countermeasure [24]. Our main contributions are summarized
as follows.

1) For the first time, we propose error detection approaches
for the multiplicative inversion in GF(28) utilizing com-
bined normal basis (nonredundant) and two redundant
Galois field representations, i.e., polynomial ring rep-
resentation and redundantly represented basis through
tower fields. One contribution of this paper is that the
proposed approaches can be tailored based on the reli-
ability requirements and overhead tolerance of sensitive
usage models (not just confined to parities, for instance,
or not getting confined to a certain number of blocks for
deriving the signatures).

2) The focus of this paper is on presenting error detec-
tion architectures for multiplicative inversion, applicable
to the S-boxes in a number of cryptographic algo-
rithms, i.e., not only the AES [2] can benefit from the
presented approaches, but Camellia [3], SMS4 [4], and
CLEFIA [5] can also utilize them. We also present for-
mulations for the transformation matrices to detect errors
in their respective structures.

3) We benchmark the proposed architectures to evaluate
their capability to detect transient and permanent faults
using fault injection simulations. Findings demon-
strate that the proposed architectures have acceptable
error detection capabilities, i.e., reliability of proposed
approaches.

4) Another contribution of this paper is to assess the false
alarm resiliency of the proposed approaches. Using the
proposed approaches, the error detection structures are
capable of detecting the injected faults with high cover-
age (transient and permanent as well as single, multiple,
and adjacent faults) with low false alarms.

5) We implement the proposed error detection architec-
tures on an ASIC platform using a 65-nm standard-cell
library. Our results show that the proposed efficient
error detection architectures can be practically utilized,
and is suitable for deployment on resource-constrained
applications.

The organization of this paper is as follows. Section II
presents background materials and our proposed error
detection schemes. In Section III, we present concrete
constructions. We then evaluate the performance of the
proposed scheme followed by fault-injection simulations

in Section IV. Finally, the conclusions are presented
in Section V.

II. PROPOSED ERROR DETECTION APPROACHES

In what follows, we present the background materials and
then the proposed error detection schemes.

A. Background Concepts

We will now briefly describe the background materi-
als required in the understanding of the design of the
multiplicative inversion in GF(28) based on tower field
arithmetic.

Limitations of look-up table-based realization of the
S-boxes include high power consumption, large area require-
ment, and high energy usage. On the other hand, composite
field-based architectures have low complexity but pipelining is
required to achieve high throughput and efficiency. The tower
field approach for inversion in GF(28) is efficient because the
subfields GF((22)2)2 and GF(24)2 operations are realized effi-
ciently. Polynomial/normal/mixed bases can be used for such
tower fields (using m = 8 bits in a nonredundant manner).

For the nonzero element a ∈ GF(28), we have the
inverse a−1= a254. The scheme underlying the tower field
approach is to utilize smaller arithmetic operations over sub-
field GF((22)2)2 or GF(24)2 instead of GF(28). There is an
isomorphism between the elements of GF(28) and those of the
tower field. Such a multiplicative inversion in GF(28) can be
efficiently implemented using the Itoh–Tsujii algorithm [25].
For instance, for the subfield GF((22)2)2 with normal basis
composite field, let a field element a in GF((22)2)2 be the
input given by hα16 + lα in normal basis with h and l being
the upper and lower 4-bit parts of a, respectively. We derive
the inversion of a by the calculation of the 16th and 17th
powers, subfield inversion, and the final multiplication.

In this paper, we use redundant-based representation, which
uses n(>m = 8) bits to represent each element of GF(28). The
intention here is to show that we derive efficient schemes for
error detection in such tower fields. We calculate the inver-
sion of the tower field GF(24)2 by the normal basis because
the squaring operation is performed solely by wiring and two
redundant-based representations combination [23].

B. Error Detection for Redundantly Represented Basis

Each element in such basis is represented by a root of an
mth degree irreducible polynomial. Similar to normal basis,
redundantly represented basis-based GF(28) squaring can be
performed by bit-wise permutation. We note that such basis
can be obtained by adding a base, β0, to optimal normal basis.
For squaring, we propose using signatures, e.g., parities or
interleaved parities, as they remain intact for the actual and
predicted variants, leading to very efficient error detection.

We present Theorems 1 and 2 for the error detection of the
multiplication in GF(24) in redundantly represented basis.

Theorem 1: The predicted parity for the multiplication
in GF(24) in redundantly represented basis is as follows
(s and t are 5-bit entries and the result u is also 5 bits;

698 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 3, MARCH 2018

s = s4β
4 + s3β

3 + s2β
2 + s1β + s0, t = t4β4 + t3β3 + t2β2 +

t1β + t0, u = u4β
4 + u3β

3 + u2β
2 + u1β + u0)

P̂ =
∑

0≤i,j≤4,i �=j

si.tj (1)

where the “sum”
∑

symbol represents XOR operation, β is
the root of the fourth degree all-one polynomial, and si, tj ∈
GF(2).

