1528

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 25, NO. 4, APRIL 2017

Fault Diagnosis Schemes for Low-Energy Block
Cipher Midori Benchmarked on FPGA

Anita Aghaie, Student Member, IEEE, Mehran Mozaffari Kermani, Senior Member, IEEE,
and Reza Azarderakhsh, Member, IEEE

Abstract— Achieving secure high-performance implementa-
tions for constrained applications such as implantable and
wearable medical devices are a priority in efficient block ciphers.
However, security of these algorithms is not guaranteed in
the presence of malicious and natural faults. Recently, a new
lightweight block cipher, Midori, has been proposed that opti-
mizes the energy consumption besides having low latency and
hardware complexity. In this paper, fault diagnosis schemes for
variants of Midori are proposed. To the best of the authors’
knowledge, there has been no fault diagnosis scheme presented
in the literature for Midori to date. The fault diagnosis schemes
are provided for the nonlinear S-box layer and for the round
structures with both 64-bit and 128-bit Midori symmetric key
ciphers. The proposed schemes are benchmarked on a field-
programmable gate array and their error coverage is assessed
with fault-injection simulations. These proposed error detection
architectures make the implementations of this new low-energy
lightweight block cipher more reliable.

Index Terms—Fault diagnosis, field-programmable gate
array (FPGA), Midori block cipher, reliability.

I. INTRODUCTION

IGHTWEIGHT cryptography plays an essential role for

achieving high security with low area and low energy
consumption in many sensitive applications such as secure
embedded systems, wireless nanosensors, radio-frequency
identification (RFID) tags, and implantable and wearable med-
ical devices. Such an efficiency is more critical in energy-
constrained applications such as implantable medical devices
in which replacing discharged batteries with power-inefficient
architectures is a burden due to the required surgeries to
remove these batteries [1]. In addition, tiny computing devices
such as RFID tags and sensors need efficient block ciphers
because of their small area and limited source power [2]. Such
a need for efficiency is fulfilled by lightweight block ciphers,
which provide high security level, low energy consumption,
and low hardware complexity. It is noted that the Advanced

Manuscript received June 7, 2016; revised September 20, 2016 and
November 8, 2016; accepted November 21, 2016. Date of publication
December 14, 2016; date of current version March 20, 2017. This work
was supported by the U.S. Department of Commerce, National Institute
of Standards and Technology under the U.S. federal agency under Award
60NANB16D245.

A. Aghaie and M. Mozaffari Kermani are with the Department of Elec-
trical and Microelectronic Engineering, Rochester Institute of Technology,
Rochester, NY 14623 USA (e-mail: aa6964 @rit.edu; m.mozaffari @rit.edu).

R. Azarderakhsh is with the Department of Computer and Electrical
Engineering and Computer Science, Florida Atlantic University, Boca Raton,
FL 33431 USA (e-mail: razarderakhsh@fau.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSI.2016.2633412

Encryption Standard (AES) has been optimized in terms of
area and power consumption [3].

Midori provides acceptable security level with optimal
energy consumption. The S-boxes of Midori are different
from those of the AES and other lightweight block ciphers.
Furthermore, Midori has two types of bijective 4-bit S-boxes
that are more energy efficient than the 8-bit ones. It is noted
that Midori, like other lightweight block ciphers, accepts
optimal cell permutation matrices and uses the most efficient
maximum distance separable (MDS) matrices due to low
implementation overheads and increasing immunity against
several attacks [4], [5].

Error detection in crypto architectures has been the center
of attention in [6]-[13]. The prior work has focused on various
time and hardware redundancy approaches (including the
approaches that are dependent or oblivious of the implementa-
tion platform and the algorithm architecture). However, in the
case of Midori, to the best of the authors’ knowledge, there is
no prior work. The merit of the proposed approaches in this
paper compared with that of the approaches presented before
for lightweight block ciphers is twofold. First, we present both
logic-gate-based and lookup table (LUT)-based error detection
schemes for the two types of the S-boxes in Midori, which
gives freedom to the designers to choose the implementation
strategy based on the implementation and performance metric
requirements and the platform to implement. Second, for
the MixColumn operation, we have examined to achieve to
have low-overhead detection approaches, by performing design
space explorations before math not as an afterthought. Such
careful investigations to have a combined original implemen-
tation and error detection architecture has not been performed
in previous state-of-the-art approaches.

The performed simulation results show high error coverage
(the percent of ratio of the number of detected errors to the
number of injected faults) for the presented schemes. Using
the proposed approaches, the error detection structures are
capable of detecting the injected faults with high coverage
(transient and permanent as well as single, multiple, and
adjacent faults). We note that permanent faults, e.g., stuck-at
faults, are caused by VLSI manufacturing defects (and of
course if the intention is to break the entire device, such
faults can be injected at runtime). There are well-established
automatic test pattern generation based testing techniques to
identify these faults [14]. On the other hand, “long transient
faults” can lead to information leakage [15]. Simple time
redundancy cannot detect long transient faults that last for

1063-8210 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

AGHAIE et al.: FAULT DIAGNOSIS SCHEMES FOR LOW-ENERGY BLOCK CIPHER MIDORI

the normal computation and recomputation, and attackers have
successfully injected long transient faults to break this counter-
measure [15]. Through field-programmable gate array (FPGA)
implementations using the Xilinx Virtex-7 family, it is shown
that the overheads of the proposed architectures are acceptable
for resource-constrained applications.

This paper is organized as follows. In Section II, preliminar-
ies related to the Midori block cipher are presented. The pro-
posed error detection approaches are presented in Section III.
In Section IV, the results of the fault injection simulations are
explained. Furthermore, through FPGA implementations, the
overheads are benchmarked. Eventually, conclusions are made
in Section V.

II. PRELIMINARIES

Midori consists of two parts, i.e., data processing and key
scheduling modules. The plaintext input and the ciphertext
output, which are 64 bits or 128 bits in width, are divided into
4-bit and 8-bit cells, respectively. This is also performed for the
whitening key (WK) and round keys (RK;). The round keys
are used as the input to the main functions of the algorithm,
and the WKs are modulo-2 added with the input and output
of the entire encryption or decryption operation. Two variants
of Midori, Midori64 and Midoril28, are a 64-bit block cipher
and a 128-bit block cipher with the same key length of 128 bits
corresponding to 16 and 20 number of rounds, respectively.

Midori uses the following 4 x 4 array state:

S0 S4 S8 S12
ST S5 §9 813
$2 86 S10 S14
§3 87 S11 S5

in which the size of each cell is 4 bits and 8 bits for Midori64
and Midori128, respectively. Midori applies bijective S-boxes,
Sbo and Sb1, with a 4-bit structure and the involution property,
which are used in Midori64 and Midoril28, respectively.
Midoril28 utilizes four different 8-bit S-boxes, SSbg, SSbhi,
SSbhy, and SSh3. Each of these 8-bit S-boxes consists of two
4-bit Sb with permutation input and output structures, which
are described in more detail in [4]. The S-boxes are utilized in
each round function and apply the following four operations
to the state matrix.

1) SubCell (S): The 4-bit and 8-bit S-boxes are used for
each element of the state S in Midori64 and Midoril28
in parallel. We have s; < Sbg[s;] for Midori64 and
;i < S8b(imoaa)lsi] for Midoril28, where 0 <i < 15.

2) ShuffleCell (S): Each byte of the state is derived as
follows:

., 815) < (50, 510, 55, 515, S14, $4, S11, 51, 59,

53, 512, 565 87, 13, 52, 58).

(50, 51, - -

3) MixColumn (S): Midori utilizes an involutive binary
matrix M, applied to every 4m-bit column of the state S,
Le., (Sis i1, 8i42,5i43)" < M X (si, 5it1, Sit2, 8i43)"
andi =0, 4, 8, 12.

