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Abstract—Cryptographic  architectures provide different
security properties to sensitive usage models. However, unless
reliability of architectures is guaranteed, such security properties
can be undermined through natural or malicious faults. In
this paper, two underlying block ciphers which can be used in
authenticated encryption algorithms are considered, i.e., light
encryption device and high security and lightweight block
ciphers. The former is of the Advanced Encryption Standard
type and has been considered area-efficient, while the latter
constitutes a Feistel network structure and is suitable for
low-complexity and low-power embedded security applications.
In this paper, we propose efficient error detection architectures
including variants of recomputing with encoded operands and
signature-based schemes to detect both transient and permanent
faults. Authenticated encryption is applied in cryptography to
provide confidentiality, integrity, and authenticity simultaneously
to the message sent in a communication channel. In this paper,
we show that the proposed schemes are applicable to the case
study of simple lightweight CFB for providing authenticated
encryption with associated data. The error simulations are
performed using Xilinx Integrated Synthesis Environment tool
and the results are benchmarked for the Xilinx FPGA family
Virtex-7 to assess the reliability capability and efficiency of the
proposed architectures.

Index Terms—Authenticated encryption, high security and
lightweight (HIGHT), light encryption device (LED), reliability.

I. INTRODUCTION

O PROVIDE different security properties efficiently,
lightweight cryptographic implementations on different
hardware platforms have been emerged due to the advance-
ment of constrained devices. These nodes require low-
complexity implementations over small chip area and consume
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low amount of energy. Nevertheless, the Advanced Encryption
Standard (AES), the current symmetric-key cryptography stan-
dard, may not achieve such tight necessities in terms of
performance and implementation metrics. Thus, lightweight
security mechanisms through low-complexity implementations
of cryptographic algorithms are needed. We note that there
have been constant, prominent efforts to realize the AES
lightweight, an example for which is a 128-bit AES that
was developed over an area of 2400 gate equivalent [1]. It
is noted that the AES architecture in [1] has been toward
considerable area reductions; nonetheless, it is still consid-
ered a burden for resource-constrained applications, such
as radio-frequency identification tags, nano-sensor nodes,
and applications such as implantable and wearable medi-
cal devices. Furthermore, the inability of the AES to adapt
to the varying level of security needed by different devices
might be inefficient in case lower number of bits need to be
protected.

In recent years and based on the above motivation,
a number of lightweight block ciphers have been pro-
posed, e.g., KATAN and KTANTAN [2], PICCOLO [3], and
PRESENT [4], SEA [5], light encryption device (LED) [6],
Simon and Speck [7]-[10], Midori [11], high security and
lightweight (HIGHT) [12], etc. Based on such ciphers, an
open competition for a new authenticated encryption algo-
rithm [13] has been initiated and will identify a portfolio of
authenticated ciphers that offer advantages over AES-Galois
counter mode and are suitable for widespread adoption. These
algorithms, e.g., simple lightweight CFB (SILC) [14] that
employs authenticated encryption with associated data, use
encryption/decryption blocks as underlying structures in which
the aforementioned block ciphers can be used. Authenticated
encryption provides authenticity and privacy to the data by first
converting the plaintext to ciphertext and an authentication tag,
message authentication code (MAC).

It is imperative to note that although cryptographic algo-
rithms, e.g., authenticated encryption which preserves authen-
ticity and confidentiality of the message sent by the sender,
provide different security mechanisms, natural and malicious
faults can undermine such purpose. Let us go over different
fault models we have considered in this paper. We consider
both single and multiple stuck-at faults because both are rel-
evant with respect to intentional and natural faults, i.e., fault
attackers prefer to ideally be able to inject single faults but,
in reality, due to lack of technological advancements, multiple
faults might occur, whose protection mechanisms are required.
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Moreover, natural faults can be of single nature, e.g., single
event upsets or multiple defects. Furthermore, we consider
both transient and permanent faults. The attackers typically
inject transient faults to gain as much information as they
desire without breaking the cryptosystems; however, natural
defects could be of permanent nature; thus, we consider them
as well.

Various types of fault injection mechanisms, such as temper-
ature attacks, optical attacks, electromagnetic fault injection,
and the respective countermeasures to such attacks are pre-
sented to date. Concurrent error detection (CED) techniques
have been widely used to architect reliable hardware for the
cryptographic algorithms [15]-[23] (including a number of
schemes, e.g., hardware/information/time/hybrid redundancy).
Hardware redundancy makes use of extra hardware to process
the same input twice to match the two outputs. Information
redundancy schemes have a number of variants, e.g., robust
codes [24]. Time redundancy technique has a number of
schemes, e.g., recomputing with shifted operands [25], [26],
recomputing with rotated operands (RERO) [27], and recom-
puting with permuted operands [28]. The hybrid redundancy
scheme is given in [29]-[31], where different improvements
in the architecture have been proposed.

