208 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-I: REGULAR PAPERS, VOL. 64, NO. 1, JANUARY 2017

Reliable Low-Latency Viterbi Algorithm

Architectures Benchmarked
on ASIC and FPGA

Mehran Mozaffari Kermani, Senior Member, IEEE, Vineeta Singh, Member, IEEE,
and Reza Azarderakhsh, Member, IEEE

Abstract—The Viterbi algorithm is commonly applied to a
number of sensitive usage models including decoding convo-
lutional codes used in communications such as satellite com-
munication, cellular relay, and wireless local area networks.
Moreover, the algorithm has been applied to automatic speech
recognition and storage devices. In this paper, efficient error
detection schemes for architectures based on low-latency,
low-complexity Viterbi decoders are presented. The merit of
the proposed schemes is that reliability requirements, overhead
tolerance, and performance degradation limits are embedded
in the structures and can be adapted accordingly. We also
present three variants of recomputing with encoded operands
and its modifications to detect both transient and permanent
faults, coupled with signature-based schemes. The instrumented
decoder architecture has been subjected to extensive error
detection assessments through simulations, and application-
specific integrated circuit (ASIC) [32 nm library] and field-
programmable gate array (FPGA) [Xilinx Virtex-6 family]
implementations for benchmark. The proposed fine-grained
approaches can be utilized based on reliability objectives and
performance/implementation metrics degradation tolerance.

Index Terms—Error detection, look-ahead
recomputing with encoded operands, trellis.

technique,

I. INTRODUCTION

HE VITERBI algorithm is an efficient method for decod-
ing convolutional codes [1], widely used in communica-
tion systems. This algorithm is utilized for decoding the codes
used in various applications including satellite communication,
cellular, and radio relay. Moreover, the Viterbi decoder has
practical use in implementations of high-speed (5 to 10 Gb/s)
serializer-deserializers (SERDESs) which have critical latency
constraints. SERDESs can be further used in local area and
synchronous optical networks of 10 Gb/s. Furthermore, they
are used in magnetic or optical storage systems such as hard
disk drive or digital video disk [2].
The Viterbi algorithm process is similar to finding the most-
likely sequence of states, resulting in sequence of observed
events and, thus, boasts of high efficiency as it consists of

Manuscript received February 3, 2016; revised July 12, 2015; accepted
September 14, 2016. Date of publication October 26, 2016; date of current
version January 6, 2017. This paper was recommended by Associate Editor
Y. Ha.

M. Mozaffari Kermani and V. Singh are with the Department of Elec-
trical and Microelectronic Engineering, Rochester Institute of Technology,
Rochester, NY 14623 USA (e-mail: m.mozaffari @rit.edu; vxs9946@rit.edu).

R. Azarderakhsh is with the Department of Computer and Electrical Engi-
neering and Computer Science and is an I-SENSE Fellow, Florida Atlantic
University, Boca Raton, FL, USA (e-mail: razarderakhsh@fau.edu).

Digital Object Identifier 10.1109/TCSI1.2016.2610187

finite number of possible states. Viterbi decoders are com-
posed of three major components: branch metric unit (BMU),
add-compare-select (ACS) unit, and survivor path memory
unit (SMU). BMU generates the metrics corresponding to
the binary trellis depending on the received signal, which is
given as input to ACS which, then, updates the path metrics.
SMU is responsible for managing the survival paths and
giving out the decoded data as output. BMU and SMU units
happen to be purely forward logic. ACS recursion consists of
feedback loops. Therefore, the speed is limited by the iteration
bound [3]. Thus, the ACS unit becomes the speed bottleneck
for the system. M-step look-ahead technique can be used to
break the iteration bound of the Viterbi decoder of constraint
length K [4]-[10]. A look-ahead technique can combine
several trellis steps into one trellis step, and if M > K,
then throughput can be increased by pipelining the ACS
architecture, which helps in solving the problem of iteration
bound, and is frequently used in high-speed communication
systems. Branch metric precomputation (BMP) which is in the
front end of ACS is resulted due to the look-ahead technique
and it dominates the overall complexity and latency for deep
look-ahead architectures. BMP consists of pipelined registers
between every two consecutive steps and combines binary
trellis of multiple-steps into a single complex trellis of one-
step. Before the saturation of the trellis, only add operation
is needed. After the saturation of the trellis, add operation
is followed by compare operation where the parallel paths
consisting of less metrics are discarded as they are considered
unnecessary.