4) KeyAdd (S, RK;): The ith n-bit round key RK; is
modulo-2 added to the state S.

1529

Before the first round, an additional KeyAdd operation is
applied, and in the last round, the ShuffleCell and MixColumn
operations are omitted. The data processing part of Midori
consists of its encryption and decryption that perform the
mentioned round function for a specific number of rounds
except the last round. The decryption is performed through
the same sequence of the mentioned round function with a
difference of the added InvShuffleCell.

III. PROPOSED ERROR DETECTION SCHEMES

In this section, the error detection approaches of sub-blocks
in the Midori encryption and decryption are proposed.

A. Proposed Approaches for the S-Box Variants

In the hardware implementations of Midori, two approaches
can be used for realizing the S-boxes, i.e., LUT-based and
logic-gate-based implementations. The LUT-based S-boxes
have advantages such as good performance and disadvantages
such as having high area and power consumption. On the other
hand, the latter approach typically has less area and power
consumption.

Our proposed signature-based error detection approach is
not confined to a special signature. However, for the sake
of clarity, we present two examples, i.e., parity-based and
interleaved parity-based approaches.

We can store predicted parities (or interleaved parities) of
elements from the S array in LUTs. The scheme for the
S-boxes Sby and Sb; is based on deriving the predicted parities
of the S-boxes using LUTs, as shown in Table 1. For each ele-
ment of S-boxes, we modulo-2 add all bits. Then, we store the
result as a parity bit in an extended LUT with 5-bit elements
(note that one extra bit is added to each 4-bit entry). Thus, the
new protected state would consist of 16 5-bit elements that can
be stored in FPGA block memories or pipelined distributed
LUTs. An example would be to derive the parity of the first
element of Sby, which is {c}1¢ = {1100},, which is zero.

The other signature-based error detection scheme is based
on interleaved parity bits that are proposed in order to protect
the nonlinear S-boxes. Interleaved-parity-based schemes are
able to detect burst faults, i.e., adjacent multiple faults. Such
faults happen in both natural defects and malicious fault
attacks. In this scheme, we compute the interleaved parity bits
of the 4-bit bijective S-boxes Sho and Sb; in hexadecimal
form, as shown in Table I. We have derived such parities
by the modulo-2 addition of odd bits and even bits with
each other separately. Similarly, these 2-bit interleaved parities
along with 4-bit elements of each state are stored as 6-bit
elements in memories. An example would be to derive the
interleaved parity of the first element of Sby, which is {c}16 =
{1100},, which is 11 (modulo-2 adding the odd and even bits
separately).

We have also derived the formula for logic-based implemen-
tations of the two S-boxes Sbg and Sb, respectively. Suppose
the inputs to the S-boxes are a, b, ¢, and d and the 4-bit
outputs are a’, b, ¢/, and d’.

For Sho, we have derived ' = ¢av b vad, b’ =dav
bevacd, ¢ =bdvabvad, and d = c(avb)vd@abvab).

1530

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 25, NO. 4, APRIL 2017

TABLE 1
(INTERLEAVED PARITY, PARTY) OF 4-bit BUECTIVE S-BOXES Sby AND Sb| IN HEXADECIMAL FORM
X 0 1 2 3 4 5 6 7 8 9 a b c d e f
Sbo | (1L,0) | (00,00 | (10,1) | (ILO) | (OLD | OLD | (00,0) | (10,1) | (10,1) | (1L,0) | OLD) | (00,0) | (00,0) | (10,) | (OL,1) | (11,0)
Sbr | (OL1) | (00,00 | (00,0) | (ILO) | (OLD | (10,1) | (00,0) | (10,1) | (10,1) | (00,0) | (1L,0) | OLD) | (A1,0) | a0,1) | 0L | (11,0)
_______ SSby______ oSS __
eo e | ! | !
SSbo SSbs Actual | ! | |
77777777777777777 ———————\ ———Gionat i K K4 | | L 4
| Predicted signature | Actual signature | Predicted signature | slgnature B Sby ! K sby o |
! | ! | . . R !
I | . [y ! ’) !
i Signature- [| ! Signature- 8 bits - , 7 8 bit: 8 bit: ‘- \ ’ * 3 bit:
._\ [] based —\ I_: based :) (%4;) 7‘:: l l :7‘;
protected 1 V protected ! ! !
8 bi I L S N I_? i 8 bits Sby ' Wa'y ' "1 \" !
its | 8 bits | [y ’ | v 0
[- e 00 —by yShy ! Sby ! !
| | . ’
! Signature- I ! Signature- . '\ o . ,
| based ! based !
I
|

protected

protected ||
Shy

Shy

Fig. 1. Derivation of the error indication flags for the S-boxes in Midoril28.

Furthermore, for Shy, a’ = acvabvadb, b’ = adéV bev
dbvade, ¢ =cdvbadvab, and d' = caV cb Vv bd, where
V represents an OR gate.

We would like to emphasize that other possible signatures
can also be utilized. Here are two examples for parity-based
and interleaved parity-based approaches.

The following equations show the predicted parity formula-
tions for the two S-boxes Sbo and Sby, respectively. We have
denoted the predicted parities in these formulations by a “har”
51gn ie., P, PSbO =dac Vv bac Vv bd(c Va)Vv db(a v ¢) and
PSI,1 = b(acd v cd v ad) v a(bd v dé) V abed.

For the interleaved parity-based scheme, we have derived
the parities for odd bits and even bits in each of the S-boxes.
For Sho, we have P$)) = b(ac v bd) v d(cbV a?) and Pj;) =
ac(b v d) v bd(ac Vv ac) v ac(d Vv b). Furthermore, for Sby,
we have P(b) =bd Vv dcaV abd Vv acd and P(b) =chvadcd.

Different S-boxes are applied in the variants of Midori, for
instance, Midoril28 applies four different 8-bit S-boxes SSb;,
0 <i < 3. To keep the involution property of S-boxes, each
output bit permutation is derived as the inverse of the corre-
sponding input bit permutation. The structure of Midori and
the proposed fault diagnosis schemes are presented in Fig. 1.
Fig. 1 shows that four 8-bit outputs of these S-boxes are taken
of specific permutation order (two of the S-boxes are omitted
for the sake of brevity). Through the comparison of actual and
predicted parities, we have error indication flags for each Sb
in S-boxes of SSb;, as shown in Fig. 1 (ep—e7). Moreover, both
aforementioned parity bits such as single parity and interleaved
parity bit have been utilized to create error indication flags.
Eventually, one can OR the flags to have a final error indication
flag that alters of any faults detected in SSb;.

1) Recomputing With Swapped Inputs: We use the method
of recomputing with swapped inputs (RESI), as shown
in Fig. 2, for Midoril28 (part of the S-box block is shown for

Fig. 2. Proposed RESI scheme for Midori128.

the sake of brevity). This method is a subset to the approaches
presented in [16]. In this approach, we have swapped the inputs
to the S-boxes Sbh; in each of the four 8-bit S-boxes SSb;,

e., the first four inputs are asserted to the second S-box
Sby and the next 4-bit inputs go to the first one, as shown
in Fig. 2. Then, if the output of each Sb; is swapped, it gives
the correct results. Finally, we compare the swapped outputs
with actual outputs to detect not only transient faults but also
permanent faults. It is noted that the order of permutation
of inputs for each SSb; is different and swapping would be
specific for each of the 8-bit S-boxes. In the proposed scheme,
which is based on recomputations, we do not change the
original algorithm; nevertheless, we perform the recomputation
for detecting the errors; thus, no change is made in the
original Midori computation and the overall structure for the
original algorithm is intact. Therefore, algorithmic security is
not affected in the proposed method as the datapath would use
the output of the original Midori algorithm.