Proof: We have the following for the result of the multipli-
cation in GF(24) in redundantly represented basis:

u0 = (s1 + s4)(t1 + t4) + (s2 + s3)(t2 + t3) (2)

u1 = (s0 + s1)(t0 + t1) + (s2 + s4)(t2 + t4) (3)

u2 = (s0 + s2)(t0 + t2) + (s3 + s4)(t3 + t4) (4)

u3 = (s0 + s3)(t0 + t3) + (s1 + s2)(t1 + t2) (5)

u4 = (s0 + s4)(t0 + t4) + (s1 + s3)(t1 + t3). (6)

Modulo-2 addition of the above results in the predicted par-
ity of P̂ = (s1+s4)(t1+t4)+(s2+s3)(t2+t3) +(s0+s1)(t0+t1)+
(s2+s4)(t2+t4)+(s0 +s2)(t0+t2)+(s3+s4)(t3+t4)+(s0+s3)

(t0+t3)+(s1+s2)(t1+t2)+(s0+s4)(t0 +t4)+(s1+s3)(t1+t3) =
s0(t1 + t2 + t3 +t4) + s1(t0 + t2 + t3 + t4) + s2(t1 + t0 + t3
+t4) + s3(t1 + t2 + t0 + t4) + s4(t1 + t2 + t3 + t0) which is
shown for the sake of simplicity as (1).

Remark 1: The predicted parity P̂ = s0(t1+t2+t3+t4)+s1(t0
+t2 + t3 + t4) + s2(t1 + t0 + t3 + t4) + s3(t1 + t2 + t0 + t4) +
s4(t1 + t2 + t3 + t0) can be implemented using 13 XOR gates
and 5 AND gates with the critical path delay of 5 TX and
1 TA, where TX and TA are the delays for XOR and AND
gates, respectively.

Theorem 2 describes the interleaved parities for burst error
detection.

Theorem 2: The predicted interleaved parities for the mul-
tiplication in GF(24) in redundantly represented basis are
as follows (P̂1 and P̂2 represent, respectively, u0 + u2 + u4
and u1 + u3) : P̂1 = s0(t2 + t4) + s1(t3 + t4) +s2(t0 +
t3) + s3(t1 + t2 + t3 + t4) + s4 (t0 + t1 + t3 + t4), P̂2 =
s0(t1 + t3) + s1(t0 + t2)+ s2(t1 + t4)+ s3(t0 + t3) + s4(t2 + t4).

Proof: Considering the proof of Theorem 1, we derive the
interleaved parities for P̂1 and P̂2, respectively, which can be
efficiently implemented through subexpression sharing.

Remark 2: The predicted interleaved parities P̂1 = s0(t2 +
t4)+ s1(t3 + t4)+ s2(t0 + t3)+ s3(t1 + t2 + t3 + t4)+ s4(t0 + t1 +
t3 + t4), P̂2 = s0(t1 + t3) + s1(t0 + t2) + s2(t1 + t4) + s3(t0 +
t3) + s4(t2 + t4) can be implemented for the former using 10
XOR gates and 5 AND gates with the critical path delay of
5 TX and 1 TA, and for the latter using 9 XOR gates and 5
AND gates with the critical path delay of 4 TX and 1 TA. One
can save 2 XOR gates with further sharing the architectures
of the two interleaved signatures.

C. Error Detection for Subfield Inversion in GF(24)

The inversion in GF(24) is constructed using the inputs in
polynomial ring representation and the outputs in redundantly
represented basis. We now present fault diagnosis schemes
for the inversion unit noting that the transformation matrix
used for basis conversion is implemented without incurring
additional cost.

We present Theorem 3 for fault diagnosis of the 5-bit input
(d = d4β

4 + d3β
3 + d2β

2 + d1β + d0) and its inversion, i.e.,
e = e4β

4 + e3β
3 + e2β

2 + e1β + e0.
Theorem 3: The predicted parity and the interleaved parities

for the inversion in GF(24) are derived as follows:

P̂ = d1d2d3
(
d0 + d4

) + d0(d2d3d4 + d1d3d4 + d1d2d4)

(7)

P̂1 = d0d3d4d2 + d2d1d0d4 + (d2 + d3)d1 + (d2 + d1)d4

(8)

P̂2 = d0d1d2d3 + d2d3d4d1 + d3d1d4d0 + d1d4d2 + d2 ∨ d3.

(9)

Proof: We have the following for the result of the inversion
in GF(24):

e0 = (d1 ∨ d4)(d2 ∨ d3) (10)

e1 = d4(d1 + d2) ∨ (d0d4(d2 ∨ d3)) (11)

e2 = d3(d2 + d4) ∨ (d0d3(d1 ∨ d4)) (12)

e3 = d2(d1 + d3) ∨ (d0d2(d1 ∨ d4)) (13)

e4 = d1(d3 + d4) ∨ (d0d1(d2 ∨ d3)). (14)

Modulo-2 addition of the above formulas as well as
its interleaved modulo-2 addition results in (7)–(9) after
simplifications.

Remark 3: The predicted (interleaved) parities P̂ =
d1d2d3(d0 + d4) + d0(d2d3d4 + d1d3d4 + d1d2d4), P̂1 =
d0d3d4d2 + d2d1d0d4 + (d2 + d3)d1 + (d2 + d1)d4, P̂2 =
d0d1d2d3 + d2d3d4d1 + d3d1d4d0 + d1d4d2 + d2 ∨ d3 can
be implemented, respectively, excluding the inverters, using
3 XOR gates and 9 AND gates with the critical path delay of
3 TX and 3 TA, using 5 XOR gates and 8 AND gates with the
critical path delay of 2 TX and 2 TA, and finally utilizing 4
XOR gates and 12 AND/OR gates with the critical path delay
of 3 TX and 2 TA.

D. Error Detection for Other Stages

The other stages construct the beginning of the architecture
(assuming h and l as the 4-bit entries to the entire inver-
sion in GF((24)2) and d as the 5-bit input of the inversion
in GF(24)). Considering the mappings from normal basis and
polynomial ring representation, we present Theorem 4 for the
parity prediction of the stage which performs φ′hl+φ′′(h+l)2,

where we have

φ′ →

⎛

⎜⎜⎜⎜⎝

0 1 1 0
0 0 1 1
0 0 0 1
1 0 0 0
1 1 0 0

⎞

⎟⎟⎟⎟⎠
and φ′′ →

⎛

⎜⎜⎜⎜⎝

1 1 1 0
1 1 1 1
0 1 1 1
1 0 1 1
1 1 0 1

⎞

⎟⎟⎟⎟⎠
.

