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Abstract— Systolic all-one-polynomial (AOP) multipliers usu-
ally suffer from the problem of high register complexity,
especially in field-programmable gate array (FPGA) platforms
where the register resources are not that abundant. In this
paper, we have shown that the AOP-based systolic multipliers
can easily achieve low register-complexity implementations and
the proposed architectures can be employed as computation
cores to derive efficient implementations of systolic Montgomery
multipliers based on trinomials. First, we propose a novel data
broadcasting scheme in which the register complexity involved
within existing AOP-based systolic multipliers is significantly
reduced. We have found out that the modified AOP-based
structure can be packed as a standard computation core. Next,
we propose a novel Montgomery multiplication algorithm that
can fully employ the proposed AOP-based computation core. The
proposed Montgomery algorithm employs a novel precomputed-
modular operation, and the systolic structures based on this
algorithm fully inherit the advantages brought from the
AOP-based core (low register complexity, low critical-path delay,
and low latency) except some marginal hardware overhead
brought by a precomputation unit. The proposed architectures
are then implemented by Xilinx ISE 14.1 and it is shown that
compared with the existing designs, the proposed designs achieve
at least 61.8% and 47.6% less area-delay product and power-
delay product than the best of competing designs, respectively.

Index Terms— All one polynomial (AOP), finite field
multiplication, irreducible trinomials, low register complexity,
Montgomery algorithm, systolic structure.

I. INTRODUCTION

F INITE field multiplication over G F(2m) is a major com-
ponent of elliptic curve cryptography (ECC), which can

be used in various applications, such as wearable devices
and portable systems [1]–[4]. Basically, there are two bases,
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polynomial basis [5]–[13] and normal basis [14]–[17], which
can be selected to represent the field operations. Nevertheless,
in hardware realization, polynomial basis multipliers usually
have simpler hardware structures than normal basis ones and
hence are more widely used [8].

All-one-polynomials (AOPs) and trinomials are
two of the important irreducible polynomials being
used [7]–[11], [17]–[26]. The AOP-based multipliers can be
used for the nearly AOP, which could be used for efficient
realization of cryptosystems [24]. The AOP-based structures
can be used as a kernel circuit for field exponentiation,
inversion, and division architectures [24], while trinomial-
based multipliers are more popular than AOP-based ones,
as two trinomials have been recommended by the National
Institute of Standards and Technology (NIST) for ECC
implementation [5]. However, because of the complexity
differences, AOPs and trinomials are not usually considered
together in practical field multiplication implementations [18].

There are basically two kinds of structures for multipliers
over G F(2m): systolic design and nonsystolic design. Systolic
multipliers over G F(2m) based on irreducible polynomi-
als are preferred in high-performance applications due to
their features, such as modularity and regularity [5]–[11].
Systolic structures also have high register complexity, since
all processing elements (PEs) in the systolic array need to use
registers for pipelining [5], while nonsystolic designs usually
have lower complexity with larger critical-path delay.

For practical applications, especially in field-programmable
gate array (FPGA) platforms, where the register resources are
not that abundant, low register-complexity systolic structures
are required. Many efforts have been reported to reduce
the register complexity in systolic multipliers based on irre-
ducible AOPs and trinomials [7]–[10], [23]–[26]. A bit-parallel
AOP-based systolic multiplier has been introduced in [23].
Furthermore, another efficient AOP-based design is presented
in [24]. Moreover, one low-complexity systolic Montgomery
AOP-based multiplier has been proposed in [7]. Lee et al. [7]
presented a bit-parallel systolic trinomial multiplier. Meher [8]
proposed efficient bit-parallel systolic and supersystolic
designs. Xie et al. [9] introduced a low register-complexity
systolic structure. Very recently, Montgomery systolic multi-
pliers were presented where the register count was efficiently
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reduced [10]. Several other works were reported for efficient
realization of finite field Montgomery multiplication over
G F(2m) [11], [17].