In this paper, we consider two block ciphers which can be
used as part of SILC, i.e., LED [6], an AES-based block cipher
and HIGHT [12]. LED has 64-bit block length and uses 64-bit
key length and reuses the S-box of PRESENT block cipher [4].
HIGHT is of generalized Feistel type network and has 64-bit
block length and 128-bit key length. HIGHT is suitable for
embedded CPUs that are used in the nano-sensor network
systems.

In this paper, we propose error detection approaches for
block ciphers LED and HIGHT, considering the reliability and
performance metrics objectives. Signature-based approaches
are used in conjunction with the proposed error detection
schemes based on recomputing with encoded operands to
achieve high efficiency, while maintaining high error cover-
age. The organization of this paper is as follows. In Section II,
preliminaries are provided. Section III presents our proposed
error detection scheme. In Section IV, through fault-injection
simulations, we evaluate the error coverage capabilities of the
proposed scheme. Moreover, in this section, we benchmark the
overheads of the proposed scheme on Xilinx FPGA families.
Finally, conclusions are made in Section V.

II. PRELIMINARIES

In this section, we briefly explain the block ciphers LED and
HIGHT. Then, in the next section, the proposed error detection
approaches are presented.

A. LED Block Cipher

LED is a 64-bit block cipher. It is of the AES type and is
a substitution permutation network (SPN). LED has a nonce
length Iy of 8 bytes and tag length t. It reuses S-box of
PRESENT block cipher and has a 64-bit key (LED block
cipher can be used as one of the underlying block ciphers
Ex for SILC, as a usage model). The input plaintext which
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is of 64-bit length is arranged in a 4 x 4 array matrix called
cipher state matrix. The cipher state matrix of the LED block
cipher along with the key matrix are governed by an irre-
ducible polynomial in GF(2*). The implemented LED block
cipher uses a 64-bit key. Both the cipher state matrix and the
key are arranged in 4 x4 matrix in the form of 16 four-bit nib-
bles. Each entity in the cipher state matrix and the key matrix
is of 4-bit length.

The first operation is the addition of round key denoted
by addRoundKey(state, K;). This operation is performed on
cipher state matrix and key matrix K;. LED block cipher has
a second operation called step function, that is responsible for
providing enhanced security. This operation comprises of four
iterative rounds for encryption in a sequential manner. In LED,
each round consists of sequential set of four operations. For
the 64-bit key array matrix, addRoundKey and step operations
are repeated for eight times. The LED cipher has 32 rounds of
iteration for encrypting the plaintext. The sequence of opera-
tions that are carried out on the output of the first step are
AddConstants, SubCells, ShiftRow, and MixColumnsSerial,
more details are presented in the next section.

B. HIGHT Block Cipher

HIGHT is a 64-bit block cipher with 128-bit key length
proposed. HIGHT is a variant of Feistel network and it has
32 iterative rounds to complete the encryption process. It has
64-bit plaintext and 128-bit master key as its inputs and a
64-bit ciphertext as its output. It has been claimed that the
hardware implementation of HIGHT is more efficient than the
AES by justifying that, it had consumed 3048 gates in 0.25 um
technology.

The plaintext input is represented by P = P7||...P1]||Po,
where Py ... Py are each of eight bits length, and ’||" denotes
concatenation operation and the plaintext P is of 64 bits length.
For each round i = 0, ..., 32, the 64-bit intermediate val-
ues are represented by X; = X;7l|...Xi1||Xi0. The 64-bit
ciphertext output is represented as C = C7||...||C1]|Cp and
the master key which is of 128 bits length is denoted as
MK = MKjs]|...|IMKp, more details are presented in the
next section when we go over the proposed error detection
schemes.

III. PROPOSED ERROR DETECTION APPROACHES

In this section, the error detection schemes used for detect-
ing the transient and permanent faults in the LED and HIGHT
block ciphers are presented.

A. Motivations

In what follows, we present the motivations in present-
ing the approaches for error detection of LED and HIGHT
block ciphers. Then, in the next sections, the proposed
methods are presented. The CED techniques have been
widely used to architect reliable hardware for the cryp-
tographic algorithms [15]-[23] (including, diverse schemes,
e.g., hardware/information/time/hybrid redundancy). Let us
review and analyze the existing fault diagnosis schemes here.
The use of variants of parity for error detection is effective;
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nevertheless, one needs to utilize/tailor such approaches so that
they are flexibly used, depending on the error detection capa-
bility requirements and overhead tolerance (we have proposed
such flexibility when applicable in this paper). Nonuniform
error detection due to using parity can be alleviated using
robust codes at the expense of relatively higher overhead. If
the high area/power overhead is the burden to the usage model,
one can alleviate that through the time redundancy approaches,
deteriorating the performance metrics. We have considered in
this paper variants of time redundancy mechanisms which can
detect both permanent and transient faults.

