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Abstract—Fixed-angle-rotation operation of vectors is widely
used in signal processing, robotics, and graphics. Various opti-
mized coordinate rotation digital computer (CORDIC) designs
have been proposed for uniform rotation of vectors through
known and specified angles. Nevertheless, in the presence of
faults, such hardware architectures are potentially vulnerable. In
this brief, we propose efficient error detection schemes for cas-
caded single-rotation CORDIC which hamper the performance of
the architectures negligibly. We present signature-based schemes
for this CORDIC variant to detect both transient and per-
manent faults. We further present how such schemes can be
applied to other variants of CORDIC. The effectiveness of the
proposed designs is assessed through field-programmable gate
array implementations and error simulations. The results give
confidence for the proposed efficient architectures which can
be tailored based on the reliability requirements and overhead
tolerance.

Index Terms—Coordinate rotation digital com-
puter (CORDIC), fault detection, reliability.

I. INTRODUCTION

COORDINATE rotation digital computer (CORDIC) algo-
rithm is an efficient iterative approach used for rotating

vectors on a plane. Low latencies could be achieved for this
algorithm; yet, it is mainly attractive because of its low-
complexity hardware implementations. This is much preferred
in deeply-embedded systems (embedded deeply into human
body and objects) which are often battery-powered, e.g., pace-
makers for which low-area/power/energy computations are
needed. Various CORDIC architectures have been proposed
for the rotation of vectors through fixed angles. Meher et al. [1]
presented several optimized fixed rotation CORDIC designs
with reduced number of micro-rotations and reduced com-
plexity of barrel-shifters. In applications where fixed angles
of rotation have to be performed, the angles are known
beforehand. Therefore, in [1], it is proposed to perform an
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exhaustive search to achieve an optimal elementary-angle-set
of micro-rotations for the given known angle(s).

In this brief, we propose a number of error detection
schemes for fixed-angle rotation CORDIC designs. We con-
sider stuck-at fault model in which the nodes in the archi-
tectures are stuck-at zero or one, regardless of their correct
values. Digital circuits are prone to natural errors caused due
to alpha particles from package decay, cosmic rays creating
energetic neutrons, protons, and thermal neutrons. There have
been a number of works on fault diagnosis in the hardware
architectures of different usage models, e.g., for crypto-
graphic applications [2]–[5]. In addition, the work presented
in [6] presents an error detection and correction mechanism
for CORDIC. In [6], the work proposes a computation-skip
scheme to maintain the cycles per instruction (CPI) without
throughput penalty at subcritical situations.

II. PRELIMINARIES

The rotation of a 2-D vector Vo(Xo, Yo) through an angle θ ,
to obtain a rotated vector Vn(Xn, Yn), could be performed by

the matrix product, Vn = RVo, where R =
[

cos θ − sin θ

sin θ cos θ

]
.

The CORDIC algorithm works in two modes: 1) in the rotating
mode, the input vector with coordinates (x, y) is rotated by
an input angle θ to achieve the new vector with coordinates
(x′, y′) and 2) in the second mode of operation, the vectoring
mode, the input vector is rotated to x-axis while returning the
angle θ as output is required to make that rotation.

Since the angle of rotation for the fixed rotation case is
known beforehand, precomputations can be done and respec-
tive values can be stored (these values can be stored in a
sign-bit register in the CORDIC architecture). The rotation
through any angle θ , 0 < θ < 2π , can be mapped into
a positive rotation through 0 < θ < (π/4) without any
extra arithmetic operations [5]. Therefore, the rotation map-
ping is done so that the rotation angle lies in the range of
0 < θ < (π/4).

III. PROPOSED ERROR DETECTION SCHEMES

In what follows, we present error detection techniques for
single rotation CORDIC architecture.

A. Motivating Experiments

In signal processing, CORDIC techniques are used for
fixed/adaptive filtering and computation of discrete Hartley,
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Fig. 1. Error detection in single rotation cascaded CORDIC through unified signature-based scheme.

sinusoidal and cosine transforms. It is also used for direct
digital synthesis and digital/analog modulation in the field of
communications. Therefore, it is understood that CORDIC
algorithm is employed in extremely-fault-sensitive applica-
tions, where even a single-bit error is not tolerated. Besides,
CORDIC is an iterative approach and hence, even a single
stuck-at fault may lead to erroneous (multibit) result as seen in
our experiments. In our error simulations, 10 000 random test
vectors with single stuck-at faults are injected to the original
single cascaded CORDIC design. The test vectors were found
to provide faulty results with roughly 60%–70% change in bits,
on an average, in the output (for just a single fault injected).
As a result, it can be determined that even a single-bit fault
in CORDIC is catastrophic and, hence, it is exceedingly
important to employ error detection methodologies.