Based on the above discussion, in this paper, we introduce
a novel strategy to design low register-complexity structures
for multiplications over G F(2m). First, two low register-
complexity AOP-based systolic multipliers are proposed.
Then, the two designs are optimized as standard computa-
tion cores. After that, an efficient Montgomery multiplication
algorithm (for trinomials) based on a novel precomputed-
modular (PCM) operation for low register-complexity imple-
mentation is proposed. The proposed structures based on the
proposed Montgomery algorithm can successfully employ the
proposed AOP-based cores. Finally, FPGA implementation
results are presented to confirm the efficiency of the proposed
architectures.

The rest of this paper is organized as follows. The pro-
posed AOP-based computation core is presented in Section II.
The applications of the proposed AOP-based core, namely,
the proposed Montgomery algorithm and systolic multipliers
for trinomials, are described in Section III. In Section IV,
we benchmark the hardware and time complexities of the
proposed designs along with the corresponding existing works.
Conclusions are given in Section V.

II. LOW REGISTER-COMPLEXITY AOP-BASED SYSTOLIC

MULTIPLIERS (AOP-BASED COMPUTATION CORE)

In this section, we briefly review the AOP-based
multiplication algorithm first, and then present our proposed
architectures based on the existing structures.

A. Review of AOP Multiplication Algorithm [24]

For simplicity of discussion, let f (α) = αk + αk−1 + · · · +
α + 1 be an irreducible AOP of degree k over G F(2) (where
k + 1 is prime and 2 is the primitive modulo k + 1). For any
x ∈ G F(2), and x is a root of f (α) = 0, we have

f (x) + x f (x) = (xk + xk−1 + · · · + x + 1)

+ x(xk + xk−1 + · · · + x + 1)

= xk+1 + 1 = 0 (1)

and then we have

xk+1 = 1. (2)

Then, let {xk+1, xk, . . . , x, 1} be the extended polynomial
basis [27]. For any A, B, C ∈ G F(2m), these can be repre-
sented in the extended polynomial basis as

A =
k∑

j=0

a j x j

B =
k∑

j=0

b j x j

C =
k∑

j=0

c j x j (3)

where a j , b j , c j ∈ G F(2), for 0 ≤ j ≤ k − 1, and ak = 0,
bk = 0, and ck = 0.

Fig. 1. Conventional systolic structure of AOP-based multiplication
(structure-I: S-I), where BSC denotes the bit-shifting cell and the black box
denotes the registers. (a) Structure. (b) Internal structure of PE-1. (c) Internal
structure of regular PE. (d) Internal structure of PE-2.

Let us define C as the product of A and B , and then we
have

C = A · B mod f (x) (4)

which can be written in this form

C =
k∑

j=0

b j (x j · A mod f (x)). (5)

Let us define A0 = A and Ai = xi · A mod f (x), such that
Ai+1 can be obtained from Ai as

Ai+1 = x · Ai mod f (x). (6)

Then, we have

Ai+1 = (
ai

0x + ai
1x2 + · · · + ai

k · xk+1)mod f (x) (7)

where

Ai =
k∑

j=0

ai
j x j . (8)

Then, we have

Ai+1 = ai+1
0 + ai+1

1 x + · · · + ai+1
k xk (9)

where

ai+1
0 = ai

k

ai+1
j = ai

j−1, for 1 ≤ j ≤ k − 1. (10)

One can also extend to obtain Ai+l from Ai for 1 ≤ l ≤ k,
such that

ai+l
j = ai

k−l+ j+1 for 0 ≤ j ≤ l − 1

ai+l
j = ai

j−l otherwise. (11)

B. Existing Systolic Structures

The conventional systolic structure based on the algorithm
in Section II-A is shown in Fig. 1 (structure-I: S-I), where it
consists of (k + 1) PEs (including three types of PEs: PE-1,
PE-2, and regular PE). The internal structures of these PEs are
shown in Fig. 1(b)–(d), respectively, where BSC denotes the
bit-shifting cell. The latency of the structure in Fig. 1 is (k+1)
cycles, where the duration of each cycle period is TA +TX (TA

and TX refer to the delays of an AND gate and an XOR gate,
respectively).
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Fig. 2. Existing low critical-path structure of [24] for AOP-based
multiplication (structure-II: S-II), where the black box denotes the registers.
(a) Structure. (b) Internal structure of PE-1. (c) Internal structure of PE-2.
(d) Internal structure of regular PE. (e) Internal structure of PE-3.