The high overhead of hardware redundancy (area/delay
overhead of duplication is roughly 100%), the high delay
overhead and inability to detect permanent faults of conven-
tional time redundancy (which is usually the case for hardware
failures), the need for flexibility in terms of overhead and reli-
ability compromise for information redundancy, and the need
for appropriate choice for the specific techniques within hybrid
redundancy pool have been motivations for the proposed work.

This is the first work presenting efficient error detection
approaches for LED and HIGHT. We have closely considered
two main criteria in choosing such approaches.

1) Applicability of the approaches to the specific algo-
rithms needs to be considered closely; for instance, while
the FPGA realization of the S-boxes through look-up
tables is efficient (which also affects the error detection,
as presented in this paper for LED), one may choose
to realize them on ASIC through logic-gate approaches
(which needs realization of signatures as logic gates
instead of storing them in memories).

2) The level of granularity of the check points can be
dynamically chosen, which is dependent on the over-
head tolerance and the reliability requirements for such
ciphers.

In proposing the error detection techniques here, we have con-
sidered both of these. The merit of the proposed approaches
is as follows.

1) The proposed algorithms are oblivious of the implemen-
tation platform (unlike some previous works which use
specific resources of platforms).

2) They can be tailored based on the reliability/overhead
compromise, e.g., the scheme for MixColumnsSerial
of LED.

3) They are flexible in terms of overhead of metrics,
and the reliability goals (alternate approaches are pro-
posed to ensure such requirements are achieved, e.g., the
recomputing with encoded operands scheme of HIGHT).

B. Error Detection for LED Block Cipher

The overall flow and the top view of the error detection
for the LED block cipher is presented here, followed by the
details on the approaches. We have chosen using signature-
based schemes for LED, especially because of the structures
of SubCells and MixColumnSerial, for which signature-based
schemes provide not only flexibility in error detection but also
achieve high error coverage. The overall error detection archi-
tecture is composed of the predicted/actual signatures and their
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comparisons to derive the error indication flags (the derived
predicted signatures of these four operations are compared
with the actual ones to get the error indication flags).

1) AddConstants and ShiftRow: In AddConstants opera-
tion, the round constant matrix is given by the round constant
matrix of

0 (res||regllres) 0 0
1 (rceallrey|freo) 0 O
2 (rcsl|reallres) O O
3 (rep||req|lreg) O O

The round constants are given by six round-specific bits,
i.e., rco, rcq, rcp, rc3, req, and rcs. For each round, the value
of round constants are made zero and the values of the six
bits are updated before the AddConstants function. This round
constant matrix is bit-wise XORed with the output of the srate
matrix from the addRoundKey operation and the value of the
state matrix is updated.

The second column of the round constant matrix depends
on the round in which the matrix is used. For instance, in
Round 1, the value of the round constants are rcs = O,
rcy = 0,rc3 = 0,rcy = 0, and rco = 1. For the proposed
signature-based approach, we can derive the predicted sig-
natures of such a matrix, e.g., the predicted parity of the
last two columns are zero and the one for the second col-
umn is also zero. The reason for such derivation is that
(res||req]|res) @ (reallrey [[reo) @ (res||reallres) @ (rez||req |[reo)
leads to always zero value verifying that the predicted parity
is zero. For the first column, modulo-2 adding of the ele-
ments to derive the predicted parities also results in zero. Thus,
the predicted parity vector for the round constant matrix is
pP= [0, 0, 0, 0] (we use hat notations for predicted signatures).
Thus, we can conclude that the derivation of the predicted
parity is free in hardware for the AddConstants step.

a) Interleaved parity for burst faults: One can also derive
the interleaved parities of the AddConstants step to account for
burst faults. Burst faults are adjacent faults that can affect the
output in case of both malicious and natural faults. Let us
denote on the round constant matrix the rows through which
we derive two interleaved parities, i.e., even/odd rows as

0 (rcs|lreglires) O O
1 (rcpreq|lrcg) 0 0
2 (rcs||req|lres) O O
3 (rca|lreqllrcg) O O

By modulo-2 adding such rows, we derive the interleaved par-
ity vectors as [;1 = 152 = [2,0,0,0]. The reason for such
derivation is that for the last three columns, the values are
canceled once modulo-2 added and for the first column we
have {0}16 + {2}16 = {1}16 + {3}16.