B. Fault Diagnosis of ShuffleCell and KeyAdd

The signature derivation for fault detection in ShuffleCell,
such as parity, would be straightforward and can be realized
free in hardware due to just rewiring of the elements of
4 x 4 array state (for instance, parity of inputs is equal to
parity of outputs because rewiring does not affect the com-
putation of parities). We need error detection mechanisms for
ShuffleCell (an attacker may try to inject fault by violating
setup time for these paths); yet, through using signatures, e.g.,
parity or interleaved parities, the predicted signatures are equal
to the actual signatures of the prior transformation, and that
reduces the cost for error detection.

The other operation, KeyAdd, consists of modulo-2 addition
of the ith n-bit round key RK; with the state S. In this
operation, the signature inputs, i.e., state and round key, are
modulo-2 added to derive the signature of output for each
round. Suppose the output of KeyAdd is denoted by O and
inputs are S and RK;, 0 < i < 14 and 0 < i < 18 for
Midori64 and Midoril28, respectively. Denoting signatures

AGHAIE et al.: FAULT DIAGNOSIS SCHEMES FOR LOW-ENERGY BLOCK CIPHER MIDORI

by “Sig.”, and the predicted signatures of the output O, which
is the function of two inputs by Sig.(0)(S,RK;), we have
Sig.(0)(S, RK;) = Sig.(S5) @ Sig.(RK;).

C. Proposed Design for Fault Detection in MixColumn

Let us denote the input state of MixColumn as S and
the output state as S’. Then, we have the following for this
operation:

li
So S4 Sg Spp

/ / / /
S=Mxs=|} 5 » B
700 0l
387 S Sis

mo m4 mg My S0 sS4 S§ S12

_ [oms ome miz) siossoso s g
my me mio Mi4 2 S6 S0 Si4
m3 m7 mpp mis §3 87 S11 815

where each element of the input or output state matrix would
be 4 bits and 8 bits for Midori64 and Midoril28, respectively.

In the two Midori variants, the linear layers consist of the
two mentioned operations, ShuffleCell and MixColumn, that
are applied over GF(2*) and GF(2%) for the 64-bit Midori and
128-bit Midori, respectively. As mentioned for the MixColumn
operation, Midori utilizes an involutive binary matrix M, as
defined before. For the matrix M, there could be typically
three types of 4 x 4 matrices, i.e., involutive MDS (My),
noninvolutive MDS (Mp), and involutive almost MDS (M)
matrices [4]

1 2 6 4
2 1 4 6
Mi=16 4 1 2
4 6 2 1
2 3 1 1
1 2 3 1
Me=1, 1 2 3
31 1 2
01 1 1
1 0 1 1
Mce=1, 1 0
1 1 1 0

Among these matrices, involutive almost MDS (Mc¢) has
been applied more in various lightweight ciphers such as
PRINCE due to its efficiency. Furthermore, Mc has low
diffusion speed and a small number of active S-boxes in each
round and has led to increase in the immunity against linear
and nonlinear attacks. In the proposed fault detection schemes,
the objective is to evaluate these three matrices to possibly add
a new aspect on how efficient these are when fault diagnosis
approaches are used.

For this operation, we present three error detection schemes
as detailed in the following.

1) Scheme 1 (Column Signatures): In the first scheme,
we propose modulo-2 addition of the state elements of each
column of the output matrix (S’). The theorem is that the result
is equal to modulo-2 addition of the state elements of each
column of the input matrix (S). Since the modulo-2 addition

1531

of each column of matrix M in all of three types of matrices is
equal to "1," fault diagnosis through this approach is efficiently
performed for the three matrices. In general, for 0 < i < 3,
we have s{ =m;SQ + Mijy481 + m; 852 + m;11253.

Let us modulo-2 add the first column of the state output
matrix: s) + s + 55 + 85 = (mo + m1 + ma + m3)so +
(ma + ms + mg + m7)s1 + (mg + mo + mip + mi1)s2 +
(m12 + m13 + mya + mys5)s3. Moreover, one can derive that
each of the coefficients of the input elements is equal to 1,
e.g., mo+my +my+ms3 is equal to "1." For example, in the
case of M4 and for Midori64 that consists of 4-bit elements
in the states, we have {1}16 + {2}16 + {6}16 + {4}16 = {1}16.
Consequently, modulo-2 addition of each of the output matrix
columns is equal to that of the columns of input matrix,
ie., sy +s] + 55+ 55 = so + 51+ 52 + 53. For both variants
of Midori, one can derive four 4-bit (Midori64) or 8-bit
(Midoril128) signatures, which can eventually be compared
with the actual ones to derive the respective error indication
flags.

2) Scheme 2 (Low-Overhead Union Signature): The second
scheme is through modulo-2 addition of all the elements of the
output state (union signature), i.e., sy 4+ + -+ 57, + 55 =
(mo + m1 + ma + m3)so + (ma + ms + me + m7)s1 + (ms +
mo+mio+mi1)sa+ (miz+miz+mia+mis)s3+(mo+mi+
my+m3)sq+ -+ (m2+mi3+myg +mys)sys. It is derived
that each of these coefficients, e.g., mo + mj + ma + m3, is
equal to "1" for the aforementioned matrices. As the proof, the
binary values of the following hex entries are all equal to "1":
{lhe+{Zhe+{6}16+ {4116 = {Ohe +{1}h6+ {1116+ {1}16 =
{2416+ {1} 16+ {1116+ {3}16 = {1}16. Therefore, the modulo-2
addition of all output elements in the state is equal to that of all
input elements in the state (as a nibble or a byte for Midori64
and Midori128, respectively), i.e., Zilio 5i = Zilio s;. In this
approach, we have the less number of signatures that leads to
lower overhead.

3) Scheme 3 (Interleaved Signatures): The third scheme is
through predicting interleaved signatures. We prove that for
each of the two random rows of M, this is a viable approach,
whereas it is not a suitable scheme for the other two matrices
presented before. Let us, through an example, detail on this
scheme. Let us modulo-2 add two even-row elements of the
state output state, i.e., rows 0 and 2, as sy+s5 = (mo—+m2)so+
(m4 + me)s1 + (mg + myo)s2 + (m12 + mya)s3, and two odd-
row elements, i.e., rows 1 and 3, as 5| + 55 = (m + m3)so +
(ms 4+ m7)sy + (mg 4+ my1)s2 + (m13 + mys)s3. The derived
results are two 4-bit or 8-bit predicted interleaved signatures
in each column. As computed for the matrices before just in
the case of M, the interleaved signatures for each column
in the input and output states are equal. It is interesting that
the modulo-2 addition of each of the two random rows of M¢
leads to coefficients of "1" in the aforementioned discussions,
e.g., the modulo-2 addition of the first and third rows of M¢
is equal to "1010," proving s(’) + sé = 50 + s2; moreover, the
modulo-2 addition of the second and fourth rows is "0101"
and thus 5| + 55 = s1 + 5s3. However, the two other matrices,
i.e., M4 and Mp, do not have this property.

Midori can utilize three 4 x 4 MDS matrices for the
MixColumn transformation; we have compared these three

1532

different variants to motivate that error detection needs to be
considered as a design factor. In other words, the inventors
of Midori have investigated the matrices used in MixColumn
to reach the best efficiency for Midori, when the structures
have similar algorithmic security. Different categories of the
MixColumn transformations are designed based on a wide
pool of criteria that can be made smaller by considering the
error detection criterion during the design. The fact that the
proposed error detection scheme through interleaved signa-
tures is merely efficient for Mc and the other two proposed
schemes can efficiently be applied to all three types of matrices
in MixColumn further motivates the urgency of having error
detection as a design factor not an afterthought.