B. Unified Signature-Based Scheme

For low-area applications, it is not suitable to use
double/triple modular redundancy as roughly 100% and 200%
overhead (including the voters and comparators). The critical
elements in single rotation cascaded CORDIC architecture are
the datapath registers and adder/subtractor modules. Therefore,
signatures (single-bit, multiple-bit, or interleaved parity, cyclic
redundancy check, etc.) are employed for all the registers.

Moreover, self-checking adders based on dual-rail encoding
are included for the adder/subtractor modules.

1) Signature-Based Checking for Datapath Registers:
Concurrent error detection through signatures for registers are
utilized throughout the architectures. The resulting error indi-
cation flags are derived to alert as shown in Fig. 1. The critical
compromise here is the error coverage, e.g., single parity-
bit error detection technique might have low error coverage
for critically-sensitive applications (the merit here is the itera-
tive nature of CORDIC which gives confidence on high error
coverage).

2) Self-Checking Adder and Subtractor Modules Based on
Two-Rail Encoding: Many adder designs have been proposed;
yet, in our design, we use carry-select type adders for their
high speed and low area. We propose using self-checking
carry-select adder designs based on a series of cascaded totally
self-checking 2-bit adders.

The self-checking adder design used in the single rotation
cascaded CORDIC architecture is shown in Fig. 1. XNOR
gates and two-pair two-rail (TPTR) checkers are the additional
resources utilized for error detection. The checker has two
pairs of inputs (x0, y0) and (x1, y1). The inputs are driven in
such a way that in the fault free scenario, x0 = y′

0 and x1 = y′
1.

This is performed using XNOR gates and appropriate connec-
tions as explained in the following. There are two outputs from
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Fig. 2. Variant of a 4-bit self-checking carry-select adder.

Algorithm 1 TPTR Checking
1. if (x1 = ’1’) then 2. if (y1 = ’1’) then

z0 = y0; z1 = y0;
else else

z0 = x0; z1 = x0;
end if; end if;

the checker and the outputs are also in two-rail form as the
inputs, i.e., z0 = z′

1. Therefore, two of the output combinations
01 and 10 are considered valid fault-free codewords whereas
the remaining two output combinations 00 and 11 indicate
presence of faults. Even if one of the inputs of the checker
has a fault, the output is not in two-rail form and thus an error
indication flag is raised. Let us consider S00 and S01 are the
sum outputs of the two full adders with inputs (a0, b0) and
(a1, b1) and carry-in equal to “0.” The corresponding carry-
out signals are C01 and C02. Similarly, S10 and S11 are the
two sum outputs of the full adders with inputs (a0, b0) and
(a1, b1) and carry-in equal to “1.” The carry-out signals in this
case would be C11 and C12. It can be shown that the sum
bits S00 and S10 are always complementary to each other.
Therefore, these two signals are directly fed into the TPTR
checker as inputs x0 and y0. Furthermore, it is proven that
S01 is always complementary to the XNOR of S00 and S11.
Thus, signal S01 and signal (S00 XNOR S11) form the other
two complementary input pairs to the checker, i.e., x1 and y1.
Algorithm 1 describes such process.

A variant of self-checking adder design utilizes two n-bit
ripple carry adders to precompute the sum bits with comple-
mented values of Cin, i.e., 0 and 1, and the original value of Cin
is used to select the actual sum bits [7]. We employ this new
adder in the single rotation cascaded CORDIC architecture
and evaluate its performance and efficiency. Fig. 2 shows the
design module of a 4-bit self-checking carry-select adder; an
n-bit model of the same design module is employed in place
of the adder/subtractor unit in the single rotation cascaded
CORDIC circuit. An important modification done in this new

adder is that the inputs are given to the TPTR checker. Let us
consider S0n is the sum output of the full adder with inputs
(an, bn) with the initial Cin equal to 0. An XNOR operation
is performed between S0n and the product of all the lower
sum bits computed in the full adders at the initial Cin = “0”.
The output of the XNOR is given as one of the inputs to the
TPTR checker, say x0. The other input (y0) is the sum out-
put S1n of the full adder with inputs (an, bn) with the initial
Cin equal to 1. The outputs of the XNOR and S1n are always
complementary to each other and, hence, are chosen as the
inputs to the TPTR checker. For example, at bit-position “3,”
one input to the checker will be equal to S03 XNOR (S00
AND S01 AND S02), whereas the other complementary input
will be equal to S13. As a result, there will be 2 XNORs
per TPTR checker as opposed to 1 XNOR per TPTR checker
in the previous adder design which is one of the reasons for
additional area cost.