Theorem 4: The predicted parity for φ′hl + φ′′(h + l)2 is
efficiently derived with no cost as P̂ = 0. This yields to very
lightweight architectures using such derivation and thus using
interleaved parities is not recommended for this stage unless
a specific error coverage is aimed.

Proof: Due to page limitations, we do not present the for-
mulations for the result of φ′hl +φ′′(h + l)2, whose modulo-2
addition of the output bits results in P̂ = 0.

MOZAFFARI KERMANI et al.: RELIABLE INVERSION IN GF(28) WITH REDUNDANT ARITHMETIC FOR SECURE ERROR DETECTION 699

Fig. 1. First proposed choice in error detection of the inversion in GF((24)2).

Fig. 2. Second proposed choice in error detection of the inversion in
GF((24)2).

To finalize this section, we would like to emphasize that
the utilized signatures in this paper are a subset of pos-
sible ones that can be used. For instance, one may use a
three-flag, three-bit signature for different subparts of the
S-boxes in redundant-basis, such as the inversion in GF(24)

as S0 = e0 + e1, S1 = e2 + e3, and S1 = e4. Such derivation,
and other similar ones, would add to the overhead of the error
detection architecture, with the advantage of higher error cov-
erage; nevertheless, based on the reliability requirements and
overhead tolerance, such schemes can also be tailored for error
detection (this also depends on the fault model used).

III. EFFICIENT DETECTION CONSTRUCTION

In this section, using the derived formulations for the signa-
tures in this paper, we present the error detection constructions
and based on four different considerations, namely; complex-
ity (area/delay and, thus, the respective power/energy), error
coverage, false alarms, and real attacker resiliency. We then
choose an efficient construction from the pool of designs in
Figs. 1–3. Error simulations and ASIC implementations are
presented for these constructions in the next section.

A. Three Choices to Consider

Based on the derived signatures, we examine three choices
for fault diagnosis as shown in Figs. 1–3. The proposed

schemes are not confined to specific number of blocks
(although three of such choices are shown in Figs. 1–3). We
also remark that for different reliability requirements and over-
head tolerance, one can fine-tune such choices. There are two
reasons for choosing these three constructions as examples
for presenting the proposed error detection schemes. First, the
choices are made to preserve the inner operations in com-
posite field and having them intact, allowing them to be
implemented through different inner-structures. Second, not-
ing that different usage models and contexts constrain the
error detection architectures in terms of the required error
coverage and overhead tolerance, we have made sure that
these examples cover three cases to have such respective com-
promise. In addition to these three examples, we have also
simulated for assessing the error coverage and implemented
on ASIC another case study (with four blocks by modifying
Block 1 in Fig. 3 to two blocks, one being the transforma-
tion matrix). As it is shown in our simulations and through
our implementations, the error coverages of Figs. 1 and 2
and the four-block construction are higher, in the order speci-
fied, compared to the construction in Fig. 3. The false alarms,
although negligible, decrease in the same order. However,
the overhead and performance degradation of the construc-
tion in Fig. 3 are the lowest. Finally, we note that having
many blocks increases the error detection overhead unreason-
ably and, thus, might not be preferred. On the other hand,
having only one block would result in low error coverage,
and, in addition, it is interesting that the resulting formula-
tions for signatures would be costly causing high overhead
which is not preferred. Thus, the eventual choice is dependent
on the reliability requirements and overhead tolerance of the
architectures.

As observed in Fig. 1, in the first choice, seven sub-blocks
(blocks 1–7) are used for error detection whose predicted sig-
natures are based on the formulations in the preceding section.
Let us choose the parity for finding an error detection construc-
tion, noting that this does not confine us to this signature only.

700 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 3, MARCH 2018

Fig. 3. Third proposed choice in error detection of the inversion in GF((24)2).

In Fig. 1, the predicted signatures (parities for example) are
shown as Sig. 1–7.

The derivation of the multiplicative inversion is performed
as follows.

1) The 8-bit input a is divided into lower and higher
halves (4-bit l and h, respectively) and as entries to H
and L units (which derive the 6-bit outputs by having
Hi,j = hi + hj, Li,j = li + lj(1 ≤ i < j ≤ 4)). Similar
definition is used for the unit F. Stage 1 performs the
16th and 17th powers of input, where input a is given
by normal basis, and outputs a16 and a17 are given by
redundantly represented basis and polynomial ring rep-
resentation, respectively. For α as the root of a second
degree irreducible polynomial over GF(24), with respec-
tive irreducible polynomials, we get the 16th and 17th
powers of input (a16 = lα16+hα, a17 = hlμ2+(h+l)2υ).
Stage 1 performs φ′hl + φ′′(h + l)2, where the linear
matrices used, φ′ and φ′′, are explained in Theorem 4.

2) The transformation matrices, as well as the “free” nor-
mal basis to redundant basis conversion (because the
normal basis can be considered as the reduced version
of redundantly represented basis with the same root of
the fourth degree all-one polynomial), are also shown in
Fig. 1. Stage 2 performs the subfield inversion (inputs
and outputs are in redundant basis), where the input and
output are given by polynomial ring representation and
redundantly represented basis, respectively. More details
are presented in Theorem 3.