Although Viterbi algorithm architectures are used
commonly in decoding convolutional codes, in the presence
of very-large-scale integration (VLSI) defects, erroneous
outputs can occur which degrade the accuracy in decoding
of convolutional codes. In digital systems, errors can happen
through various causes including alpha particles from package
decay, cosmic rays creating energetic neutrons and protons,
and thermal neutrons. In advanced process technologies, errors
can occur due to device shrinking, reduced power supply
voltages, and higher operating frequencies which increase
the probability of transient errors which can significantly
affect reliability of computations. In addition, single event
upsets and single event transients are generated due to cosmic
rays which create energetic protons and neutrons, thermal
neutrons, random noise, or signal integrity problems all
resulting in device errors. As it is important to counteract

1549-8328 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

MOZAFFARI KERMANI et al.: RELIABLE LOW-LATENCY VITERBI ALGORITHM ARCHITECTURES BENCHMARKED ON ASIC AND FPGA 209

such natural faults in order to achieve fault immunity and
reliability, error detection has been an important part of
a number of hardware architectures in different domains,
including various arithmetic unit sub-components [11], [12].

In previous work, reliable architectures have been devised
to counteract natural or malicious faults [13], e.g., crypto-
graphic architectures immune to faults through concurrent
error detection [14]-[24]. In this paper, we explore two
approaches for two types of sub-parts in the Viterbi algorithm.
Specifically, we note that both area/power consumption and
throughput/efficiency degradations need to be minimized with
respect to the proposed approaches; thus, we explore signature-
based approaches resulting in acceptable efficiency at the cost
of area/power consumption, and recomputing with encoded
operands to achieve permanent and transient error detection.
For detecting the errors in the ACS unit, we utilize three
variants, i.e., recomputing with shifted operands (RESO) [25],
proposed modified RESO which has slightly less fault
resilience effectiveness; yet, lower induced overhead, and
recomputing with rotated operands (RERO) [26]. Our archi-
tectures also include hardware redundancy techniques through
signature-based detection. Specifically for the adder compo-
nents, we utilize a number of variants of self-checking based
on two-rail encoding. The architectures to which the schemes
have been applied consist of two types of low-latency and
low-complexity structures of Viterbi decoders [2] with slight
modifications. We summarize the contributions of this paper
as follows:

e We propose error detection methods for the modified
Viterbi decoder with the consideration of objectives in
terms of performance metrics and reliability. The error
detection approaches along with the modifications help
achieving high error coverage and through the proposed
throughput improvements, performance boost can be
achieved. Variants of recomputing with encoded operands
on a number of architectures within the modified Viterbi
decoder as well as signature-based approaches (including
modified self-checking based on two-rail encoding) are
presented as well. To the best of authors’ knowledge, the
mechanisms for making the proposed structures immune
to faults have not been presented before.

e We have extensively simulated the proposed error detec-
tion architectures and the obtained results help in bench-
marking the error coverage. The results of our simulations
show that the reliability of the proposed architecture can

be ensured.
e Finally, our proposed error detection Viterbi decoders
incorporating the error detection approaches are

implemented on application-specific integrated cir-

cuit (ASIC) [32 nm library] and field-programmable

gate array (FPGA) [Xilinx Virtex-6 family]. The results

indicate that the architectures can be reliably used. The

proposed approaches can be utilized based on reliability

objectives and performance/implementation metrics
degradation tolerance.

The organization of this paper is as follows. In Section II,

preliminaries related to the Viterbi algorithm are explained.

In Section III, the proposed architectures for error detection

of Viterbi algorithm are presented. Section IV presents the
simulation and FPGA/ASIC implementation results. We con-
clude the paper in Section V.