Fig. 3. Modified structure-I (MS-I), where the black box denotes the registers.
For AOP implementation, we can remove the PE inside the dotted area since
bk = 0, but for the formation of standard computation core, this PE will be
preserved. (a) MS-I. (b) Internal structure of PE-1. (c) Internal structure of
regular PE.

A recent work has presented a low critical-path delay
systolic structure (only TX ) [24], and it is shown in Fig. 2
(structure-II: S-II). The entire structure contains (k + 2) PEs,
where the internal structures of PEs are shown in Fig. 2(b)–(e),
respectively. The latency of this structure is (k + 2) cycles
(critical-path delay: TX ).

C. Modified Low Register-Complexity Structures

For the structures of Figs. 1 and 2, we find that k2 registers
in the PEs pipeline identical data (in shifted order) to the
neighboring PEs. These registers can be removed if we change
the broadcasting strategy. As shown in Figs. 3 and 4, i.e., MS-I
and MS-II, a shifted connection strategy is used in which the
input A is directly fed to each PE and thus reduces the registers
required. Moreover, the details of shifted connection are also
shown in Figs. 3 and 4. To reduce the complexity further, we
have used NAND and XNOR gates to replace the original AND

and XOR gates, as depicted in [7] and [11] (the critical-path
delay is then shortened to TNA + TXN, where TNA and TXN
represent the delays of NAND and XNOR gates, respectively,
as evidenced by the normalized area and delay comparison
of various logic gates shown in Table I). It is noted that for
AOP-based multiplication, the last PE (inside the dotted box)
can be removed as bk = 0. The modified structures involve
nearly the same time complexity as the previous ones, but the
register complexity is significantly reduced.

D. Low-Latency Implementations

For practical applications, we can further reduce the laten-
cies of structures shown in Figs. 3 and 4, for k + 1 = pq + f ,

Fig. 4. Modified structure-II (MS-II), where the black box denotes the
registers. For AOP implementation, we can remove the PE inside the dotted
area since bk = 0, but for the formation of standard computation core, this
PE will be preserved. (a) MS-II. (b) Internal structure of PE-1. (c) Internal
structure of PE-2. (d) Internal structure of regular PE. (e) Internal structure
of PE-3.

TABLE I

NORMALIZED AREA AND DELAY COMPLEXITIES FOR VARIOUS

LOGIC GATES BASED ON 45-nm TECHNOLOGY

Fig. 5. Low-latency implementation of systolic structure, where the internal
PEs can be those of MS-I or MS-II.

where 0 ≤ f ≤ q . Without loss of generality, we assume
f = 0, and then, we can decompose the original systolic
array of k +1 PEs into p parallel arrays to achieve low-latency
implementations, as shown in Fig. 5. An extra pipelined adder
tree consisting of XNOR gates and registers is needed to add
the results from p arrays together to yield the final result C .

E. Digit-Parallel Structures

We can combine neighboring PEs in a systolic array into
one PE to reduce the register usage further. Fig. 6 shows
an example of combining two neighboring PEs into one PE
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TABLE II

COMPARISON OF AREA-TIME COMPLEXITIES OF VARIOUS SYSTOLIC AOP-BASED MULTIPLIERS

Fig. 6. PE design for digit-parallel implementation (d = 2, based on the PEs
from MS-I). (a) Original two neighboring PEs. (b) Combined PE. (c) Internal
structure of previous two PEs. (d) Internal structure of combined PE.

(based on the PEs from MS-I). The critical-path delay of the
new PE thus turns into (TNA+2TXN). For simplicity, we define
the structure based on new PE in Fig. 6(b) as a digit-level
parallel structure with digit size d = 2. If we choose the value
of d appropriately, the proposed architecture can achieve the
optimal area-time complexity for specific applications.