D. Proposed Approach for Key Schedule

As mentioned before, for both variants of Midori, a 128-bit
secret key (K) is applied; however, in the case of Midori64,
the key is denoted as two 64-bit subkeys Ko and K; and
the WK is derived through modulo-2 addition of these 64-bit
subkeys. In the key schedule of Midori64, the round key is
derived through RK;= K (imoda2) ® @i, where 0 <i < 14, while
in Midoril28, WK = K and RK; = K ® f;, 0 < i < 18,
in which f; = a; for 0 < i < 14. The constants are
in the form of 4 x 4 binary matrices, which are modulo-
2 added to the LSB of the round key nibble in Midori64
and round key byte in Midoril28. Therefore, the signature
of the round key matrix is either intact (if round constant
elemgnt is "0") or inverted (if round constant element is "1"):
Sig.(RK;) = Sig.(K) & Sig.(fi/ai).

For the sake of brevity, we go over a9 = fo, @14 = B14, and
p1s and we do not analyze all the matrices for the constant
values; nonetheless, similar approaches can be used for them

00 1 0
01 00
w=F=1y o 1
11 1 1
1 11 0
1 1.0 0
a4 = P1a= 01 0 0
1 1 1 0
00 1 1
1 0 00
Ps=11 1 o 1
00 0 0

We present two examples for the error detection approach
of round key operation. First, let us denote the input key by K
and the output round key by RK;. Then, we have the following
for this operation in Midoril28 with constant f;, where 0 <
i <18, RK; = K @ B, and rk;, k;, and ﬁj are the matrices
entries for these states, and each element of input or output key
matrix would be 4 bits and 8 bits for Midori64 and Midoril28,
respectively.

In the first example, we derive 16 signatures, where each
signature is for the round key elements, rk; = k; @ B,
where each k; is a nibble as k;k;k}k? for Midori64 or

a byte as kJkSkokTkIk3kjk) for Midoril28. One signature

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 25, NO. 4, APRIL 2017

Error detection for Round
18 Key Generation

Error detection for Round 0
Key Generation

,,,,,,,,,,, /—%
o Sig () ! T Sig®)
| I 1 l i
| . | eee ! !
1 ?ﬁSlg.(Bﬂ)} i e?»sg‘(ﬁmi
I I
| ! H |
|_Sig(RKy | i Sig.(RK}s) i . o
Sig.(WK)= Sig.(K) Sie. (WK)= Sig. (&)
Error
detection \
Rounq 0 Round 18 presented
function function

KeyAdd
(RKy)

111-B

Subsection
111-B
MixColumn (S)
Subsection
111I-C
Subsection

ShuffleCell (S)

Fig. 3. Proposed error detection architecture for Midoril28.
Error Enc: Sig.(B)
E"O"' detection | | Error Dec: Sig.(L(B1s.)
detection flsiuteCel|”| | |getection
pre:: €]l Gswin for Mix +| | Error
. Subsec. detection
Sig.(Input] : Column etect
g.(Input) S-layer in 11I-B (MC) in adopted
Subsec.
. — Subsec. |+ for Inv ¢ .
Sig.(K) I-A HLC Shuffle Enc: Sig.(K)
Sig.(Output)l Cell (Sh™) Dec: Sig.(L~
fan) 1
N (K))

Fig. 4. Error detection architectures for the combined encryption/decryption
unit for Midoril28.

is ds:rived for each element, for instance, for Midoril28,
Sig.(rk;) = Sig. (kjkfkjkjkfkfk] (k) @ p7)), where 0 <
Jj <15, and we have intact or mverted elements of the round
key matrix.

The second scheme is based on the modulo-2 addition
of the entire elements in the state matrix to create just
one signature for error detection. We have one signature as
Sig.(tk) = 2}5:0 kj + 2}5:0 B/, for instance, for the three
matrices ag = fo, 014 = P14, and g in this scheme, and we
have the modulo-2 addition of all elements of each matrice
s "0," "1," and "0," respectively. Therefore, for RKy and
RKjg, the input signatures are intact, while for RKj4, it is
inverted.

E. Overall Presented Architecture

This section is finalized by presenting the overall structures
of the presented error detection schemes. The mentioned
error detection structures of encryption of Midoril28, which
consists of 20 rounds with a cell size of 8 bits, are depicted in
Fig. 3. The encryption function of this variant consists of the
round function and key generation in which the last round has
just the SubCell operation and the WK is modulo-2 added just
in the first and last steps. As seen in Fig. 3, we have shown
the respective subsections in which we have proposed the
error detection schemes for different operations. The predicted
signatures of each operation in round function are illustrated
in Fig. 3 as proposed in the aforementioned sections.

Moreover, Midori’s encryption and decryption signature-
based error detection architectures are also presented in

AGHAIE et al.: FAULT DIAGNOSIS SCHEMES FOR LOW-ENERGY BLOCK CIPHER MIDORI

Fig. 4. As seen in Fig. 4, the signatures of the input and
the key (“Sig.” Input and “Sig.” Key) are derived and
processed through a loop-like architecture, asserted to a mul-
tiplexer (MUX) and a register (as shown in Fig. 4). The
encryption and decryption include similar operations except
for the ShuffleCell (Sh) operation in encryption that is replaced
with InvShuffleCell (Sh™!) operation for decryption. The
error detection scheme for InvShuffleCell (Sh™!) operation
can be adopted based on the explanations in Section III-B.
Moreover, the key generation process is changed in decryption
as shown, i.e., L’I(K) instead of K and the corresponding
signatures “Sig.” (L~'(K)) and “Sig.” (L), and, correspond-
ingly, the ith round constant is replaced by L~!(f15_;) instead
of f; in Fig. 4.

We would like to emphasize that the granularity at which
the comparisons between the generated and the predicted
signatures are to be made has direct effects on reliabil-
ity, false alarm resiliency, and overhead of both perfor-
mance and implementation metrics. Let us go over three
cases.

1) One can choose to have the check points for the
entire encryption/decryption by deriving a “black-box”
signature for these processes. In such a case, we
have less overhead at the expense of the possibil-
ity of encountering masking for the error indication
flags.

2) The false alarm ratios though are the lowest for this case,
as we do not use fine-tuned multiple signatures, one
may use the error indication flags of the transformations
separately, where the formulations presented in this
paper are used for each of the check points. In such a
scheme, error coverage is higher at the expense of more
overhead and the possibility of false alarms.

3) Finally, one may choose to have finer granularity, where
each of the 4-bit S-boxes of Midori’s 8-bit S-box are
checked separately (or, for instance, the columns of the
MixColumn transformation are checked individually).
At the expense of higher overhead and higher error
coverage, such a scheme may lead to higher false alarms
ratios.

To finalize this section, let us provide three examples on the
usage models of different signatures. Simple parity codes are
capable of detecting odd faults, including single stuck-at faults,
which are the ideal cases for fault attacks. Nevertheless, their
effectiveness could be limited if fault attacks are mounted
intelligently to circumvent such protections. Moreover, VLSI
defects could result in burst faults whose detection is not pos-
sible through such signatures. Burst faults, e.g., adjacent faults,
are detected through interleaved parties at the expense of
more overhead. A third usage model would be contrasting the
signature-based diagnosis approach, which uses linear codes
that can (always) detect random errors of small multiplicity
(and can never detect some other errors), which is diverse
from an architecture based on robust codes that can detect
(with probability) any error. These two solutions have two
different goals, the first gives reliability and the second gives
hardware security (against fault attacks).

1533

‘[p1_ P2 .. PI6

§ P1,1/P1,2 P16,1/P16,2

 e2/e3 —D
i A

B

Error detection architectures for TI of the Midori.

Actual
Signature

Fig. 5.

FE. Error Detection for Threshold Implementation of Midori

For countering power analysis attacks, viable approaches
are used, e.g., masking (prone to glitches in hardware)
and its viable variant, threshold implementation (TI) for
first order [17], [18] (and its extension to higher order
attacks [19]). Protecting lightweight block ciphers against such
attacks incurs performance and complexity overheads, which
are undesirable.