II. PRELIMINARIES

The preliminaries for the Viterbi decoder as well as the fault
model are presented in this section.

A. Look-Ahead-Based Low-Latency Architectures

This section focuses only on branch metric computation,
leaving aside the operations of compare-and-discard. An opti-
mal approach of balanced binary grouping (BBG) [2] is taken
into consideration in order to remove all redundancies which
are usually responsible for longer delay and extra complex-
ity, since various paths share common computations. Branch
metrics computation is said to be carried out sequentially for
a conventional Viterbi decoder. Look-ahead-based approach is
a highly-efficient design approach based on the BBG scheme
for a general M which provides less or equal latency, and
also has much less complexity compared to other existing
architectures. For constraint length K and M-step look-ahead,
the execution of BMP is done in a layered manner. An M-step
trellis is a bigger group consisting of % sub-groups with a
trellis of K-step. Thus, the total numbers of P1 processors
needed are % and each P1 is responsible for computing
K -step trellises. Accordingly, we have the complexities and
latencies of P1 and P2 as Comp.p| = N(Zf=2 21) + N2,
Comp.py = N*(N — 1) + N3, and Lat.p; p» = K, where
N = 2%~ is the number of trellis states. For P1 processors,
the complexity of add operation is N Zf;z 2% and that of the
“compare” operation is N2. Similarly, for P2 processors, the
complexity of add operation is N2(N — 1) and that of the
compare operation is N3.

B. Fault Model

Transient and permanent faults both have significant chance
of occurrence in VLSI architectures. Moreover, single and
multiple stuck-at zero and one faults can cause erroneous
outputs in such structures. We consider all of these cases, and
simulate our approaches for single, few, and multiple stuck-at
faults to prove their efficacy.

III. PROPOSED RELIABLE ARCHITECTURES

It is well-known that in different variants of concurrent
error detection, either redundancy in hardware, i.e., increase in
area/power/energy consumption, e.g., through error detection
codes such as hamming codes, or redundancy in time, adding
negligible area overhead at the expense of higher total time
(throughput and latency), is performed.

In this paper, we utilize recomputing with encoded
operands, where, the operations are redone for different
operands for detecting errors. During the first step, operands
are applied normally. In the recomputed step, the operands are
encoded and applied and after decoding, the correct results can
be generated. Moreover, through signature-based schemes, we
propose schemes through which both transient and permanent
errors can be detected.

210 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-I: REGULAR PAPERS, VOL. 64, NO. 1, JANUARY 2017

Subtractor

ﬂ Register Ap,"(i,p) | P

Register Ay"(i,p)

Register A, ‘

Register Api™

[ese}—
|

Register Ap™"(i,k)

\—»| Adder |

7]

Register A" (i)

7|

1
/

CSA_Error

Fig. 1. The CSA signature-based error detection approach (the shaded adders
are the types of the original ones with the proposed error detection schemes).

A. Unified Signature-Based Scheme for
CSA and PCSA Units Within BMP

In order to make the ACS structure fast, parallelization of
add and compare operations within the ACS itself is done
(which leads to the reduction of iteration bound delay by 50%).
For achieving that, the number of states is doubled and the
channel response is extended by an extra bit. For a complex
trellis to have P-level parallelism, there should be 2% parallel
paths for each branch. For the initial K — 1 steps, there is no
compare operation, but for the remaining M — K + 1 steps,
the add operation is followed by a compare operation which
helps in eliminating parallelism. Add and compare operations
need to be performed sequentially. For this algorithm, the order
of operations from add-compare is changed to compare-add
and that is attributed as a carry-select-add (CSA) unit. The
pre-computed CSA (PCSA) is its speed-optimized type, the
details are not presented for the sake of brevity (the PCSA
architecture is preferred only for large K and small M values).