3) In Stage 3 (two subparts as seen in Fig. 1), two
multiplications in redundant basis (redundantly repre-
sented basis) are computed. More details are presented
in Theorem 1. Figs. 2 and 3 show the same structure
but with different number of check points, i.e., 5 and 3,
respectively.

A single gate, e.g., the XOR gate used for comparing the
predicted/actual signatures, can be separately hardened using
logical or circuit-level fault tolerance techniques. Finally, we
note that one can use a combination of the proposed methods
to achieve the intended error coverage, alleviate the complica-
tions, such as detecting the faults that occur right at the output
of blocks, and fine-tuning the false alarm ratios.

B. False Alarms

False-alarms could impact on the utilization of crypto-
graphic solutions. Specifically, if such alarms become repeti-
tive, they might hinder the normal operations of cryptographic
algorithms by inducing distrust in users who may eventually
abandon the particular security solutions. Constructions in

Figs. 1–3 have been simulated for errors (specifically for false
alarms). Although the number of such alarms is not high,
different constructions have different (and somewhat compa-
rable) characteristics. For example, our error simulations show
that Fig. 1 has the highest number of such alarms (0.05%)
and Fig. 3 has the lowest number (0.03%). Because we are
dealing with multiple signatures, such alarms are due to the
cases in which we detect faults in an inner sub-block which
will not be eventually translated into errors in the output.

C. Linear Transformations Within Ciphers

In this paper, we have focused on the 8-bit S-boxes which
are the only nonlinear transformations within the ciphers and
consume much of the area and constitute high power con-
sumption of the ciphers. Moreover, a major motivation has
been that the key schedule unit constitutes the S-boxes as the
main transformation. Nevertheless, we briefly present here the
error detection schemes of the linear transformations within
ciphers as well.

Focusing on the AES, three transformations other than
the S-boxes (also known as SubBytes) are: 1) ShiftRows;
2) MixColumns; and 3) AddRoundKey. The first one is just
rewiring in hardware, and the derivation of any signature
is straightforward. The second one is a linear transforma-
tion (multiplication with a constant matrix in finite field), for
which, based on the error detection requirements and over-
head tolerance, column signatures can be derived. Finally,
AddRoundKey is implemented through XOR gates; thus,
signature derivation is performed accordingly.

IV. ERROR SIMULATIONS AND ASIC SYNTHESIS

As seen in Figs. 1–3, one needs to derive the signatures
for the transformation and inverse transformation matrices
(corresponding to Sig. 1 and the signature of last block in
these figures, respectively). We combine the last block with
the affine transformation matrix of the AES to derive two
matrices [23] to apply error detection according to Theorem 5.

Theorem 5: The predicted parity and interleaved parity for
Block 1 (ˆPb1) and “combined” last block (lb) with affine trans-
formation (P̂lb) are derived as below, considering S as the
input to Block 1, A as the output of Block 1, A−1 as the
input to the last block, and O as the output of last block:
ˆPb1 = s1 + s2 + s3 + s4 + s5 + s6, ˆP1b1 = s1, ˆP2b1 =

s2 + s3 + s4 + s5 + s6, P̂lb = a−1
1 + a−1

2 , ˆP1lb = a−1
0 + a−1

1 +
a−1

2 + a−1
3 + a−1

6 + a−1
7 , ˆP2lb = a−1

0 + a−1
3 + a−1

6 + a−1
7 .

Proof: The transformation matrix (M1 below) is an 8 × 8
one, and the merged inverse and affine transformation (M2
below) is an 8 × 10 matrix (see Figs. 1–3), through which the
above is derived, noting that the least significant bit is on top
and also the input to Block 1 is in normal basis

M1 →

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 1 1 1 0 0
1 0 1 0 0 0 1 1
1 0 0 1 0 0 0 1
0 0 0 0 0 1 0 0
0 1 1 0 1 1 0 0
1 0 1 0 1 0 0 0
1 1 1 0 0 0 0 1
0 0 1 1 0 0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

MOZAFFARI KERMANI et al.: RELIABLE INVERSION IN GF(28) WITH REDUNDANT ARITHMETIC FOR SECURE ERROR DETECTION 701

Fig. 4. Error detection ratios for interleaved parity (gray) and parity (black)
for the proposed construction in Fig. 1 for up to 35 000 fault injections.

Fig. 5. Error detection ratios for interleaved parity (gray) and parity (black)
for the proposed construction in Fig. 2 for up to 35 000 fault injections.

M2 →

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 0 1 0 0 1 0
0 0 1 1 0 1 1 1 0 1
1 1 1 1 0 0 1 0 1 0
1 0 0 0 1 1 1 1 0 1
1 1 0 1 1 1 0 0 0 1
1 0 0 0 1 1 0 1 1 1
0 0 1 0 1 0 0 1 0 1
1 0 1 0 0 1 1 0 1 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The proposed error detection architectures (applied to the
AES) have been simulated after injecting faults. The proposed
architectures have the capability of detecting both permanent
and transient faults (this covers both natural and malicious
faults). The approach in the proposed fault diagnosis schemes
is designed to inject faults and then observe the error indica-
tion flags. For simulations, Verilog HDL is used. We consider
all sub-blocks of the original architecture to induce faults
by flipping one or more bits and then inspect the generated
outputs.

We consider a particular fault scenario and apply different
inputs to assert a subset of entries while injecting faults. We
then observe all detected errors for the inputs. The fault model
used to test the proposed architectures is created using external
feedback linear feedback shift registers to generate pseudo-
random fault vectors that can flip random bits in the output of
the gates and at random intervals. For the three architectures
presented in Figs. 1–3, we inject 35 000 faults and record the
number of errors as seen in Figs. 4–6. Moreover, in Fig. 7,
the false alarm ratios are presented. As seen in Figs. 4–6, the

Fig. 6. Error detection ratios for interleaved parity (gray) and parity (black)
for the proposed construction in Fig. 3 for up to 35 000 fault injections.