F. Area-Time Complexities

The area-time complexities of the proposed designs in
Figs. 3–6 are shown in Table II, along with the existing
and conventional designs of Figs. 1 and 2. It can be seen
that the proposed designs involve significantly less area-time
complexity when compared with competing ones, especially
in terms of the register complexity.

G. FPGA Implementation of Various AOP-Based Structures

We have also implemented these AOP-based systolic struc-
tures to confirm the efficacy of the proposed structures.
We have synthesized these designs using Xilinx ISE 14.1 on
Virtex 6 FPGA family with k = 162. The results in terms of
area-time-power complexity are shown in Table III.

It can be seen that the proposed structures outperform
the existing ones, especially for area complexity. Since there
is only a minor difference between the critical-path delays
of TNA + TXN and TXN on FPGA platforms, the proposed
MS-II does not have a significant advantage over existing ones.
Therefore, the proposed MS-I can be used more widely than
MS-II in practical applications.

H. AOP-Based Computation Core

To fully utilize the special property of the proposed
AOP-based multipliers, we pack the structure of Fig. 5

TABLE III

FPGA IMPLEMENTATION RESULTS OF VARIOUS AOP-BASED

MULTIPLIERS FOR k = 162

Fig. 7. AOP-based standard computation core, where the internal PEs can
be those of MS-I or MS-II (the internal structure can be as that of Fig. 5,
based on specific application environment).

(or combine with the structure of Fig. 6) as a standard
computation core. The standard computation core is shown in
Fig. 7, which consists of k+1 input bits from A, k+1 bits from
input B , and k + 1 bits of output C . For practical applications
of this standard computation core, we can replace k + 1 with
any other integer. It is noted that both PEs of MS-I and MS-II
can be used as internal structures for this computation core.

III. APPLICATION OF THE PROPOSED AOP-BASED

COMPUTATION CORE

In this section, we focus on the application of the
AOP-based computation core to obtain a low register-
complexity Montgomery multiplication based on trinomials.
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A. Montgomery Multiplication Algorithm

Let f (x) be a degree m irreducible trinomial over GF(2) as

f (x) = xm + xn + 1 (12)

where 1 ≤ n ≤ m − 1, such that we can have the Montgomery
multiplication as [12]

C = A · B r−1mod f (x) (13)

where A and B and their product C are elements in GF(2m)
as A = ∑m−1

i=0 ai x i , B = ∑m−1
i=0 bi x i , and C = ∑m−1

i=0 ci x i ,
for {a j , b j , and c j }∈GF(2); r is the Montgomery factor that
satisfies gcd(r, f (x)) = 1 (gcd refers to the greatest common
divisor). Different algorithms have different selections of r to
have the corresponding structures, as shown in [10]–[12].

In this algorithm, we have chosen r = xt = x (m−1)/2

(for the NIST recommended trinomials, m is an odd number).
Then, (13) can be expressed as

C = A · B r−1mod f (x)

=
m−1∑

i=0

bi(A · xi · x−t )mod f (x) = C1 + C2 (14)

where

C1 =
t−1∑

i=0

bi · A · xi−t mod f (x)

C2 =
m−1∑

i=t

bi · A · xi−t mod f (x). (15)

For C1, we define A(0)
1 = A, A(1)

1 = A · x−1mod f (x), . . .,
A(t)

1 = A · x−t mod f (x). Then, we have

A(i+1)
1 = A(i)

1 · x−1mod f (x) (16)

where 0 ≤ i ≤ t − 1. C1 can be expressed as

C1 =
t∑

i=1

A(i)
1 bt−i . (17)

Let us define

A(i)
1 = a(i)

1,0 + a(i)
1,1x + · · · + a(i)

1,m−1xm−1. (18)

Then, we have

A(i+1)
1 = a(i)

1,0x−1 + a(i)
1,1 + · · · + a(i)