We utilize signature-based prediction schemes for the
CSA and PCSA units. We note that even a single stuck-at
fault in such units may lead to erroneous (multi-bit) result
(the error may also propagate to the circuitry which lies
ahead of the affected location, with the domino effect
propagated system-wise). Signatures (single-bit, multiple-bit,
or interleaved parity, cyclic redundancy check, and the like,
to name a few) are employed in our proposed scheme for
all the registers. Moreover, self-checking adders based on
dual-rail encoding are included for the adder modules.

As shown in Figs. 1 and 2, respectively, in the CSA unit,
there exists a single multiplexer whereas for the PCSA unit, the
original design contains two multiplexers, for which the results
of the original and the duplicated multiplexers are compared
using an XOR gate whose output is connected as one of
the inputs to the OR gate. The input and output registers

Register Ay "(i,p) | P

Register A" (i,p)

Subtractor

Register Ay™"(pj)| P

Register A,;" P

Register Ap™"(i.k)

Register Ap,™ | P

PCSA_Error

Fig. 2. Signature-based PCSA error detection (the shaded adders include the
proposed error detection schemes).

are incorporated with additional signatures, e.g., single-bit,
multiple-bit, or interleaved parity, cyclic redundancy check,
to detect faults (in figures, “P” denotes parity but it could
be a chosen signature based on the overhead tolerance and
reliability constraints). An OR gate for the units is required
to derive the error indication flags. The OR gate raises the
error indication flags (CSA_Error in case of the CSA unit and
PCSA_Error in case of the PCSA unit) in case an error is
detected.

For the adders included in both CSA and PCSA units,
we can use self-checking adders (some previous works include
[23], [24], [27]-[30]). Here, the adders are cascaded to imple-
ment a self-checking adder of arbitrary size. It consists of five
two-pair two-rail checkers and also four full adders and two
multiplexers are repeated n times. For the normal operation,
no additional delay has resulted due to self-checking feature.
The checker has two pairs of inputs driven in such a way that
in the fault free scenario, the outputs are equal pairwise. This
is performed using XNOR gates and appropriate connections.
There are two outputs from the checker and the outputs are
also in two-rail form as the inputs. Even if one of the inputs
of the checker has a fault, the output is not in two-rail form
and, thus, an error indication flag is raised to indicate that a
fault has been incurred in the system.

The adders in both CSA and PCSA designs can also be
implemented using the modified self-checking adder as shown
in Fig. 3. In this variant, two n-bit ripple carry adders are
used to precompute the sum bits with complemented values
of carry-in, i.e., 0 and 1, and the original value of carry-in
is used to select the actual sum bits. We employ this new
adder [12] in the architectures and evaluate its performance
and efficiency. Fig. 3 shows the design module of this variant
for self-checking carry-select adder. An important modification
done in this new adder is the inputs given to the two-pair
two-rail checker. For carrying out the implementation for
n bits, it needs (n — 2) AND gates, (n + 1) MUXes,
(n — 1) XNOR gates, (2n) full adders, and (n — 1) two-pair
two-rail checkers.

MOZAFFARI KERMANI et al.: RELIABLE LOW-LATENCY VITERBI ALGORITHM ARCHITECTURES BENCHMARKED ON ASIC AND FPGA 211

By Ang B, A By A

k G C' ~Fan | Cin=0
Adder 0 Adder 0
B, Ay By Ay
1
Adder 1 Adder 1 -~
Carry-in

Two-pair two-rail checker

Al T

Two-pair two-rail checker ‘

2l la

A variant of self checking adder utilized in the devised approach.

Fig. 3.

For RERO, p: (n+1) bits

. \l\ m‘m For RESO, p: (n+K) bits
Apt"(i,p) operands M L/ Y For modified RESO, p: n bits
X
operands

m
Apj
Left shift/Rotate

Right shift/Rotate
Original
operands

Right shift/Rotate
Original
operands

Fig. 4. Recomputing with encoded operands for CSA.