Fig. 7. False alarms ratios for the proposed three constructions for up to
35 000 fault injections.

error coverage in all the cases is more than 99% (for Fig. 1, we
slightly have higher coverage as seen in Fig. 4; nevertheless,
because we consider all the S-boxes in the SubBytes transfor-
mation, the detection ratios of the architectures presented are
close). We note that in these figures, error coverage ratios are
shown which is the number of detected faults over the total
injections. The difference between the error detection results
is, comparably, not high. In addition, the results of our sim-
ulations for 80 000 injected faults with the ratios of detected
faults obtained as 0.9998, 0.9989, and 0.9991 for Figs. 1–3,
respectively, have been obtained for parity as signature. These
show that the slight fluctuations in Figs. 4–6 do not follow
a trend. Finally, the false alarm ratios are typically low (see
Fig. 7); however, if that is the usage model concern, then the
architecture in Fig. 3 is preferable.

A. Proposed Approaches in Presence of Fault Attacks

We note that the fundamental difference between security
attacks and random faults is the intelligent-attacker assump-
tion. Injection of random faults mimics errors happening due
to natural causes. In contrast, the intelligent adversary run-
ning fault-based cryptanalysis will carefully determine the
fault (s)he is going to inject and perform injection right at the
calculated position and point of time. Consequently, we note
that just trying random faults will not be helpful in break-
ing most ciphers. As such, we emphasize that the signatures
we use for error simulations and implementations are general
and, for instance, for the case of parities, we detect all the
odd errors (and single errors). Ideally, single stuck-at faults

702 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 3, MARCH 2018

are better for real attackers to obtain side-channel informa-
tion. In reality, however, this might not happen due to lack
of technological advancements. Differential fault analysis uses
transient and mostly multiple bit and byte faults. In the case
of interleaved parities, we detect burst faults which are more
realistic to consider for the attackers. We note that a variant
of fault attacks, i.e., fault sensitivity analysis, can be thwarted,
for instance, through eliminating fault sensitivity based on a
delay insertion algorithm.

B. Differential Fault Intensity Analysis

A subset of fault attacks, differential fault intensity analy-
sis; see [26]–[28], combines differential power analysis with
fault injection principles to obtain biased fault models. The
advantage in such an approach is that the same fault in both
the original and redundant computations can be injected, but
not all faults occur with equal probability. In practice, the
attacker is interested in using as few faults as possible (prefer-
ably single faults with different intensities) to minimize the
effort. Previous work argue that the single-bit (more likely
in low fault intensity), two-bit, three-bit, and four-bit (more
likely in higher intensities) biased fault models can be used
to simulate variation of fault intensity. In addition, fault cate-
gories presented in [29] include: single bit upset (SBU), single
byte double bit upset, single byte triple bit upset (SBTBU),
single byte quadruple bit upset (SBQBU), other single byte
faults (OSB), and multiple byte faults (MB); the former four
corresponding to single/two/three/four-bit models.

C. Flexibility in Choosing the Signatures

Compared to the approaches based on using 1-bit parity
for the entire 16 S-boxes or those using 1-bit parities for
one S-box (information redundancy), the proposed work gives
flexibility to the designers in order to choose three instances
of dividing the architectures into blocks (Figs. 1–3) and also
have the flexibility of using single of interleaved parities. The
proposed approaches in this paper based on error detecting
codes are able to thwart a number of such fault models.
Specifically, SBUs and SBTBUs are detected fully through
the approaches based on error detecting codes and using pari-
ties. Moreover, through interleaved parities, in addition to burst
faults, a number of SBTBUs, SBQBUs, OSBs, and MBs are
detected. Error detecting codes and column signatures (pari-
ties) can also detect OSBs and MBs, based on our simulations.
The proposed methods, being for reliability, can deal with per-
manent and transient faults and compound the challenge of
launching fault analysis attacks. The signature-based diagno-
sis approach, which uses linear codes that can (always) detect
random errors of small multiplicity (and can never detect some
other errors), differs from an architecture based on robust
codes which can detect (with probability) any error. We also
note that plain time/hardware redundancy has the disadvan-
tage of high overhead; however, the potential remedy for time
redundancy, i.e., recomputing with encoded operands (hybrid
redundancy), while being expensive, is able to detect per-
manent and transient faults similar to the proposed approach
here.

D. Making the Attacks Difficult

We note that having the flexibility in choosing the signa-
tures for the three architectures in Figs. 1–3 is an advantage
for our schemes. It has been shown that it is practical to attack
parity-based schemes that use merely 1-bit parity for SubBytes
or even one S-box; however, the number of injections needed
would be high if composite fields are used (which allow incor-
porating the proposed work). Multibyte faults cannot be used
to realistically attack time redundancy countermeasure imple-
mentations, e.g., recomputing with permuted operands, and
single-byte fault models are the only viable option for the
attackers [29]. We remark that, however, unlike our proposed
schemes, recomputing with permuted operands could fail to
detect the occurrence of a fault as long as the adversary could
inject the same fault in both the original and redundant compu-
tations (biased fault model makes it easier). Such recomputing
with permuted operands can be used in conjunction with cod-
ing schemes to nullify the effect of the bias in the fault model
by fault space transformation (if two equivalent faults f0 and
f1 are injected in the output registers, we use a mapping that
transforms the fault space); thus thwarting both these attack
schemes. This is similar to the schemes used in [29], which
incurs additional overhead.