The S-box of Midori is affine equivalent to the cubic
class Cye6: S has been previously introduced and can be
designed through the following approach [5]: Aou © Q12 ©
Ay o Q120 Ajp, where Aoyt {0A1B82934E5FC6D7} 16, Ap:
{84B70C3F95A61D2E} 16, Ain: {8A02DF57CE469B13} 6,
and Q1z: {0123456789C DE FAB}16. We note that as defined
in [5], fo12 is used in three instances, preceded by Aj, and
followed by A,,. After a set of registers, three instances of
fo12 are followed by Agy. In what follows, we present two
schemes that are depicted in Fig. 5 as well.

1) Scheme 1: In this scheme, knowing that the entire Aqyo
Q12 0 Ay o Q12 o Aj, produces the S-box, one can use an
S-box in parallel with TI to detect errors through comparison.
In comparison with the naive approach of duplicating the entire
Aouto Q120 Ay 0 Q12 0 A, here, we get high error coverage,
no false alarms, and low overhead.

2) Scheme 2: Through deriving signatures (for instance,
parity and interleaved parity), one can perform error detection
with lower overhead, at the expense of lower error cover-
age. The error indication flags are derived through compar-
ing the predicted signatures of S (stored in the memory,
for instance, or derived through logic gates) and the actual
signatures, which are functions of the output of the entire
Aout 0 @120 Ay 0 Q12 0 Aip.

G. Proposed Approaches in the Presence of Biased Fault
Attacks

A subset of fault attacks, differential fault intensity analysis
(see [20]-[22]), combines the idea of differential power
analysis with fault injection principles to obtain biased fault
models, whose merit is that same fault in both the original
and redundant computations can be injected, more practically,
where not all faults occur with equal probability. Practically,
the attacker is interested in using as few faults as possible
(preferably single faults with different intensities) to reduce
the effort. Previous works argue that the single-bit (more
likely in low fault intensity), two-bit, three-bit, and four-bit
(more likely in higher intensities) biased fault models can
be used to simulate variation of fault intensity. In addition,

1534

fault categories presented in [22] and [23] include single-bit
upset (SBU), single-byte double-bit upset, single-byte triple-
bit upset (SBTBU), single-byte quadruple-bit upset (SBQBU),
other single byte (OSB) faults, and multiple byte (MB)
faults, the former four corresponding to single/two/three/four-
bit models.

The proposed approaches in this paper based on error
detecting codes, column signatures, and RESI are able to
thwart a number of such fault models. Specifically, SBUs and
SBTBUs are detected fully through the approaches based on
error detecting codes and column signatures, using parities.
Moreover, through interleaved parities, in addition to burst
faults, some SBTBUs, SBQBUs, OSBs, and MBs are detected.
Error detecting codes and column signatures (parities) can
also detect OSBs and MBs, detailed in the next section
through simulations. Furthermore, RESI can detect errors with
a relatively high error coverage, presented in the next section.

Multibyte faults cannot be used practically for attacking
time redundancy countermeasure implementations, e.g., RESI,
and single-byte fault models are the only viable option for the
attackers [23]. We note that, however, the presented counter-
measures based on RESI could fail to detect the occurrence
of a fault as long as the adversary could inject the same fault
in both the original and redundant computations (biased fault
model makes it easier). The proposed RESI architecture (see
Fig. 2) can be used in conjunction with encoding schemes that
nullify the effect of the bias in the fault model by fault space
transformation (if two equivalent faults f and fi are injected
into the output registers, we use a mapping that transforms the
fault space), thwarting both these attack schemes, similar to
the schemes used in [23].

IV. ERROR SIMULATION AND FPGA BENCHMARK

The error coverage assessment and overhead benchmark of
the error detection structures are presented in this section.

A. Error Coverage

Most internal faults are modeled by transient random faults.
By relying on simulations, error coverage through multiple
stuck-at fault injections is evaluated for Midori. The results
of our performed simulations are for both transient faults
and permanent internal faults. We consider both single and
multiple stuck-at faults because these model both natural and
malicious faults (the reason is that natural faults are usually
multiple, and although single stuck-at faults are the ideal cases
for the attackers, due to technological constraints, multiple
faults occur in reality). The single-bit errors in the nibbles
(Midori64) or bytes (Midoril28) occurring at the outputs of
the linear or nonlinear components of Midori are detected
by the presented signature-based error detection approaches.
The error coverage of the proposed schemes for these single
stuck-at faults is 100%; therefore, no simulation is required for
these cases. The analytic reason is that odd faults are detected
using the proposed approaches, as the inherent property of
the signatures used, and single stuck-at faults are their subset.
We anticipate that the proposed approaches would not detect
all of the potential fault attacks, but the proposed architectures

TABLE 11
ERROR COVERAGE OF THE PROPOSED SCHEMES FOR MIDORI1128

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 25, NO. 4, APRIL 2017

Type of faults | Injected faults | Detected faults | Error coverage

Stuck-at zero 10,000 9,910 99.10%
100,000 99,890 99.89%

Stuck-at one 10,000 9,909 99.09%
100,000 99,782 99.78%

would make it more difficult to mount, e.g., analytically, more
than 99.99% of the faults injected are detected. The reason
is that multiple signatures are used for different subparts of
the architectures that alarm the errors (the error coverage of
interleaved parity, for instance, considering different transfor-
mations and rounds is 100 x (I — (0.5)%")%, where m is the
total number of use cases).

The results of our performed simulations are for both tran-
sient faults and permanent internal faults. Midoril28 encryp-
tion has been considered as reference for the fault injection
simulations. Through applying two fault injection experiments,
i.e., 10000 and 100000 faults (diverse in terms of the type of
the fault, its location, and its count), error indication flags
are monitored and the detected errors are counted for the
encryption operation. The results of the performed simulations
in Table II show that as the number of injection points is
increased, higher error coverage is obtained. We would like to
note two points on our experiment methods.

1) We have used linear-feedback shift registers (LFSRs)
to inject the faults, when random multiple faults are
required, where the location, the type, and the number
of faults are chosen by LFSRs with maximum tap
polynomials.

2) Starting with injecting 10000 faults using such a method
and through LFSRs for different assertions of the inputs,
we have increased the number of injections to get closer
to more realistic error coverages. This has been done up
to 100000 injections using the aforementioned method,
and as seen in Table II, the change in the error coverage,
although slight, hints to what we realistically would get
through an exhaustive search.

Midori’s S-boxes and MixColumn operations consume
much of the area and power consumption of the block cipher
(compared with ShuffleCell and KeyAdd). Therefore, these are
the prominent operations for protecting against injected faults.
We have presented in this paper three schemes for each
of these operations, i.e., parity/interleaved parity/swapping
the inputs for the S-boxes, and element-wise, column-wise,
and matrix-wise signatures for MixColumn. Alleviating the
error coverage of Midori can be performed through using the
schemes with higher error coverage, i.e., swapping the inputs
for the S-boxes combined with the element-wise error detec-
tion approach for MixColumn, at the expense of higher over-
head incurred. Such an improvement would be a compromise
between the reliability requirements and overhead tolerance.