Original

Ap"(i,p) operands
Left shift/Rotate

Ap"(i,p) operands
Left shift/Rotate

Original
A" operands
Left shift/Rotate
Original
operands
Left shift/Rotate

Original
operands

Error
indication
flag

S
Error

indication

flag

Original
operands

D R AV ey

wez

Left shift/Rotate

For RERO, p: (n+1) bits

For RESO, p: (n+K) bits
» For modified RESO, p: n bits
N
e ; ,Fw 1" Run/2" Run
4 Adder 4 l/
P »
E

Adder

Right shift/Rotate _ Error

Original
operands

flag

>

T
Py

N

Right shift/Rotate

Original
operands

Error

Api™

M
u
X
M
u
X
1 [
M
u
X
M
u
X

Fig. 5. PCSA error detection through recomputing with encoded operands.

B. Recomputing With Encoded Operands for CSA and PCSA

In this section, the error detection CSA and PCSA archi-
tectures are designed through recomputing with encoded
operands, e.g., RERO, RESO, and variants of RESO, as
shown in Figs. 4 and 5 with the locations of error detection
modules shaded. Since this approach takes more number of
cycles for completion, to alleviate the throughput degradation,
the architecture is pipelined in the following fashion. First,
pipeline registers are added to sub-pipeline the architectures,
assisting in dividing the timing into sub-parts. The original
operands are fed in during the first cycle. Nonetheless, during
the second cycle, the second half of the circuit operates on the

original operands and the first half is fed in with the rotated
operands.

For the CSA and PCSA architectures in Figs. 4 and 5,
we also employ RESO and a RESO variant scheme for fault
diagnosis. Both CSA and PCSA units consist of four inputs,
each of them are passed in its original form and in the left
shifted or rotated form to one of the multiplexers. If the select
lines of these multiplexers are set to the first run, the original
operands are passed without any change. If these are set to
second run, the second (modified, i.e., left shifted/rotated)
operands are passed. For the CSA unit, the inputs are fed to the
subtractor and also to the multiplexer whose select line is set
by the comparator. This serves as the design of compare-select
unit. The output of the multiplexer is replicated and asserted
as one of the inputs to two adders included in the design. The
outputs of both of the adders are the outputs of the CSA unit.
These are passed through the demultiplexers and the outputs of
the demultiplexers are compared using an XOR gate, and the
error indication flag is raised in case of an error. For the PCSA
unit, the first two inputs are fed to the comparator which acts
as the select line for the two multiplexers driven by the four
adders used in the design. The other two inputs in combination
with the previous inputs are given to the adders. The outputs of
the two multiplexers are the outputs of the PCSA unit and to
ensure that they are error-free, the outputs are passed through
separate demultiplexers.

We have utilized RESO which performs the recomputation
step with shifted operands, i.e., all operands are shifted left
or right by k bits (this method is efficient in detecting k
consecutive logic errors and k — 1 arithmetic errors). For CSA
and PCSA architectures in Figs. 4 and 5, let us assume g(x, y)
is the result of the operation which is stored in a register.
The same operation is performed again with x and y shifted
by certain number of bits. This new result g’(x, y) is stored
and the original result g(x,y) can be obtained by shifting
g'(x,y) in the opposite direction. Another used method in
the proposed scheme is a modified version of the RESO
scheme and this modification is that the bits that shift out
are not preserved. This signifies that the total number of bits
required for operation is only “n” bits and, hence, becomes
more advantageous in terms of hardware cost than RESO and
RERO methods, as pointed out in Figs. 4 and 5. In modified
RESO, only (n — k) LSBs of g(x) are compared with the
shifted (n — k) LSBs of g’(x). This approach is a compromise
between the area/power consumption and the error coverage.