E. ASIC Implementations and Comparisons

Through ASIC and for the constructions in Figs. 1–3 and
the previous work using look-up table (LUT)-based and com-
posite field-based S-boxes, we also present the performance
and implementation metrics for the multiplicative inversion in
GF(28) utilizing different structures as well as normal basis
(nonredundant) and two redundant Galois field representations.
The benchmarking is performed for the error detection archi-
tectures using TSMC 65 nm library and Synopsys Design
Compiler (shown in Table I for area, frequency, power con-
sumption at the respective working frequencies, and efficiency
[throughput over gate equivalents (GE)]). There are two notes
to consider regarding the synthesis.

1) We synthesized the multiplicative inversion in GF(28)

which can be used for cryptographic algorithms, such
as the AES [2], Camellia [3], SMS4 [4], CLEFIA [5],
and the like.

2) We mainly compare signature-based approaches; nev-
ertheless, approaches based on recomputations, e.g.,
NREPO (normal basis recomputing with encoded
operands which has been proven to be resilient against
fault analysis attacks at the cost of higher overhead), can
be combined with the proposed architectures.

In Table I, the first two schemes are based on LUTs and
are expensive on ASIC and the overhead difference com-
pared to the other schemes is high. Moreover, the scheme
based on double-data-rate using both clock edges of regis-
ters is presented. This is achieved at the expense of suffering
from high throughput degradation. We note that in Table I,
in order to make the area results meaningful when switching
technologies, we have also provided the NAND-gate equiva-
lency (GE). This is performed using the area of a NAND gate
in the utilized TSMC 65-nm CMOS library which is 1.41 μm2.
As reported in the table, our proposed work outperforms other

MOZAFFARI KERMANI et al.: RELIABLE INVERSION IN GF(28) WITH REDUNDANT ARITHMETIC FOR SECURE ERROR DETECTION 703

TABLE I
OVERHEADS AND PERFORMANCE DEGRADATION COMPARISON FOR THE MULTIPLICATIVE INVERSION IN GF(28)

OF THE S-BOXES INCLUDING 7/5/3-BLOCK ERROR DETECTION (ED) IN FIGS. 1–3 ON 65-nm ASIC

approaches, in terms of performance and implementation met-
rics, making it suitable for efficient error detection of the
multiplicative inversion in GF(28). For the entire AES encryp-
tion (which includes 16 S-boxes in each of its ten rounds),
the ASIC synthesis GE area results for redundant basis (this
paper/Figs. 1–3) are 61 243 GE, 57 300 GE, and 56 008 GE,
respectively. One future research direction is to investigate
combined fault and power analysis attacks countermeasures for
the multiplicative inversion in GF(28) using redundant basis
(related prior work, for instance, [14], have not considered
such basis).

V. CONCLUSION

In this paper, signature-based error detection approaches
were presented for the multiplicative inversion in GF(28)

utilizing normal basis (nonredundant) and two redundant
Galois field representations, i.e., polynomial ring representa-
tion and redundantly represented basis through tower fields.
In our approaches, we considered both the reliability and
performance metrics objectives. Signature-based approaches
are used for such nonlinear blocks to achieve high efficiency,
while maintaining high error coverage. Our results demon-
strated that the proposed efficient error detection architectures
can be feasibly utilized, suitable for the required performance,
reliability, and implementation metrics for constrained appli-
cations. As observed in Figs. 4–6, the error coverage in all
the cases is more than 99%. Moreover, as reported in Table I,
better performance and implementation metrics were achieved
in the proposed work. This makes it suitable for efficient error
detection of the multiplicative inversion in GF(28).

REFERENCES

[1] M. Mozaffari Kermani, M. Zhang, A. Raghunathan, and N. K. Jha,
“Emerging frontiers in embedded security,” in Proc. Conf. VLSI Design,
Pune, India, Jan. 2013, pp. 203–208.

[2] Specification of the Advanced Encryption Standard. Accessed on
Jul. 2017. [Online]. Available: http://csrc.nist.gov/publications/fips/
fips197/fips-197.pdf

[3] Specification of Camellia, a 128-bit Block Cipher. Accessed
on Jul. 2017. [Online]. Available: https://info.isl.ntt.co.jp/crypt/eng/
camellia/dl/01espec.pdf

[4] Specification of SMS4. Accessed on Jul. 2017. [Online]. Available:
http://eprint.iacr.org/2008/329.pdf

[5] Specification of CLEFIA. Accessed on Jul. 2017. [Online]. Available:
http://www.sony.net/Products/cryptography/clefia/index.html

[6] C. H. Yen and B. F. Wu, “Simple error detection methods for hard-
ware implementation of Advanced Encryption Standard,” IEEE Trans.
Comput., vol. 55, no. 6, pp. 720–731, Jun. 2006.

[7] G. Di Natale, M. Doulcier, M. L. Flottes, and B. Rouzeyre, “A reliable
architecture for parallel implementations of the Advanced Encryption
Standard,” J. Electron. Test. Theory Appl., vol. 25, no. 4, pp. 269–278,
Aug. 2009.

[8] M. Mozaffari-Kermani and A. Reyhani-Masoleh, “Concurrent structure-
independent fault detection schemes for the Advanced Encryption
Standard,” IEEE Trans. Comput., vol. 59, no. 5, pp. 608–622, May 2010.

[9] P. Maistri and R. Leveugle, “Double-data-rate computation as a counter-
measure against fault analysis,” IEEE Trans. Comput., vol. 57, no. 11,
pp. 1528–1539, Nov. 2008.