B. Implementation Results

The results of the FPGA overhead assessments of our
proposed schemes are presented in this section. Through this

AGHAIE et al.: FAULT DIAGNOSIS SCHEMES FOR LOW-ENERGY BLOCK CIPHER MIDORI

TABLE III

ON VIRTEX-7 FPGA FOR xc7vx330t

FPGA IMPLEMENTATION RESULTS FOR THE ORIGINAL MIDORI1128 ENCRYPTION AND ITS PROPOSED ERROR DETECTION SCHEME

1535

. Area Delay (ns) / Efficiency
Architecture (occupied slices) Frequency (MHz) Power (mW) | Throughput (Gbps) (Mbps/slices)
Midoril128 (LUT-based) 155 2.70 (370.37 MHz) 340 47.41 305.9
Signature-based error 2.81 (4.07%)
detection for LUTS 161 (3.9%) (355.87 MHz) 367 (7.9%) 45.55 (3.9%) 282.9 (7.5%)
Midori128 (logic-based) 157 2.79 (358.42 MHz) 349 45.88 292.2
Signature-based error 3.01 (7.88%)
detection for logic-based 171 (8.9%) (332.22 MHz) 396 (13.5%) 42.52 (7.3%) 248.6 (14.9%)
Irl; attackers try to inject the faulty nibble into a specific round
Jj 8 Jjg in order to discover the secret key by examining a group of
Y6 w6 w6 w6 Y6 46 w6 w6 correct and faulty ciphertexts. After that, the attack is based
il ot it e R T sinput on solving a number of fault equations that are obtained
NN S NN LUTs through the propagation of the injected faults through the
. oo 2<4 7 qux?;tg“f;;it remainder of the encryption structure. We anticipate that
—» =P\ LUTSs and differential fault attacks, similarly, can be mounted on Midori.
MUXs Finally, we would like to note that Midori and other block
1

+ 0,0, +

Fig. 6. Structure of Midoril28 eight-input S-box implemented using Virtex-7
six-input LUTSs.

benchmarking, the overheads (degradation) are derived for
various metrics of the presented schemes. The ISE version
14.7 and Virtex-7 FPGA family (device: xc7vx330t) have been
utilized for the FPGA implementations. VHDL has been used
as the design entry for the original and the error detection
structures. As seen in Fig. 6, we have also shown the structure
of the eight-input S-box of Midoril28 using six-input LUTSs
(six LUTs in Fig. 6) and MUXs, leading to 32 of 6 LUTs.
We present the results for two of the proposed schemes
in this paper tabulated in Table III. Based on the simulation
results in this section, these overheads are added for the error
coverage of very close to 100%. The proposed fault diagnosis
approaches provide high error coverage at the expense of
acceptable overheads, making the hardware architectures of
Midori more reliable. We would like to emphasize that it is
expected to have similar overheads for other FPGA families
and also the designs on application-specific integrated circuit.
We finalize this section by investigating differential
fault attacks on a similar lightweight block cipher
to Midori, PRESENT, to study potential fault attacks on
this cipher as well. It is noted that many prior works have
been done on fault attacks of standardized ciphers such as the
AES and the DES [25]-[27]. In such attacks on lightweight
ciphers like PRESENT, the attacker compares the correct
ciphertext and the faulty one (caused by faulty operation) to
obtain the secret key [24]. Mounting such attacks can be based
on single-bit faults, single-nibble faults, or multiple-nibble
faults, which are adopted into the key schedule algorithm
during the encryption operation. According to such attacks on
PRESENT with the SPN structure (or even for the functions
in CLEFIA which is a Feistel network), potential attacks on
Midori variants can be mounted (which have round-based
architectures similar to PRESENT), to recover the subkeys in
the rounds [24], [28], [29]. In differential fault attacks, the

ciphers include controller architectures when practically
implemented. Such control blocks are also susceptible to
natural and malicious faults (see [30]) and the remedies
proposed based on programmable state flip-flops.

V. CONCLUSION

In this paper, we have presented, for the first time, the fault
diagnosis approaches for the energy-efficient lightweight block
cipher Midori. For the S-boxes within Midori, we have derived
and implemented both LUT-based and logic gate variants, and
proposed fault diagnosis schemes that can be tailored based on
the reliability and overheard objectives. The MixColumn oper-
ation has been examined to achieve a number of schemes, and
the selection of the matrices within has been carefully done
to have low-overhead detection approaches. Through FPGA
implementations using the Xilinx Virtex-7 family, it has been
shown that the overheads of the proposed architectures are
acceptable for resource-constrained applications. More reliable
architectures for Midori are achieved through the proposed
detection schemes and they can be tailored based on the
objectives in terms of reliability and overhead tolerance.

ACKNOWLEDGMENT

This work was performed under the U.S. federal agency
award 60NANB16D245 granted from the U.S. Department of
Commerce, National Institute of Standards and Technology.

REFERENCES

[1] M. Mozaffari-Kermani, M. Zhang, A. Raghunathan, and N. K. Jha,
“Emerging frontiers in embedded security,” in Proc. Conf. VLSI Design,
Jan. 2013, pp. 203-208.

[2] T. Eisenbarth, S. Kumar, C. Paar, and L. Uhsadel, “A survey of
lightweight-cryptography implementations,” IEEE Des. Test Comput.,
vol. 24, no. 6, pp. 522-533, Jun. 2007.

[3] A. Moradi, A. Poschmann, S. Ling, C. Paar, and H. Wang, “Pushing
the limits: A very compact and a threshold implementation of AES,” in
Proc. EUROCRYPT, May 2011, pp. 69-88.

[4] S. Banik et al., “Midori: A block cipher for low energy (extended
version),” in Proc. Cryptol. ePrint Arch., 2015, pp. 411-436.

[5] A. Moradi and T. Schneider. (2016). Side-Channel Analysis Protection
and Low-Latency in Action-Case Study of PRINCE and Midori. [Online].
Available: https://eprint.iacr.org/2016/481.pdf

1536

[6]

[7]

[8]

[9]

[10]

(11]

(12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]
[29]

[30]

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 25, NO. 4, APRIL 2017

M. Mozaffari Kermani, R. Azarderakhsh, C.-Y. Lee, and
S. Bayat-Sarmadi, “Reliable concurrent error detection architectures
for extended Euclidean-based division over GF(2™),” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 22, no. 5, pp. 995-1003,
May 2014.

S. Ali, X. Guo, R. Karri, and D. Mukhopadhyay, “Fault attacks on
AES and their countermeasures,” in Secure System Design Trustable
Computing. Springer, 2016, pp. 163-208.

X. Guo and R. Karri, “Recomputing with permuted operands: A concur-
rent error detection approach,” IEEE Trans. Comput.-Aided Des. Integr.
Circuits Syst., vol. 32, no. 10, pp. 1595-1608, Oct. 2013.

M. Mozaffari-Kermani, R. Azarderakhsh, and A. Aghaie, “Fault detec-
tion architectures for post-quantum cryptographic stateless hash-based
secure signatures benchmarked on ASIC,” ACM Trans. Embedded
Comput. Syst., to be published.

M. Mozaffari-Kermani and R. Azarderakhsh, “Efficient fault diagno-
sis schemes for reliable lightweight cryptographic ISO/IEC standard
CLEFIA benchmarked on ASIC and FPGA,” IEEE Trans. Ind. Electron.,
vol. 60, no. 12, pp. 5925-5932, Dec. 2013.

X. Guo, D. Mukhopadhyay, C. Jin, and R. Karri, “Security analysis of
concurrent error detection against differential fault analysis,” J. Crypto-
graph. Eng., vol. 5, no. 3, pp. 153-169, 2015.

R. Karri, G. Kuznetsov, and M. Goessel, “Parity-based concurrent error
detection of substitution-permutation network block ciphers,” in Proc.
Cryptograph. Hardw. Embedded Syst., 2003, pp. 113-124.

M. Mozaffari-Kermani, R. Azarderakhsh, and A. Aghaie, “Reliable
and error detection architectures of Pomaranch for false-alarm-sensitive
cryptographic applications,” IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 23, no. 12, pp. 2804-2812, Dec. 2015.

M. Bushnell and V. Agrawal, Essentials of Electronic Testing for Digital,
Memory and Mixed-Signal VLSI Circuits, vol. 17. New York, NY, USA:
Springer, 2000.

G. Canivet, P. Maistri, R. Leveugle, J. Clédiere, F. Valette, and
M. Renaudin, “Glitch and laser fault attacks onto a secure AES
implementation on a SRAM-based FPGA,” J. Cryptol., vol. 24, no. 2,
pp. 247-268, 2011.