The TPTR checker can be used for error detection in the
proposed scheme. One can use error correction techniques
as well to correct faults in the architectures of the presented
CORDIC. Let us go over a possible correction technique that
can be used for carry-select adders within CORDIC, adopted
from [8]. The carry-select adder can be used in conjunction
with an increment/decrement circuit, one NOT gate, and one
multiplexer, i.e., correction-multiplexer. Increment/decrement
is fast and also has low area and power consumption and will
increment its input when its control line in 0 and will decre-
ment the input when its control line is 1. Two “sum” inputs are
used for the correction-multiplexer. The carry-in input is used
as the select of this multiplexer which chooses between the
two sum inputs to correct the faults. Finally, error correction
in [6] is performed through a mixture of algorithm and cir-
cuit level schemes: it mitigates the error at a very tight timing
window to maintain the constant CPI. When timing violations
are detected, the computations in the next cycle are skipped as
an approximation. This method proposes an error correction
scheme which can be embedded in this brief as well. Skipping
trivial operations in CORDIC is a parallel method to this brief
which can be combined based on the reliability requirements
and overhead tolerance.

Signature-based schemes, e.g., parity or CRC-based
approaches or the scheme presented in this brief, add a detec-
tion circuitry to the original algorithm implementation to
detect faults. In general, such detection components can be
prone to faults. Let us consider three cases.

1) When faults happen in the original architecture, the dis-
cussions presented in the proposed scheme hold, and can
be utilized for detections.

2) If faults happen in the TPTR checker circuitry only, they
are detected. We note that in such cases, faults are cor-
rectly detected with respect to the union of the original
and fault detection components.

3) If faults occur in both the original and the fault detection
circuitry they are neither single stuck-at fault (single-
event upset) nor burst fault which happen in specific
parts of the architecture.

Dealing with distributed multiple faults in such cases, if
they happen, can be performed through selective hardening
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(one needs to note that not all of such cases is among unde-
tected faults). Such additional circuitry can be hardened when
implemented, e.g., through radiation hardening which is the
act of making electronic components and systems resistant to
damage or malfunctions caused by ionizing radiation (particle
radiation and high-energy electromagnetic radiation). We also
note that using recomputing with encoded operands, one can
detect such cases which can be used as an add-on scheme.

C. Applicability to Other Variants

The proposed architectures can be employed to other
variants of fixed-angle-rotation CORDIC, such as CORDIC
designs with interleaved scaling and bi-rotation cascaded
CORDIC as well as other iterative architectures such as
conventional CORDIC architectures with nonfixed-angle rota-
tions. This is due to the fact that these architectures share
similar sub-blocks like datapath registers, adder/subtractor,
ROM, and barrel shifters. Traditionally, fixed or nonfixed angle
CORDIC architectures have common sub-blocks, such as two
data registers, two barrel shifters, two adder/subtractor units,
and a memory unit. Signature-based error checking can be
used for datapath registers, and the memory unit (ROM), while
self-checking adder designs with TPTR can be employed for
the adders and subtractors. In general, all CORDIC architec-
tures (fixed and nonfixed angle-rotations) are iterative in nature
and hence, fast adders/subtractors are crucial. The proposed
error detection schemes with self-checking adders/subtractors
and TPTR guarantee reliable and fast operations, making them
suitable for error detection in CORDIC designs.

IV. BENCHMARK

A. Error Simulation Results

We first present the error model.
1) Error Model: The proposed error detection schemes are

capable of detecting both permanent and transient faults. In
our simulations, we consider both single and multiple stuck-
at fault scenarios. Single event upset and multiple event upset
are both considered. Through simulations, it is derived that
the proposed error detection schemes detect all single stuck-at
faults. Nevertheless, in our fault model, the case for which
multiple bits are flipped is also considered, thereby providing
a more real-world scenario to the error structures. The fault
model applied for evaluating the proposed error schemes has
been realized through linear feedback shift registers (LFSRs)
to generate pseudo-random test patterns. LFSRs are used at
different parts of the system in the following fashion. 16-bit
LFSRs are used for adder/subtractor modules and registers and
for the ROM, a 3-bit LFSR is used. The 16-bit LFSR is imple-
mented with the polynomial x16 + x13 + x11 + 1, whereas the
3-bit LFSR has the polynomial x3 +x2 +1. The LFSR outputs
have been either ANDed or ORed with the actual outputs to
generate transient fault patterns.