1,m−1xm−2

= a(i+1)
1,0 + a(i+1)

1,1 x + · · · + a(i+1)
1,m−1xm−1. (19)

Since x is the root of f (x) = xm + xn + 1, we can have
xm + xn = 1 and xm−1 + xn−1 = x−1. Substituting these
into (19) yields

a(i+1)
1,m−1 = a(i)

1,0

a(i+1)
1,n−1 = a(i)

1,n ⊕ a(i)
1,0

a(i+1)
1, j = ai

1, j+1 (20)

for 0 ≤ j ≤ m − 2 and j �= n.
Similarly, for C2, we can define A(0)

2 = A, A(1)
2 = A ·

x mod f (x), . . ., A(t)
2 = A · xt mod f (x) and A(i+1)

2 = A(i)
2 ·

x mod f (x) (where 0 ≤ i ≤ t − 1). With these definitions,
C2 can be expressed as

C2 =
t∑

i=0

A(i)
2 bi+t . (21)

Let us define again A(i)
2 = a(i)

2,0 +a(i)
2,1x +· · ·+a(i)

2,m−1xm−1.
Similarly, we have

a(i+1)
2,0 = a(i)

2,m−1

a(i+1)
2,n = a(i)

2,n−1 ⊕ a(i)
2,m−1

a(i+1)
2, j = a(i)

2, j−1 (22)

for 1 ≤ j ≤ m − 1 and j �= n.

B. Proposed Montgomery Multiplication Algorithm

Equations (12)–(22) represent the standard Montgomery
multiplication process. To facilitate the Montgomery multipli-
cation suitable for employing the proposed AOP-based com-
putation core, we present the following proposed algorithm.

Let xm be an extended polynomial basis. From (19), we
define

A(1)
U =

m∑

i=0

a(1)
U,i x

i = a(1)
U,0 + a(1)

U,1x + · · · + a(1)
U,m xm (23)

where

a(1)
U,0 + a(1)

U,1x + · · · + a(1)
U,m−1xm−1 =

m−1∑

i=0

a(0)
i x i

a(1)
U,m = a(1)

1,n−1 = a(0)
n ⊕ a(0)

0 (24)

such that a(1)
U,i x

i (0 ≤ i ≤ m − 1) and a(1)
U,i x

i (0 ≤ i ≤ n − 1,

n + 1 ≤ i ≤ m) can be selected to constitute A(0)
1 and A(1)

1 ,
respectively, that is

ξ
(

A(1)
U , 0

) = A(0)
1

ξ
(

A(1)
U , 1

) = A(1)
1 (25)

where ξ(·) represents the bit-selection operation.
We can similarly extend (23) to A(2)

U = ∑m+1
i=0 a(2)

U,i x
i =

a(2)
U,0 + · · · + a(2)

U,m+1xm+1, where xm+1 is an extended poly-
nomial basis and

a(2)
U,0 + a(2)

U,1x + · · · + a(2)
U,m−1xm−1 =

m−1∑

i=0

a(0)
i x i

a(2)
U,m = a(1)

1,n−1 = a(0)
n ⊕ a(0)

0

a(2)
U,m+1 = a(2)

1,n−1 = a(1)
n ⊕ a(1)

0 = a(0)
n+1 ⊕ a(0)

1 . (26)

Thus, a(2)
U,i x

i (0 ≤ i ≤ m − 1), a(2)
U,i x

i (0 ≤ i ≤ n − 1,

n+1 ≤ i ≤ m), and a(2)
U,i x

i (0 ≤ i ≤ n−2, n+1 ≤ i ≤ m+1),

respectively, can be chosen to construct A(0)
1 , A(1)

1 , and A(2)
1 ,

that is

ξ
(

A(2)
U , 0

) = A(0)
1

ξ
(

A(2)
U , 1

) = A(1)
1

ξ
(

A(2)
U , 2

) = A(2)
1 . (27)



730 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 25, NO. 2, FEBRUARY 2017

In conclusion, we can have

A(t)
U =

m+t−1∑

i=0

a(t)
U,i x

i

= a(t)
U,0 + · · · + a(t)