X. Guo and R. Karri, “Invariance-based concurrent error detection for
advanced encryption standard,” in Proc. DAC, 2012, pp. 573-578.

S. Nikova, V. Rijmen, and M. Schléer, “Secure hardware implementation
of nonlinear functions in the presence of glitches,” J. Cryptol., vol. 24,
no. 2, pp. 292-321, 2011.

E. Boss, V. Grosso, T. Giineysu, G. Leander, A. Moradi, and
T. Schneider, “Strong 8-bit Sboxes with efficient masking in hardware,”
in Proc. LNCS Cryptograph. Hardw. Embedded Syst. (CHES), 2016,
pp. 171-193.

B. Bilgin, B. Gierlichs, S. Nikova, V. Nikov, and V. Rijmen,
“Higher-order threshold implementations,” in Proc. ASIACRYPT, 2014,
pp- 326-343.

N. FE. Ghalaty, B. Yuce, and P. Schaumont, “Analyzing the efficiency of
biased-fault based attacks,” IEEE Embedded Syst. Lett., vol. 8, no. 2,
pp. 33-36, Jun. 2016.

N. F. Ghalaty, B. Yuce, M. Taha, and P. Schaumont, “Differential fault
intensity analysis,” in Proc. FDTC, 2014, pp. 49-58.

S. Patranabis, A. Chakraborty, P. H. Nguyen, and D. Mukhopadhyay,
“A biased fault attack on the time redundancy countermeasure for AES,”
in Proc. COSADE, 2015, pp. 189-203.

S. Patranabis, A. Chakraborty, ~D. Mukhopadhyay, and
P. H. Nguyen. (2015). Using State Space Encoding to Counter
Biased Fault Attacks on AES Countermeasures. [Online]. Available:
https://eprint.iacr.org/2015/806.pdf

G. Wang and S. Wang, “Differential fault analysis on PRESENT key
schedule,” in Proc. Comput. Intell. Secur., Dec. 2010, pp. 362-366.

E. Biham and A. Shamir, “Differential fault analysis of secret key
cryptosystems,” in Proc. CRYPTO, Dec. 1997, pp. 513-525.

G. Piret and J.-J. Quisquater, “A differential fault attack technique
against SPN structures, with application to the AES and KHAZAD,”
in Proc. CHES, 2003, pp. 77-88.

M. Tunstall, D. Mukhopadhyay, and S. Ali, “Differential fault analysis of
the advanced encryption standard using a single fault,” in Proc. WISTP,
2011, pp. 224-233.

S. S. Ali and D. Mukhopadhyay, “Improved differential fault analysis
of CLEFIA,” in Proc. FDTC, Aug. 2013, pp. 60-70.

A. Kiss, J. Krdamer, and A. Stiiber, “On the optimality of differential
fault analyses on CLEFIA,” in Proc. MACIS, 2015, pp. 181-196.

A. Nahiyan, K. Xiao, K. Yang, Y. Jin, D. Forte, and M. Tehranipoor,
“AVFSM: A framework for identifying and mitigating vulnerabilities in
FSMs,” in Proc. Design Autom. Conf. (DAC), 2016, Art. no. 89.

Anita Aghaie (S’15) received the B.Sc. degree in
electrical and computer engineering from the Isfahan
University of Technology, Isfahan, Iran, in 2013.
Currently, she is pursuing the graduate degree with
the Rochester Institute of Technology, Rochester,
NY, USA, under the supervision of Prof. M.
Mozaffari-Kermani and under the co-supervision of
Prof. R. Azarderakhsh.

Her current research interests include crypto-
graphic engineering, fault diagnosis and tolerance in
digital systems, ASIC/FPGA design, and computer
arithmetic.

Mehran Mozaffari Kermani (S’00-M’11-SM’16)
received the B.Sc. degree in electrical and computer
engineering from the University of Tehran, Tehran,
Iran, in 2005, and the M.E.Sc. and Ph.D. degrees
from the Department of Electrical and Computer
Engineering, University of Western Ontario, Lon-
don, ON, Canada, in 2007 and 2011, respectively.

Dr. Mozaffari-Kermani is currently the Publica-
tions Chair for the HOST conference. He joined
the Advanced Micro Devices, Markham, Ontario,
Canada, as a Senior ASIC/Layout Designer, integrat-
ing sophisticated security/cryptographic capabilities into accelerated process-
ing. In 2012, he joined the Electrical Engineering Department, Princeton Uni-
versity, Princeton, NJ, USA, as an NSERC Post-Doctoral Research Fellow.

Dr. Kermani has been a TPC Member for a number of conferences including
DAC, DATE, RFIDSec, LightSec, WAIFI, FDTC, and DFT. He was a recipient
of the prestigious Natural Sciences and Engineering Research Council of
Canada Post-Doctoral Research Fellowship in 2011 and the Texas Instruments
Faculty Award (Douglas Harvey) in 2014. Currently, he is an Associate
Editor of the IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION
SYSTEMS, ACM Transactions on Embedded Computing Systems, and the
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I. He is a Guest Editor of
the IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING for
the Special Issue on Emerging Embedded and Cyber Physical System Security
Challenges and Innovations (2016 and 2017). He was the lead Guest Editor
of the IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND
BIOINFORMATICS and the IEEE TRANSACTIONS ON EMERGING TOPICS IN
COMPUTING for special issues on security.

Reza Azarderakhsh (M’12) received the B.Sc.
degree in electrical and electronic engineering and
the M.Sc. degree in computer engineering from the
Sharif University of Technology, Tehran, Iran, in
2002 and 2005, respectively, and the Ph.D. degree
in electrical and computer engineering from the Uni-
versity of Western Ontario, London, ON, Canada, in
2011.

He joined the Department of Electrical and Com-
puter Engineering, University of Western Ontario, as
a Limited Duties Instructor, in 2011. He has been an
NSERC Post-Doctoral Research Fellow with the Center for Applied Crypto-
graphic Research and the Department of Combinatorics and Optimization,
University of Waterloo, Waterloo, ON. His current research interests include
finite field and its application, elliptic curve cryptography, and pairing based
cryptography.

Dr. Azarderakhsh was a recipient of the prestigious Natural Sciences and
Engineering Research Council of Canada Post-Doctoral Research Fellowship
in 2012. Currently, he is an Associate Editor of the IEEE TRANSACTIONS
ON CIRCUITS AND SYSTEMS I. He is a Guest Editor of the IEEE TRANSAC-
TIONS ON DEPENDABLE AND SECURE COMPUTING for the Special Issue
on Emerging Embedded and Cyber Physical System Security Challenges
and Innovations (2016 and 2017). He is also a Guest Editor of the IEEE
TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS for
the Special Issue on Emerging Security Trends for Biomedical Computations,
Devices, and Infrastructures (2015 and 2016).