2) Experiment Results: Three different test cases have been
used for fault simulations. In the first case, one fault is injected
into the entire system either in the output of the register or
adder/subtractor or in the output of the ROM. In the sec-
ond case, two faults are injected in different combinations of

Fig. 3. Throughput for the original (dotted line) and proposed (solid line)
architectures for four FPGA families.

Fig. 4. Power consumption for the original (dotted line) and proposed (solid
line) architectures for four FPGA families.

adder, register, and ROM. Finally, in the third case, three faults
are injected. In total, 10 000 faults are injected for each of
the above-mentioned test cases (the detected cases are 9999
instances). For each injection, error indication flag is observed
and the result demonstrates a very high fault coverage of close
to 100% (99.99%). We note that the signature-based error
checking technique provides 100% coverage of single stuck-
at faults (10 000 injected and detected cases) and for multiple
stuck-at faults, this technique has slightly lower coverage but
close to 100%. We note that single stuck-at faults can only
happen in one architecture. If faults occur in both the orig-
inal and the fault detection circuitry, they are neither single
stuck-at fault (single-event upset) nor burst fault which hap-
pen in specific parts of the architecture. Thus, for multiple
faults, the reason for slight degradation in error coverage is that
they can happen in both architectures, bypassing the detection
mechanism.

B. FPGA Implementations

We implement the proposed deigns for four families of
Xilinx field-programmable gate arrays (FPGAs) and discuss
the overhead assessment results. This analysis is performed
for the original CORDIC designs and also for the CORDIC
designs with the proposed error detection structures using
Xilinx ISE for Spartan-3A (XC3SD1800A-4FG676), Virtex-4
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Fig. 5. Area for the original (dotted line) and proposed (solid line)
architectures for four FPGA families.

Fig. 6. Frequency for the original (dotted line) and proposed (solid line)
architectures for four FPGA families.

(XC4VSX35-10FF668), Virtex-5 (XC5VLX20T-2FF323), and
Artix-7 (XC7A100T-2CSG324).

The designs are divided into seven rotation modules and
each rotation module has two self-checking or ordinary
adder/subtractor modules. The overheads are benchmarked
as shown in Figs. 3–6 (power consumption at 100 MHz
frequency). In Fig. 3, we have shown the original and proposed
architectures and the throughputs which are degraded as 8.1%,
1.0%, 1.6%, and 2.1%, respectively. In Figs. 4–6, power
consumptions, area, and frequencies are depicted. Based on
Fig. 4, the power consumption overheads are, respectively,
8.6%, 1.6%, 1.4%, and 1.5%. Moreover, the area overheads are
8.7%, 16.9%, 23.9%, and 21.9%, and the frequency degrada-
tions are 8.1%, 1.0%, 1.6%, and 2.1%, respectively, based on
Figs. 5 and 6. We note that the relation between Figs. 3 and 6
is that higher throughput degradation translates to higher
frequency degradation.

An efficient error detection scheme for CORDIC is proposed
in [9] with area overheads of 9.5%. However, the scheme in [9]
covers only single-bit transient errors. Although, the error
detection schemes we propose in this brief have high area cost,
it is more efficient due to the high fault coverage, i.e., it covers
both single-bit and multiple-bit transient and permanent errors.
We have also considered error detection schemes using recom-
puting with encoded operands which has lower area overheads
in the range of 6%–10%. However, such schemes utilize

time redundancy which does not provide 100% fault cover-
age and is quite slower compared to the proposed scheme in
this brief.

The FPGA experiments shown above were performed with
16-bit floating point inputs. Thus, the results of CORDIC vec-
tor rotations are precise and have an accuracy close to 100%.
The obtained overheads correspond to these inputs which are
16 bits in size. However, to test the effectiveness of our design
in a larger design space, the same experiments were con-
ducted by employing the proposed error detection schemes
for 32-bit size floating point inputs. We have derived that
the area and power consumption overheads were increased
by roughly 2% and the maximum frequency of operation was
reduced by a factor of approximately 1.5%. The changes in
the overheads are negligible and our proposed error detection
schemes can be applied to large design space of CORDIC
architectures.

V. CONCLUSION

In this brief, efficient error detection schemes for CORDIC
designs with a fixed angle of rotation have been proposed.
The simulation results show that high fault coverage (very
close to 100%) is achieved for the injected faults through
the proposed error detection schemes. Furthermore, the error
detection structures have been implemented on FPGAs. The
hardware implementation assessments show that the overheads
gained by the error detection structures are acceptable. Thus,
the proposed hardware architectures for a fixed angle of rota-
tion CORDIC designs provide reliable and efficient structures
which can be tailored based on the reliability requirements and
the overhead tolerance.
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