The ShiftRow operation shifts the rows of the resulting state
matrix from the SubCells operation with respect to its row
number. If the operation is performed on the first row, then the
first row is shifted to the left by 1 position and likewise for the
second row, the contents of the stafe matrix are shifted by two
positions. For the ShiftRow step, derivation of the predicted
signatures is straightforward, e.g., parity prediction is free in
hardware as rewiring does not change the predictions.
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TABLE I
(INTERLEAVED) PREDICTED PARITY OF THE S-BOX FOR THE LED BLOCK CIPHER
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Pgie) (Unr) | (D | (00) | A | O | A1) | (00) | (00) | (10) | (A1) | O1) | (00) | (10) | (O1) | (10) | (O1) | (10)
2) SubCells: The SubCells operation updates the value of AddConstants SubCells shiftRow MixColumnsseria
the state matrix by replacing the contents of the state matrix, avay “HHHE
according to the S-Box. For detecting the errors in S-Box, oK Eg 2 g §§§§
we devise a signature-based scheme illustrated through two NENP; 4 bits HHEE
case studies, i.e., parity prediction and interleaved (Int.) parity <}:(> Nm;’rﬁl":d)
.. : . N for cdl No cost for col Through th
g.rtedlcftlt(;ln zsbshown ;?O"ll;ab;e( L dhl: thtlli method% .thte ;)utpu(; °°;;‘na‘;zfss“m" appended €% T ved somatures
its of the S-box are ed (and for the case of interleave
parity, odd and even bits are modulo-2 added separately) and  Fig. 1. Proposed fault diagnosis scheme for the LED block cipher.

the output of the S-box is appended by one bit (two bits for the
interleaved case). For example, if the output is {C};¢ which
is {1100}, that means the predicted parity of is O and the
interleaved parity pair is 11 (see Table I).

3) MixColumnsSerial: MixColumnsSerial uses a hardware-
friendly matrix known as MDS, that is given by (this matrix
has been changed from the original construction in [32])

M =

oo —
O N
>V EN=N¥c Nl S}

4
8
B
2

The updated state matrix from the previous operation is
multiplied with the M matrix and the resulting sfate matrix
is updated column-wise.

For presenting our signature-based scheme, let us denote
the input and output state matrices as

ap ay az daz ro rnorn
as as dag a r4 rs rg r
A= 4 5 6 7 R= 4 5 6 7
ag ag dgq dp rg rg rq 1p
ac aq a. ar fe Td Te If

Each entity in the input and output state matrices is a four-
bit nibble. In the MixColumnsSerial step, each column of the
output matrix R is the product of the matrix M and the state
matrix A. As a case study, to compute ro, the first element of
the resultant matrix R, denoting the bits of the elements of A as
a;j for ith bit jth element, we have (using the irreducible poly-
nomial utilized for reductions, and not presenting the details
for the sake of brevity): ro = 4.ap + as + 2.ag + 2.a,
lage + asg + ara + azol +x%.[a1o + aso + ax + azs + azc] +
x.[arotazo+aszst+aig+asg+aictasel+1.[ax+ass+ar+asl.

One can derive the formulas for the column signatures of the
MixColumnsSerial by modulo-2 adding those for each column,
e.g., the first column for ry, r4, rg, and r., whose details are not
presented for the sake of brevity. Adding modulo-2 the first
column of matrix M, one can derive the following signature:
ro@®ra@®rs®r. = (4B8®BD2).ap+ (1 DO6BED2).as+ (2D
S®ADF).ag+2LP6DIPB).a. = S5.ap+B.as+2.a3+6.a..

This can be generalized to other columns and thus we have
the followings for the second to fourth columns: r| ®rs B ro D
rqg = S5.a1 + B.as +2.a9 + 6.a4, 1, Dre ®r, ®Dr. = S.ar +
B.ag+2.a,+6.a,, 3®r1®1p @17 = S.az+B.a7+2.ap+6.ay.

As seen in Fig. 1, we have denoted the four operations
in LED by the fault diagnosis mechanisms for different
sub-blocks. As seen in this figure, the AddConstants parity
derivation is cost-free in hardware and that of ShiftRow fol-
lows the same details. One can use the derivations for SubCells
operations in Table I as well as those for MixColumnsSerial.
The overall error detection architecture is composed of the
predicted and actual signatures and their comparisons to derive
the error indication flags. In more details, the derived predicted
signatures of these four operations are compared (XORed)
with the corresponding, actual ones to get the error indication
flags (which can be ORed to derive one flag).

To have a compromise between the reliability objectives
and the error detection capability, for the transformations
AddConstants, ShiftRow, MixColumnsSerial, and SubCells,
one can utilize different signatures, e.g., as seen in this section
and Table I, simple signatures (parities) can be utilized with
low overhead and limited error detection capability (to odd
number of faults). Instead, if reliability objectives are preva-
lent, interleaved parities can be utilized (to account for burst
faults) at the expense of higher overhead.

Let us use the example of AddConstants step to compare
different cases for such compromise. The predicted parity vec-
tor for the round constant matrix is P = [0, 0, 0, 0] whose
derivation is free in hardware. However, by modulo-2 adding
specific rows, e.g., even/odd rows in

0 (resl|regllres) 0 0O
1 (rcalfreqflrcg) 0 0
2 (res||regllres) 0 O
3 (rcal|reqlircg) 0 0
we derive the interleaved parity vectors as P, = P, =

[2, 0,0, 0]. Such a compromise gives the architects the ability
to select the error detection approaches based on the overhead
tolerance and reliability requirements.