[10] X. Guo, D. Mukhopadhyay, C. Jin, and R. Karri, “Security analy-
sis of concurrent error detection against differential fault analysis,”
J. Cryptograph. Eng., vol. 5, no. 3, pp. 153–169, 2015.

[11] M. Yasin, B. Mazumdar, S. S. Ali, and O. Sinanoglu, “Security analysis
of logic encryption against the most effective side-channel attack: DPA,”
in Proc. Defect Fault Tolerance VLSI Syst., Amherst, MA, USA, 2015,
pp. 97–102.

[12] M. Mozaffari-Kermani, R. Azarderakhsh, and A. Aghaie, “Reliable
and error detection architectures of Pomaranch for false-alarm-sensitive
cryptographic applications,” IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 23, no. 12, pp. 2804–2812, Dec. 2015.

[13] M. Karpovsky, K. J. Kulikowski, and A. Taubin, “Robust protec-
tion against fault-injection attacks on smart cards implementing the
Advanced Encryption Standard,” in Proc. Depend. Syst. Netw., 2004,
pp. 93–101.

[14] H. Pahlevanzadeh, J. Dofe, and Q. Yu, “Assessing CPA resistance of
AES with different fault tolerance mechanisms,” in Proc. Asia South
Pac. Design Autom. Conf. (ASP DAC), 2016, pp. 661–666.

[15] T. Schneider, A. Moradi, and T. Güneysu, “ParTI—Towards com-
bined hardware countermeasures against side-channel and fault-injection
attacks,” in Proc. CRYPTO, 2016, pp. 302–332.

[16] X. Guo and R. Karri, “Recomputing with permuted operands: A con-
current error detection approach,” IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 32, no. 10, pp. 1595–1608, Oct. 2013.

[17] R. Karri, K. Wu, P. Mishra, and K. Yongkook, “Fault-based side-channel
cryptanalysis tolerant Rijndael symmetric block cipher architecture,” in
Proc. DFT, 2001, pp. 418–426.

[18] X. Guo, D. Mukhopadhyay, C. Jin, and R. Karri, “NREPO: Normal
basis recomputing with permuted operands,” in Proc. HOST, Arlington,
VA, USA, 2014, pp. 118–123.

[19] K. Wu, R. Karri, G. Kuznetsov, and M. Goessel, “Low cost concurrent
error detection for the Advanced Encryption Standard,” in Proc. Test
Conf., Charlotte, NC, USA, 2004, pp. 1242–1248.

[20] A. Satoh, S. Morioka, K. Takano, and S. Munetoh, “A compact Rijndael
hardware architecture with S-box optimization,” in Proc. ASIACRYPT,
2001, pp. 239–254.

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
https://info.isl.ntt.co.jp/crypt/eng/camellia/dl/01espec.pdf
https://info.isl.ntt.co.jp/crypt/eng/camellia/dl/01espec.pdf
http://eprint.iacr.org/2008/329.pdf
http://www.sony.net/Products/cryptography/clefia/index.html

704 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 3, MARCH 2018

[21] D. Canright, “A very compact S-box for AES,” in Proc. CHES, 2005,
pp. 441–455.

[22] Y. Nogami, K. Nekado, T. Toyota, N. Hongo, and Y. Morikawa, “Mixed
bases for efficient inversion in F((22)2)2 and conversion matrices of
SubBytes of AES,” in Proc. CHES, 2010, pp. 234–247.

[23] R. Ueno, N. Homma, Y. Sugawara, Y. Nogami, and T. Aoki, “Highly
efficient GF(28) inversion circuit based on redundant GF arithmetic and
its application to AES design,” in Proc. Cryptograph. Hardw. Embedded
Syst., 2015, pp. 63–80.

[24] G. Canivet et al., “Glitch and laser fault attacks onto a secure AES
implementation on a SRAM-based FPGA,” J. Cryptol., vol. 24, no. 2,
pp. 247–268, 2011.

[25] T. Itoh and S. Tsujii, “A fast algorithm for computing multiplicative
inverses in GF(2m) using normal bases,” Inf. Comput., vol. 78, no. 3,
pp. 171–177, 1988.

[26] N. F. Ghalaty, B. Yuce, and P. Schaumont, “Analyzing the efficiency
of biased-fault based attacks,” Embedded Syst. Lett., vol. 8, no. 2,
pp. 33–36, Jun. 2016.

[27] N. F. Ghalaty, B. Yuce, M. M. I. Taha, and P. Schaumont, “Differential
fault intensity analysis,” in Proc. FDTC, 2014, pp. 49–58.

[28] S. Patranabis, A. Chakraborty, P. H. Nguyen, and D. Mukhopadhyay,
“A biased fault attack on the time redundancy countermeasure for AES,”
in Proc. COSADE, 2015, pp. 189–203.

[29] S. Patranabis, A. Chakraborty, D. Mukhopadhyay, and P. Ha Nguyen.
(2015). Using State Space Encoding to Counter Biased Fault Attacks
on AES Countermeasures. [Online]. Available: https://eprint.iacr.org/
2015/806.pdf

Mehran Mozaffari Kermani (S’00–M’11–SM’16)
received the B.Sc. degree from the University
of Tehran, Tehran, Iran, and the M.E.Sc. and
Ph.D. degrees from the University of Western
Ontario, London, ON, Canada, in 2007 and 2011,
respectively.