U,m+t−1xm+t−1 (28)

where xm+1, . . . , xm+t−1 are defined as extended polynomial
basis and (applicable to two trinomials recommended by NIST,
where m − n > t)

a(t)
U,0 + a(t)

U,1x + · · · + a(t)
U,m−1xm−1 =

m−1∑

i=0

a(0)
1,i x i

a(t)
U,m+ j−1 = a(0)

1,n+ j ⊕ a(0)
1, j−1 (1 ≤ j ≤ n + 1)

· · · · · · · · ·
a(t)

U,m+t−n−1+ j = a(0)
1,n+ j ⊕ a(0)

1, j ⊕ a(0)
1,2n+ j+1

(1 ≤ j ≤ t − n − 1) (29)

where a(t)
U,i x

i (0 ≤ i ≤ m − 1), a(t)
U,i x

i (0 ≤ i ≤ n − 1,

n+1 ≤ i ≤ m), . . ., a(t)
U,i x

i (0 ≤ i ≤ n−t , n+1 ≤ i ≤ m+t−1)

can be chosen, respectively, to construct A(0)
1 , A(1)

1 , . . ., and
A(t)

1 , that is

ξ(A(t)
U , 0) = A(0)

1

ξ(A(t)
U , 1) = A(1)

1

· · · · · · · · ·
ξ(A(t)

U , t) = A(t)
1 . (30)

Similarly, for C2, we have

A(t)
V =

m+t−1∑

i=0

a(t)
V ,i x

i

= a(t)
V ,0 + · · · + a(t)

V ,m+t−1xm+t−1 (31)

and (applicable to two trinomials recommended by NIST,

where m − n > t)

a(t)
V ,0 + a(t)

V ,1x + · · · + a(t)
V ,m−1xm−1 =

m−1∑

i=0

a(0)
2,i x i

a(t)
V ,m+ j−1 = a(0)

2,n− j ⊕ a(0)
2,m− j (1 ≤ j ≤ t). (32)

Similar to (27), we can have

ξ(A(t)
V , 0) = A(0)

2

ξ(A(t)
V , 1) = A(1)

2

· · · · · · · · ·
ξ(A(t)

V , t) = A(t)
2 . (33)

Based on the above, (14) can be rewritten as

C = C1 + C2

= Abt +
t∑

i=1

(
ξ
(

A(t)
U , i

)
bt−i + ξ

(
A(t)

V , i
)
bi+t

)
. (34)

Algorithm 1 Proposed Montgomery Multiplication

From (28) and (29) and (32) and (33), we can derive A(t)
U

and A(t)
V directly from operand A through XOR operations, and

thus, we define this operation as PCM operation as

A(t)
U = PCM(A, U)

A(t)
V = PCM(A, V ). (35)

Based on (23)–(35), the proposed Montgomery multiplica-
tion algorithm for employing the AOP-based computation core
is thus given in Algorithm 1.

In Algorithm 1, Step 2.2 refers to the bit-parallel multi-
plication process. According to the proposed algorithm, we
generate operands at the first cycle period, and then, they
are distributed into t partial products to be accumulated
in a systolic way, which greatly facilitates employing the
proposed AOP-based computation core, since all involved bits
are already generated from PCM (the details can be seen
in Section III-C).

C. Proposed Low Register-Complexity Systolic Structure
Employing the AOP-Based Computation Core

The proposed structure based on the proposed Algorithm 1
(employing the proposed AOP-based computation core) is
shown in Fig. 8(a). It contains one AOP-based computation
core and three extra PEs. PE-0 yields two outputs (each output
with m + t − 1 bits) to the computation core to be selectively
connected with m − 1 input ports. As shown in Fig. 8(c),
PE-0 performs the PCM of operand A and yields two outputs
(A(t)

U and A(t)
V ) to the computation core, respectively (m bits

of operand A are shared). The PCM of (32) only takes one
TX delay, while the PCM of (29) takes 2TX . To lower the
critical-path delay, we have used two-stage XOR operations to
minimize the critical-path delay to one XOR delay [stage-I uses
the least number of XOR gates required by (29), while stage-II
realizes the rest of operations of (29) and (32)], as shown by an
example design in Fig. 9. PE-1 calculates the multiplication
of operand A and bt according to Algorithm 1, while PE-2
functions as the final addition to produce the output C .