C. Error Detection for HIGHT Block Cipher

In this section, we first present the error detection
schemes for the “initial/final transformations and round func-
tion” through two pair two rail checker (TPTRC). Then,
an alternate method based on recomputation is presented.
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The TPTRC scheme, inherently, is able to detect both tran-
sient and permanent faults. Transient single stuck-at faults are
among the ideal cases for fault attackers; however, in practice,
multiple (and adjacent) faults occur. These are detected using
the presented scheme and more details are presented in the
next section. The signature-based diagnosis approach, which
uses linear codes that can (always) detect random errors of
small multiplicity (and can never detect some other errors); is
diverse from an architecture based on robust codes which can
detect (with probability) any error. We also go over an alter-
nate approach based on recomputation with encoded operands
which has lower area complexity and power consumption, at
the expense of lower performance. The choice among these
two schemes depends on the overhead tolerance for specific
applications. The latter scheme, similar to the former one,
detects both transient and permanent faults. We note that per-
manent faults need to be detected as they might occur through
very large scale integration defects; however, the attackers are
not interested to mount the attacks through such damaging
faults.

1) Initial/Final Transformations and Round Function: The
64-bit plaintext is given as the input to the initial transfor-
mation function. It uses the plaintext and whitening keys
WK3, WKy, WK1, WKy as its input and generates the output
as intermediate values Xo = Xo,0, ..., Xo0,6, X0,7 for the first
round. The whitening keys WK3, WK,, WK, and WK are
fed by the key scheduling algorithm. The initial transforma-
tion algorithm consists of XOR operations denoted by & and
modular addition represented by H (note that for decryption,
this is replaced by subtraction H).

In the final transformation, the input is the output of the
last round X3, and the other inputs are the whitening keys
WK7, WKg, WK5, WK4. The output generated by this algo-
rithm is the ciphertext, given by C, that is of 64 bits length
and it is concatenated and represented as Cyl| ... Ce||C7.

The round function is an iterative process for the 32 rounds
and it plays a vital role in providing enhanced security. The
operations carried out in the round function are modular addi-
tion and XOR operation. The input of the round function is
the output of the previous round X; and the four SubKeys
SK4i+3, SKai+2, SK4i+1, SK4; generated per each round. The
round function algorithm generates the 64-bit output Xj;|
and uses the auxiliary functions Fy and F| to compute the
output X; = Xit+1.0ll-..Xi+1.6/1Xi+1,7 concatenation of eight
bytes each. The auxiliary functions use the operation x<<<!,
which is a representation of 1-bit left rotation of the 8-bit
value x. The output of the rotated value is bitwise XORed
or modulo-2 added depending on the input. The output of
the last round is fed to the input of the final transformation.
We note that Fo(x) = x<<<! @ x<<<2 @ x<<<7 and F; (x) =
x<<<3 @x<<<4 @X<<<6.

For modular addition operation, we choose self-checking
carry select adder because they are fast and have relatively
low complexity (for detecting both permanent and transient
stuck-at faults). Generally, it is well known that carry select
adders contain two ripple carry adders and multiplexers. In
addition to that hardware resource, as shown in Fig. 2, this
self-checking carry select adder uses XNOR gates and TPTRC
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Two Pair Two-Rail Checker

Two Pair Two-Rail Checker

Two Pair Two-Rail Checker

Two Pair Two-Rail Checker

D_, Error Indication Flag

Fig. 2. Error detection in HIGHT through self-checking carry select adder.

Fig. 3.

Error detection for the round function sub-block for HIGHT.

as an additional hardware resource to detect any single stuck
at fault [33]. As seen in Fig. 2, the size of the adder is arbitrary
up to n-bits. Here, for our addition operation, the operands are
of 64 bits size and, hence, we use 64-bit adder to perform the
operations. The adder consists of cascaded ripple carry adders
that can add up to two bits at a time and then the value of the
carry out is rippled through a multiplexer. This carry out acts
as the value of the actual carry-in to the next set of cascaded
ripple carry adders. The carry select adder precomputes the
values of the sum bits before knowing the value of the actual
carry-in. Once the value of the actual carry-in is known, the
appropriate sum bits and carry-out of the carry select adder is
given as the output by the carry select adder.

Self-checking multiplexers and TPTRC are used in the
proposed architectures. The TPTRC has two pairs of inputs
(x0, y0) and (x1, y1). In the fault-free condition, the input pairs
to the TPTRC are complementary to each other, i.e., xo =y
and x; = yj. If there is no fault, then the output pair of the
TPTRC are also complementary to each other, i.e., r = t6.
Finally, the output pair of TPTRC are given to the XNOR
gate and if there is a fault, the error indication flag is raised to
high. The valid input code words for the TPTRC are 10 and O1.
In case of a single stuck at fault in any one of the internal path
of the ripple carry adder, the input pairs to the TPTRC will
be 11 and 00. This will result in a nonvalid output and error
indication flag is raised. Such an adder can be used to detect
faults in the HIGHT block cipher.