He joined the Advanced Micro Devices,
Markham, ON, Canada, as a Senior ASIC/Layout
Designer, integrating sophisticated secu-
rity/cryptographic capabilities into accelerated
processing. In 2012, he joined the Electrical

Engineering Department, Princeton University, Princeton, NJ, USA, as an
NSERC Post-Doctoral Research Fellow. From 2013 to 2017, he was an
Assistant Professor with the Rochester Institute of Technology, Rochester,
NY, USA. In 2017, he has joined the Computer Science and Engineering
Department, University of South Florida, Tampa, FL, USA.

Dr. Mozaffari Kermani was a recipient of the prestigious Natural Sciences
and Engineering Research Council of Canada Post-Doctoral Research
Fellowship in 2011 and the Texas Instruments Faculty Award (Douglas
Harvey) in 2014. He is currently serving as an Associate Editor for the
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI)
SYSTEMS, the ACM Transactions on Embedded Computing Systems, the
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I. He has been the
Guest Editor for the IEEE TRANSACTIONS ON DEPENDABLE AND SECURE

COMPUTING, the IEEE/ACM TRANSACTIONS ON COMPUTATIONAL

BIOLOGY AND BIOINFORMATICS, and the IEEE TRANSACTIONS ON

EMERGING TOPICS IN COMPUTING for special issues on security. He
has been the TPC member for a number of conferences including HOST
(Publications Chair), Design Automation Conference, Design Automation
and Test in Europe Conference, RFIDSec, LightSec, International Workshop
on the Arithmetic of Finite Fields, Fault Diagnosis and Tolerance in
Cryptography Workshop, and International Symposium on Defect and Fault
Tolerance in VLSI and Nanotechnology Systems.

Amir Jalali received the B.Sc. degree in computer
engineering from Shahid Beheshti University,
Tehran, Iran, in 2009 and the M.Sc. degree in
computer engineering from the Department of
Computer Engineering and Information Technology,
Amirkabir University of Technology, Tehran, in
2012. He is currently pursuing the Ph.D. degree
in computer engineering with the Department of
Computer, Electrical Engineering and Computer
Science, Florida Atlantic University, Boca Raton,
FL, USA.

He is an I-SENSE Researcher with Florida Atlantic University. His current
research interests include efficient software implementation of elliptic curve
cryptography and post-quantum cryptography.

Reza Azarderakhsh (M’12) received the B.Sc.
degree in electrical and electronic engineering and
the M.Sc. degree in computer engineering from
the Sharif University of Technology, Tehran, Iran,
in 2002 and 2005, respectively, and the Ph.D.
degree in electrical and computer engineering from
the University of Western Ontario, London, ON,
Canada, in 2011.

He joined the Department of Electrical and
Computer Engineering, University of Western
Ontario, as a Limited Duties Instructor, in 2011,

where he has been an Natural Sciences and Engineering Research
Council (NSERC) Post-Doctoral Research Fellow with the Center for
Applied Cryptographic Research and the Department of Combinatorics
and Optimization. He is currently with the Department of Computer and
Electrical Engineering and Computer Science and is an I-SENSE Fellow,
Florida Atlantic University, Boca Raton, FL, USA. His current research
interests include finite field and its application, elliptic curve cryptography,
and pairing-based cryptography.

Dr. Azarderakhsh was a recipient of the prestigious NSERC of Canada Post-
Doctoral Research Fellowship in 2012. He is currently serving as an Associate
Editor for the IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I. He
was the Guest Editor for the IEEE TRANSACTIONS ON DEPENDABLE AND

SECURE COMPUTING for the special issue of Emerging Embedded and
Cyber Physical System Security Challenges and Innovations, from 2016 to
2017. He was also the Guest Editor for the IEEE TRANSACTIONS ON

COMPUTATIONAL BIOLOGY AND BIOINFORMATICS for the special issue
of Emerging Security Trends for Biomedical Computations, Devices, and
Infrastructures, from 2015 to 2016.

Jiafeng Xie (M’15) received the B.E. degree in mea-
surement and control technology and instrumenta-
tion from Yanshan University, Qinhuangdao, China,
in 2006, the M.E. degree in control science and engi-
neering from Central South University, Changsha,
China, in 2010, and the Ph.D. degree in electri-
cal engineering from the University of Pittsburgh,
Pittsburgh, PA, USA, in 2014.

He is currently an Assistant Professor with
Department of Electrical Engineering, Wright State
University, Dayton, OH, USA. His current research

interests include very large scale integration (VLSI) cryptographic circuits
design, intelligent system fault detection, hardware security, VLSI, and
signal/image processing systems.

Kim-Kwang Raymond Choo (SM’15) received
the Ph.D. degree in information security from the
Queensland University of Technology, Brisbane,
QLD, Australia, in 2006.

He holds the Cloud Technology Endowed
Professorship with the University of Texas at
San Antonio, San Antonio, TX, USA. He is an
Associate Professor with the University of South
Australia, Adelaide, SA, Australia, and a Guest
Professor with the China University of Geosciences,
Wuhan, China.

Dr. Choo was a recipient of various awards, including the ESORICS
2015 Best Paper Award, the Winning Team of the Germany’s University of
Erlangen-Nuremberg (FAU) Digital Forensics Research Challenge in 2015,
the 2014 Highly Commended Award by the Australia New Zealand Policing
Advisory Agency, the Fulbright Scholarship in 2009, the 2008 Australia Day
Achievement Medallion, and the British Computer Society’s Wilkes Award in
2008. He is a fellow of the Australian Computer Society.

https://eprint.iacr.org/2015/806.pdf
https://eprint.iacr.org/2015/806.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfChancery-MediumItalic
 /ZapfDingBats
 /ZapfDingbatsITCbyBT-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