The internal structure of the AOP-based computation core
is shown in Fig. 8(b), where we have used PEs from MS-I
as internal PEs for e = 2 (one can extend the structure to



CHEN et al.: FPGA REALIZATION OF LOW REGISTER SYSTOLIC AOP MULTIPLIERS 731

Fig. 8. Proposed low register-complexity systolic multiplier based on the AOP-based computation core (MS-I), where the black box denotes the registers.
(a) Proposed structure. (b) Internal structure of the AOP-based computation core (MS-I, where e = 2). (c) Detailed design of PE-0. (d) Detailed design of
PE-1. (e) Detailed design of regular PE. (f) Detailed design of PE-2.

Fig. 9. Detailed design of two-stage XOR operations in PE-0 for trinomial
f (x) = x233 + x74 + 1, where the black box denotes bit register.

any value of e). The computation core contains (2t + 1) PEs,
where the detailed designs of PEs are shown in Fig. 8(d)–(f),
respectively. PE-1 performs multiplication between one
m-bit operand and one bit of operand B and then yields the
result to their right. The regular PE performs multiplication
between selected operand and one bit of operand B . The result
of multiplication is added with the input from previous PE
and then produces the result to the PE on its right. The last
PE, PE-2, performs the addition of two systolic arrays and
yields the final result.

The critical-path delay of the proposed multiplier of Fig. 8
is (TNA +TXN) (if we choose the PEs from MS-II, the critical-
path delay will be TXN). The proposed design gives the first
output of desired product (t + 3) cycles after the pair of
operands are fed to the structure, while the successive outputs
are produced in every cycle thereafter.

D. Low-Latency Structure

Let 2t = eh + l, where 0 ≤ l ≤ h. For simplicity, we can
assume l = 0; however, it can be extended to l �= 0. Then, we

Fig. 10. Proposed low-latency systolic multiplier.

can rewrite (34) as

C = Abt +
h∑

i=1

(
ξ
(

A(t)
U , i

)
bt−i + ξ

(
A(t)

V , i
)
bi+t

)

+
2h∑

i=h+1

(
ξ
(

A(t)
U , i

)
bt−i + ξ

(
A(t)

V , i
)
bi+t

)

+ · · · + · · · + · · ·
+

t∑

i=t−h+1

(
ξ
(

A(t)
U , i

)
bt−i + ξ

(
A(t)

V , i
)
bi+t

)
. (36)

where the original two systolic arrays in the computation core
of Fig. 8 can be divided into e arrays (each array has h PEs), as
shown in Fig. 10. The latency of the structure in Fig. 10 is only
(h +3+�log2e�) cycles (PE-0 and PE-1 take two cycles to be
processed in parallel, while the adder tree and PE-2 require
�log2e� and one cycle, respectively), which is significantly
shorter than the previous one in Fig. 1. A pipelined adder tree
is used to add together the results of e systolic arrays of the
computation core.
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TABLE IV

COMPARISON OF AREA-TIME COMPLEXITIES OF VARIOUS SYSTOLIC MULTIPLIERS BASED ON TRINOMIALS

E. Digit-Parallel Structure

We can also employ the PEs from Fig. 6 to have digit-
parallel structure to reduce the register complexity further.
It is noted that the digit-parallel structure can be combined
with the low latency one to achieve optimal implementation.

IV. AREA AND TIME COMPLEXITIES

In this section, we benchmark the hardware and time
complexities of the proposed architectures.

A. Comparison

The area and time complexities in terms of logic gate count,
register count, latency, and critical-path delay of the proposed
and existing structures of [7]–[10] are listed in Table IV.