A variant of n-bit model of the self-checking carry select
adder based on dual rail encoding has been proposed in [34].
This variant adder includes an additional circuitry of AND
gates in addition to the hardware used in Fig. 2. To compute
the sum bits for the n-bit adder in a dual rail form with valid
codewords (10 and 01), AND gates are used in Fig. 3. If Sy, is
the sum bit computed by the full adder for carry-in of “0” and
S1n is the sum bit computed by full adder for carry-in of “1,”
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Fig. 4. Error detection for the entire encryption of HIGHT block cipher.

then XNOR operation is performed between sum-bit S, and
all the lower sum-bits. The output of XNOR gate is fed to xo
in the TPTRC input pair (xg, yo), and yo is connected to Sy,,.
Similarly, the other input pair (x1, y;) to TPTRC is connected
in such a way that x| is connected from the output of XNOR
gate and Sp,—1. The sum bit Sp,—1 is computed by the full
adder for n — 1 inputs with a carry-in of 0. The sum bit Sy,
is connected to y; of TPTRC. The input pairs are in dual-rail
form, that is, the input pairs will be always complementary to
the TPTRC, i.e., xo = y;, and x1 = y].

Finally, as seen in Fig. 3, we have shown the fault diagno-
sis of the round function of HIGHT. As seen in this figure,
for the auxiliary functions Fy and F; within round function
to compute the output X; = X;t10l|...Xi+1,6/|Xi+1,7, we use
signature-based schemes to derive the error indication flags. In
more details, the derived predicted signatures of the operations
are compared (XORed) with the corresponding, actual ones to
get the error indication flags (which can be ORed to derive
one flag). Specifically, for the modular addition, the presented
TPTRC approach is utilized (see Fig. 3); furthermore, for
the auxiliary functions Fy and Fj, we use signature-based
schemes. Thus, for the modular addition operation, the pro-
posed scheme based on Fig. 2 is utilized. Finally, Fig. 4
presents the entire error detection approach for the encryption
of HIGHT.

2) Alternate Approach (Recomputing With Encoded
Operands): CED can be performed through recomputing
with encoded operands in such a way that the operations
are computed twice, one for the normal operands and one
for the encoded operands. If an n-bit operand is encoded,
e.g., rotated left or right by k bits during the recomputation
step, no bit is lost and the scheme utilizes the sizes of
adders, ALUs, and registers increased only by 1 bit. Such
an alternate approach, similar to the previous one, detects
both transient and permanent faults in the HIGHT block
cipher. Using such a recomputation, one can efficiently detect
k mod n consecutive logical errors and k mod((n + 1) — 1)
in arithmetic operations, where n is the length of arithmetic
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operations and k bits is the number of bits to be rotated. We
have employed such an approach for the HIGHT block cipher.
As the operations involved in the HIGHT block cipher are
addition mod GF (28) and XOR, such an alternate scheme is
efficiently applicable as shown through our error simulations
and FPGA implementations.

Let ¢ and ¢’ be the n-bit rotation and “back-rotation” func-
tions, respectively. Let 6 be the input to the arithmetic function
f, such that f(0) is the output of the arithmetic function.
The aim is to satisfy ¢'(f(¢(9)) = f(0). The operands in the
HIGHT block cipher are run twice. For the first run, the origi-
nal operands are passed and the result is computed and stored
in a register. For the second run, rotated operands (right or left
cyclic shift) are computed and the result is compared with the
first result that is stored in a register. If there is not a match,
then error is detected. For addition operations, to ensure the
correctness of the carry-in for k + 1th bit and carry out from
n — 1th bit, we add an extra bit to the most significant bit (*)
position using an n 4 1 adder. This bit is always set to 0 (or
stuck at zero). Thus, as a result of rotation, the logic n— 1th bit
does not interfere with the logic Oth bit in the rotated position
as well as in the normal position. During normal computation,
the most significant bit is 0; however, during the recomputa-
tion step, the most significant bit is the ith bit. Because the
most significant bit is always stuck at zero, during recompu-
tation, the carry-out from the ith bit is given to the carry-in
of the i + 1th bit. In normal computation, as the value of the
carry-out is always 0, it does not change the ith bit.

In what follows, we use the case study of SILC to show
how the proposed approaches can be utilized; nevertheless,
this does not confine the presented schemes. SILC has a fixed
block length n and uses a block cipher E such that kg x
{0, 1}* —{0, 1}"*. We note that HIGHT and LED can both be
used for such a construction. SILC comprises of two algo-
rithms for encryption (SILC-gx) and decryption (SILC-Dg).
The encryption SILC-gg algorithm consists of three subrou-
tines HASH, ENC, and PRF. The subroutines are called in a
sequential manner, i.e., the output of one subroutine is fed to
the input of the successive subroutine. The decryption com-
prises of the same subroutines as the encryption algorithm,
except that an additional comparison between the tag com-
puted in the decryption algorithm and encryption algorithm is
performed. The first step in the decryption algorithm is the
computation of V (which is the result of hashing the inputs
through the key). The next step is the computation of MAC
in the decryption algorithm 7*(which is the PRF, using the
key, of the hash result and the ciphertext). The third step is
the comparison of the tags, and if they do not match, the algo-
rithm returns the result 1, meaning that the authentication is
failed. The final step in the decryption algorithm is retrieving
the original plaintext M.