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Aachen-Bold
 /ACaslon-AltBold
 /ACaslon-AltBoldItalic
 /ACaslon-AltItalic
 /ACaslon-AltRegular
 /ACaslon-AltSemibold
 /ACaslon-AltSemiboldItalic
 /ACaslon-Bold
 /ACaslon-BoldItalic
 /ACaslon-BoldItalicOsF
 /ACaslon-BoldOsF
 /ACaslonExp-Bold
 /ACaslonExp-BoldItalic
 /ACaslonExp-Italic
 /ACaslonExp-Regular
 /ACaslonExp-Semibold
 /ACaslonExp-SemiboldItalic
 /ACaslon-Italic
 /ACaslon-ItalicOsF
 /ACaslon-Ornaments
 /ACaslon-Regular
 /ACaslon-RegularSC
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /ACaslon-SemiboldItalicOsF
 /ACaslon-SemiboldSC
 /ACaslon-SwashBoldItalic
 /ACaslon-SwashItalic
 /ACaslon-SwashSemiboldItalic
 /AGaramondAlt-Italic
 /AGaramondAlt-Regular
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-BoldItalicOsF
 /AGaramond-BoldOsF
 /AGaramondExp-Bold
 /AGaramondExp-BoldItalic
 /AGaramondExp-Italic
 /AGaramondExp-Regular
 /AGaramondExp-Semibold
 /AGaramondExp-SemiboldItalic
 /AGaramond-Italic
 /AGaramond-ItalicOsF
 /AGaramond-Regular
 /AGaramond-RegularSC
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AGaramond-SemiboldItalicOsF
 /AGaramond-SemiboldSC
 /AGaramond-Titling
 /AJensonMM
 /AJensonMM-Alt
 /AJensonMM-Ep
 /AJensonMM-It
 /AJensonMM-ItAlt
 /AJensonMM-ItEp
 /AJensonMM-ItSC
 /AJensonMM-SC
 /AJensonMM-Sw
 /AlbertusMT
 /AlbertusMT-Italic
 /AlbertusMT-Light
 /Americana
 /Americana-Bold
 /Americana-ExtraBold
 /Americana-Italic
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /AvantGarde-Demi
 /BBOLD10
 /BBOLD5
 /BBOLD7
 /BermudaLP-Squiggle
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chaparral-Display
 /CMB10
 /CMBSY10
 /CMBSY5
 /CMBSY6
 /CMBSY7
 /CMBSY8
 /CMBSY9
 /CMBX10
 /CMBX12
 /CMBX5
 /CMBX6
 /CMBX7
 /CMBX8
 /CMBX9
 /CMBXSL10
 /CMBXTI10
 /CMCSC10
 /CMCSC8
 /CMCSC9
 /CMDUNH10
 /CMEX10
 /CMEX7
 /CMEX8
 /CMEX9
 /CMFF10
 /CMFI10
 /CMFIB8
 /CMINCH
 /CMITT10
 /CMMI10
 /CMMI12
 /CMMI5
 /CMMI6
 /CMMI7
 /CMMI8
 /CMMI9
 /CMMIB10
 /CMMIB5
 /CMMIB6
 /CMMIB7
 /CMMIB8
 /CMMIB9
 /CMR10
 /CMR12
 /CMR17
 /CMR5
 /CMR6
 /CMR7
 /CMR8
 /CMR9
 /CMSL10
 /CMSL12
 /CMSL8
 /CMSL9
 /CMSLTT10
 /CMSS10
 /CMSS12
 /CMSS17
 /CMSS8
 /CMSS9
 /CMSSBX10
 /CMSSDC10
 /CMSSI10
 /CMSSI12
 /CMSSI17
 /CMSSI8
 /CMSSI9
 /CMSSQ8
 /CMSSQI8
 /CMSY10
 /CMSY5
 /CMSY6
 /CMSY7
 /CMSY8
 /CMSY9
 /CMTCSC10
 /CMTEX10
 /CMTEX8
 /CMTEX9
 /CMTI10
 /CMTI12
 /CMTI7
 /CMTI8
 /CMTI9
 /CMTT10
 /CMTT12
 /CMTT8
 /CMTT9
 /CMU10
 /CMVTT10
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /Cutout
 /EMB10
 /EMBX10
 /EMBX12
 /EMBX5
 /EMBX6
 /EMBX7
 /EMBX8
 /EMBX9
 /EMBXSL10
 /EMBXTI10
 /EMCSC10
 /EMCSC8
 /EMCSC9
 /EMDUNH10
 /EMFF10
 /EMFI10
 /EMFIB8
 /EMITT10
 /EMMI10
 /EMMI12
 /EMMI5
 /EMMI6
 /EMMI7
 /EMMI8
 /EMMI9
 /EMMIB10
 /EMMIB5
 /EMMIB6
 /EMMIB7
 /EMMIB8
 /EMMIB9
 /EMR10
 /EMR12
 /EMR17
 /EMR5
 /EMR6
 /EMR7
 /EMR8
 /EMR9
 /EMSL10
 /EMSL12
 /EMSL8
 /EMSL9
 /EMSLTT10
 /EMSS10
 /EMSS12
 /EMSS17
 /EMSS8
 /EMSS9
 /EMSSBX10
 /EMSSDC10
 /EMSSI10
 /EMSSI12
 /EMSSI17
 /EMSSI8
 /EMSSI9
 /EMSSQ8
 /EMSSQI8
 /EMTCSC10
 /EMTI10
 /EMTI12
 /EMTI7
 /EMTI8
 /EMTI9
 /EMTT10
 /EMTT12
 /EMTT8
 /EMTT9
 /EMU10
 /EMVTT10
 /EstrangeloEdessa
 /EUEX10
 /EUEX7
 /EUEX8
 /EUEX9
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /Fences
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /FreestyleScript
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Giddyup
 /GreymantleMVB
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /ICMEX10
 /ICMMI8
 /ICMSY8
 /ICMTT8
 /ILASY8
 /ILCMSS8
 /ILCMSSB8
 /ILCMSSI8
 /Impact
 /jsMath-cmex10
 /Kartika
 /Khaki-Two
 /LASY10
 /LASY5
 /LASY6
 /LASY7
 /LASY8
 /LASY9
 /LASYB10
 /Latha
 /LCIRCLE10
 /LCIRCLEW10
 /LCMSS8
 /LCMSSB8
 /LCMSSI8
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LINE10
 /LINEW10
 /LOGO10
 /LOGO8
 /LOGO9
 /LOGOBF10
 /LOGOD10
 /LOGOSL10
 /LOGOSL8
 /LOGOSL9
 /LucidaBlackletter
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaBright-Oblique
 /LucidaBrightSmallcaps
 /LucidaBrightSmallcaps-Demi
 /LucidaCalligraphy-Italic
 /LucidaCasual
 /LucidaCasual-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaNewMath-AltDemiItalic
 /LucidaNewMath-AltItalic
 /LucidaNewMath-Arrows
 /LucidaNewMath-Arrows-Demi
 /LucidaNewMath-Demibold
 /LucidaNewMath-DemiItalic
 /LucidaNewMath-Extension
 /LucidaNewMath-Italic
 /LucidaNewMath-Roman
 /LucidaNewMath-Symbol
 /LucidaNewMath-Symbol-Demi
 /LucidaSans
 /LucidaSans-Bold
 /LucidaSans-BoldItalic
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /LucidaTypewriter
 /LucidaTypewriterBold
 /LucidaTypewriterBoldOblique
 /LucidaTypewriterOblique
 /Mangal-Regular
 /MicrosoftSansSerif
 /Mojo
 /MonotypeCorsiva
 /MSAM10
 /MSAM5
 /MSAM6
 /MSAM7
 /MSAM8
 /MSAM9
 /MSBM10
 /MSBM5
 /MSBM6
 /MSBM7
 /MSBM8
 /MSBM9
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MTEX
 /MTEXB
 /MTEXH
 /MTGU
 /MTGUB
 /MTLS
 /MTLSB
 /MTMI
 /MTMIB
 /MTMIH
 /MTMS
 /MTMSB
 /MTMUB
 /MTMUH
 /MTSY
 /MTSYB
 /MTSYH
 /MT-Symbol
 /MT-Symbol-Italic
 /MTSYN
 /MVBoli
 /Myriad-Tilt
 /Nyx
 /OCRA-Alternate
 /Ouch
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Pompeia-Inline
 /Postino-Italic
 /Raavi
 /Revue
 /RMTMI
 /RMTMIB
 /RMTMIH
 /RMTMUB
 /RMTMUH
 /RSFS10
 /RSFS5
 /RSFS7
 /Shruti
 /Shuriken-Boy
 /SpumoniLP
 /STMARY10
 /STMARY5
 /STMARY7
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldOblique
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Oblique
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /UniversityRoman
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /WASY10
 /WASY5
 /WASY7
 /WASYB10
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