The proposed architectures outperform the existing ones,
especially in the register count. The proposed architectures
have lower area-time complexity than the design of [7]. When
compared with the low-latency supersystolic structure of [8],
the proposed architecture (Fig. 10) has shorter latency (if we
choose e = √�m�) and less registers. Furthermore, when
compared with the two architectures in [9] and [10], the
proposed architectures not only have lower register count,
but also constitute significantly lower latency. Among all the
existing architectures, only the work of [8] and [9] has pro-
posed the similar digit-parallel structures, as shown in Fig. 6.
From Table IV, it is shown that the proposed digit-parallel

TABLE V

COMPARISON OF REGISTER COUNT AND LATENCY
OF VARIOUS BIT-PARALLEL MULTIPLIERS

structures have less register count and shorter latency than
those of [8] and [9].

For a fair benchmark, we have also given the comparison
of register count and latency of various architectures based on
trinomials f (x) = x233+x74+1 and f (x) = x409+x87+1, as
shown in Table V. It can be seen that the proposed architecture,
especially Fig. 8 (MS-I), has the highest efficiencies in terms
of both register count and latency.

B. FPGA Implementations

We have implemented the proposed architectures, including
the structures of Fig. 8 (e = 2) and Fig. 10 (e = 16 and d = 2),



CHEN et al.: FPGA REALIZATION OF LOW REGISTER SYSTOLIC AOP MULTIPLIERS 733

TABLE VI

COMPARISON OF AREA-TIME COMPLEXITIES OF VARIOUS
MULTIPLIERS BASED ON TRINOMIALS

using Xilinx ISE 14.1 on the Virtex 6 FPGA family based on
the trinomials f (x) = x233 + x74 + 1 and f (x) = x409 +
x87 +1. The area-time-power complexities of the best existing
designs [9], [10, Fig. 3] are also obtained. The area-time-power
complexities of all these designs are shown in Table VI.

As shown in Table VI, the proposed structures significantly
outperform the existing designs. The proposed structures are
found to have at least 61.8% and 47.6% less area-delay product
(ADP) and power-delay product (PDP) than the state-of-the-
art previous architectures, respectively. It is also noted that as
field-size increases from 233 to 409, the proposed structures
are found to be more efficient in area-time-power complexities,
e.g., the proposed designs have at least 61.8% and 47.6% less
ADP and PDP than the existing architectures at G F(2233),
while the proposed ones have at least 66.2% and 56.2% less
ADP and PDP than the competing ones at G F(2409).

C. Discussion

It is noted that from Table VI, the proposed architecture
of Fig. 10 (e = 16 and d = 2) achieves the best area-
time complexity among all the designs. The reduction of
registers brought by digit-parallel implementation is signifi-
cant. For practical applications, one can choose suitable values
of d (coordinating with the selection of e) to obtain optimal
realizations based on the usage models and performance and
implementation objectives.

It is worth mentioning that after packing as a com-
putation core, the AOP-based multipliers can be used as

a regular component in practical cryptosystems usage though
AOP-based designs are usually not preferable in such systems
due to security issues [5]. In the future, we plan to extend the
AOP-based cores to pentanomial-based cryptosystems.

V. CONCLUSION

An efficient, new scheme for low-complexity implementa-
tion of finite field multipliers over G F(2m) based on trinomials
benchmarked on the FPGA platform has been proposed. We
have proposed a modified data broadcasting technique to
reduce the register complexity within the existing AOP-based
multipliers. Then, the AOP-based multipliers have been packed
as standard computation cores to be used for trinomial-based
multipliers. Moreover, a novel low register-complexity Mont-
gomery multiplication algorithm for systolic trinomial-based
finite field multipliers is presented. The systolic multiplier
based on the proposed algorithm can employ the AOP-based
computation core to offer low register-complexity implemen-
tations. We have also introduced structures for low-latency and
digit-parallel implementations. Both the theoretical analysis
and the FPGA implementation results have confirmed the
higher efficiency of the proposed architectures compared with
the competing ones.
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