3) Key Schedule: The key schedule for HIGHT com-
prises of two algorithms: 1) whitening key generation and
2) SubKeys generation. The main idea behind the key sched-
ule algorithm is to preserve the master key. Whitening key
generation algorithm is a subroutine that generates the eight
whitening keys necessary for the initial/final transformations.
The SubKey generation subroutine generates 128 SubKeys and
supplies four SubKeys per each round. For Round 1, four
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SubKeys SK3, SK3, SKi, SK¢ and for round 32, the SubKeys
SKi27, SKi26, SK125, and SKjo4 are generated by this subrou-
tine. For SubKeys generation algorithm, the generation of 128
7-bit constants from g to §127 is done by the constant gener-
ation module. All the operations are carried out over GF(2%)
governed by the “connection” polynomial x” 4+ x> + 1. The
hardware used for the constant generation is a linear feedback
shift register (LFSR). The initial state of the 7-bit LFSR A’ is
fixed at (1011010),.

Fault diagnosis of whitening key generation is straightfor-
ward as it is rewiring in hardware, e.g., one can use signature-
based schemes to have low-complexity error detection. For
SubKeys generation and its internal constant generation mod-
ule, other that logic operations, modular addition is utilized
whose fault diagnosis has been discussed previously.

One can use the proposed algorithms in this paper to derive
the error indication flags of the underlying block ciphers in
SILC. Let us consider two scenarios: if the error indication
flags are raised, an incorrect ciphertext and tag is expected.
In this case, not only the derived tag in decryption would be
faulty, but a faulty ciphertext is transmitted to the receiver
side. However, the tags match as authentication is not com-
promised (same ciphertext is used to derive both tags). In the
second scenario, let the HASH or PRF functions are faulty,
in which case the tags at the receiver side do not match and
the algorithm returns the result L. In both cases, the error
indication flags correctly alarm an incorrect ciphertext.

The work in [35] and [36] presents differential fault anal-
ysis (DFA) attacks on HIGHT and LED. The authors used
data leaked through random byte model (covered in our sim-
ulations for HIGHT) or random bit (for LED) to deduce the
secret key (transient fault simulations are also presented in the
next section). For instance, the sketch for attacking HIGHT
includes three phases: 1) collection of right ciphertext and
faulty ciphertexts; 2) the computation of the candidates of
subkeys in select rounds and whitening key in the final trans-
formation; and 3) the recovery of the 128-bit secret key from
the candidates of subkeys and whitening key. If such attacks
are successful by bypassing, for instance, the RERO scheme,
we make a small architectural addition to our proposed scheme
in order to detect such type of DFA attacks. Since the fault
injections are made at the input of a round, we compare the
input subcipher in each round (starting from second round)
with that generated in previous round. Any discrepancies will
be indicated by the error indication flag. Should the attacker try
to inject faults in the subcipher in the previous round itself, the
previously proposed RERO scheme will detect such an attack.
Thus, the RERO and the suggested addition should be able
to protect the ciphers against permanent and transient faults
and make the DFA attacks more difficult; however, we do not
claim that it will be able to detect all types of DFA attacks,
for instance, [37], [38].

IV. ERROR SIMULATIONS AND
FPGA IMPLEMENTATIONS

In this section, we present the error simulations and FPGA
implementations for LED and HIGHT block ciphers to bench-
mark their effectiveness.
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To benchmark the effectiveness of the proposed schemes for
both ciphers, we utilize LFSRs to inject stuck-at faults. The
purpose of using LFSRs is to generate pseudo-random fault
patterns for every clock cycle. The outputs of the LFSRs are
XORed with a random bit and sent as the feedback to the
input. In this way, random single and multiple stuck-at faults
are injected in the design. We use the polynomial x0 + x3 + 1
for the implementation of the LFSRs. The LFSRs are used to
inject 10000 faults in LED block cipher and the fault cover-
age is found to be very close to 100% from the simulation
results (this is the case for both parity and interleaved par-
ity signatures for multiple errors; however, burst errors are
detected only by the proposed interleaved parities). In HIGHT
and for recomputing with encoded operands approach, we have
used the LFSRs with the same polynomials to inject the faults.
In the first run, the actual operands are sent for computation of
the output. In the second run, the operands that are rotated to
the right are used to compute the output. In the third run, the
output from the last round is rotated left and then compared
with the output from the first run. If they do not match, then
error indication flags are raised. The modular adders used in
the round function module are also injected with single and
multiple faults. By the use of LFSRs, around 10000 single
and multiple faults are injected in the HIGHT architecture,
where, the results from the simulations for the overall struc-
ture shows a very high fault coverage of close to 100% (again,
this is the case for multiple random faults, and depending on
specific fault models, we might get a bit of divergence in the
error detection capabilities).

The proposed methods, being for reliability, can deal with
permanent and transient faults. To make sure we cover a good
number of fault models, through injecting 10000 faults in the
architecture of HIGHT, we have also investigated transient
faults, one/two/three-bit faults, byte faults, and two-byte adja-
cent faults. The simulations have been performed separately
and the results show that:

1) for transient faults, we have 9989 detected faults leading

to the error coverage of around 99.9%;

2) for one-bit faults, we have 9854 detected faults leading
to the error coverage of around 98.5%;

3) for two-bit faults, we have 9890 detected faults leading
to the error coverage of 98.9%;

4) for three-bit faults, we have 9988 detected faults leading
to the error coverage of around 99.9%;

5) for one-byte faults, we have 9976 detected faults leading
to the error coverage of around 99.8%;

6) for two-byte faults, we have 9980 detected faults
leading to the error coverage of 99.8%. We note
that although these figures are very high, tailoring
the proposed error detection schemes, one may
achieve higher error coverage if the overhead is
tolerated.

In this section, we also present the area, power consumption,
and delay overhead results for LED and HIGHT block ciphers
through the FPGA implementations. The benchmarking is
done for both the original and fault detection architectures of
LED and HIGHT block ciphers. The FPGA implementations
are carried out on Xilinx family Virtex-7 with target device
7vx330tffg1157-3.
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TABLE 1T
FPGA IMPLEMENTATIONS OF LED ON VIRTEX-7
(TARGET DEVICE: 7VX330TFFG1157-3)

[ Architecture

[ Area (slices) | Delay (ns) [ Power (mW) |

LED-original 178

5.841

2.93

LED-signature | 217 (21.9%)

5.914 (1.2%)

3.67 (25.2%)

TABLE III
FPGA IMPLEMENTATIONS OF HIGHT ON VIRTEX-7
(TARGET DEVICE: 7VX330TFFG1157-3)
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inherent throughput degradation of the proposed approaches
for the HIGHT block cipher. Such SPN-based and Feistel
network-based block ciphers can be used as part of the authen-
ticated encryption mechanisms, such as SILC. Through fault-
injection analysis, it has been shown that the error coverage
is close to 100%. Moreover, through FPGA implementations,
we have shown that acceptable overheads are achieved for
both ciphers. Based on the reliability requirements and avail-
able resources, one may utilize the proposed error detection

[ Architecture [ Area (slices) [ Delay (ns) [ Power (mW) |

HIGHT-original 191 2.686 2.15
HIGHT-proposed | 252 (31.9%) ~2.686 2.17 (0.01%)

The error detection schemes for LED are shown as
LED-signature in Table II. The area in terms of number
of slices, delay, and power consumptions are derived for
Virtex-7 by implementing the design at 100 MHz frequency.
The overheads of the error detection architectures are shown in
the parentheses in this table (using Xilinx Integrated Synthesis
Environment 14.7 version).

The results from the FPGA implementations of HIGHT-
original and fault detection are shown in Table III. The area
overhead for the fault detection design is due to the inclusion
of error detecting adders used for the recomputed operation.
From the results, we can infer that there are negligible power
and delay overheads for the architecture as well as acceptable
area overhead (we note that such overheads can be adjusted
based on the objectives, for instance, avoiding subpipelining
could be a compromise between area/power and throughput).

The throughput degradations are also derived for the orig-
inal and fault detection architectures. For the signature-based
schemes, the throughput degradation is negligible, i.e., for
LED we have 342.407 Mb/s for the original and 338.180 Mb/s
for the fault detection structures leading to the degrada-
tion of 1.23. For the HIGHT algorithm, one can perform
subpipelining to account for the inherent reduction in through-
put. Utilizing one-stage subpipelining, at the cost of regis-
ters added, similar throughput to the original architecture is
derived.

There has not been any prior work done on error detec-
tion methods for these ciphers to the best of our knowledge.
Mozaffari-Kermani et al. [39] presented fault diagnosis of
Pomaranch cipher. They have used bit-interleaved scheme for
error detection. We compare the overheads of Pomaranch
with the proposed scheme. The combined area and through-
put overhead for Pomaranch is 35.5%. The proposed schemes
have combined area and delay overheads of 23% for LED
and 31.9% for HIGHT, respectively. Since the architecture of
Pomaranch and presented fault detection scheme is a lot differ-
ent than the proposed method, the differences in the overheads
are reasonably justified.

V. CONCLUSION

In this paper, signature-based and recomputing with
encoded operand-based approaches are presented for the LED
and HIGHT block ciphers. Formulas for the linear and non-
linear sub-blocks of the LED block cipher are presented,
tailoring which one can achieve the required reliability and
overheads. We have also applied subpipelining to overcome the

schemes for making the hardware implementations of LED
and HIGHT algorithms more reliable.
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