In order to execute the RERO method, we have added low
hardware overhead to the initial design. RERO is used for
detecting errors concurrently in the arithmetic units. Consid-
ering two n-bit rotations R and R~', suppose the input to
an arithmetic function is x and g(x) is the output such that
g(x) = R7! x (g(R(x))). The result of g(x) computation
happens to be the result of first run and R™! x (g(R(x)))
computation happens to be the second run. For both the
CSA and PCSA units, we have used the RERO scheme in
Figs. 4 and 5. The first challenge in RERO for in Figs. 4 and 5
is to avoid the interaction between the MSB and LSB of
the original operand during the recomputation operation. The
second challenge in RERO for CSA and PCSA architectures is

212 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-I: REGULAR PAPERS, VOL. 64, NO. 1, JANUARY 2017
TABLE I
PARITY BIT OF 4-bit MEMORIES IN HEXADECIMAL FORM
so] 0 [[2 [5 [& [5 [6 7 [& [9 [&b [][]
0 dD) [a® [9@ [bM [c® [8M) [4M [6O[8DH[I9O[TMD [5@[0O [2M |40 | 6O
1 a0 | 90O [b |c® [8() |40 |60 [8D 9@ |1 |50 | 0O |20 | 4D |50 | 00O
2 b | c® [8D |4 | 60 | 80D |90 [1M [50 [0 [20) [4D [50 [0 |90 | 1D
3 c0 [8 [40D [60 [8D [90 [1M |50 [0@ [2(0D [4D |50 [0 | 9O |50 | 00
4 40 |60 [8D [9® [1) [50 |00 [2M [40) [50 [00 [1M [50 [0 |20 | 0O
5 90) | 90 | bM [cO® |8 | 40 |60 [8D |90 [1M [50 [0 [20D) | 4D |50 |50
6 c | cO [80) [4(0) [60 | 8D 9@ |1 [50 [0O |20 |[4D [50 |0O® |90 | 2D
7 8 |4 |60 [8M [90 |1 |50 [0©0 [20) [4M [50 [0©O [1D) |50 |00 | 40D
2n shown by Np,..., N, and the encoded operands shown by
el Ey, ..., E,. Letus assume that N is asserted at the beginning
yees (first stage and first cycle). We have a number of options in the
N4 E1| N, oo E, oo second cycle, e.g., asserting the second normal operand (N;) or
N.| R N | E the first encoded operand (encoded variant of N1 which is Ey).
LLX] 00 . . .
" 1M nj| =n Fig. 7 shows the former option as an example. In the third
§ cycle, many options exist, among which asserting £ has been
Sl s8] e S| 3 feeef $ chosen to depict in Fig. 7. This trend continues (the sequence
is Ni, N>, E{,Ey, N3, N4, E3, Eq, ..., E,_1, E,) and after
N E 2n cycles, one has E,,, E,_1, ..., Ny as the entries to various
00 00 . .
n/2| En/2 En stages. Such an approach ensures lower degradation in the
throughput at the expense of more area overhead and can be
Fig. 6. Sub-pipelining for increasing the throughput. tailored extensively based on the overhead tolerance and the
reliability requirements.
2n
Cycles C. Signature-Based Architectures for Memories
for SMU and BMU Decisions
N1 N2 El oo En eoo .
In what follows, knowing that we need to also protect
N,| N, oo En-a| Ep [oee the memory units used in the CORDIC computations (for
Q instance, storing the decisions based on the results of BMU
§’ el o | o . . . and also the memory unites used within SMU), we present
(% M 4 o [T1] o ® |eoe| ©
° | e signature-based error detection for such units, for instance,
parity-based and interleaved-parity-based structures. Let us use
oo Np/2[No2af oee| E,, the following two examples to clarify the schemes noting that

Fig. 7. Compromise in asserting the encoded operands (can be tailored based
on reliability constraints).

to ensure performance enhancements through sub-pipelining to
increase the frequency and alleviate the throughput overhead
as part of the FPGA and ASIC implementations.

Finally, let us present a general approach for alleviating the
throughput degradations of the proposed schemes. Suppose a
number of pipeline registers have been placed to sub-pipeline
the structures to break the timing path. Let us denote the
n segments of the pipelined stages by A1, ..., A,. In a typical
assertion, the original input can be first applied (to A1) and in
the second cycle, while the second half (A7) of the architecture
executes the first input, the encoded variant of the first input
is fed. This trend can be scaled to n stages for normal ()
and encoded (E) operands (see Fig. 6). We have also shown
in Fig. 7 an approach based on which a compromise for the
assertions is performed. Depending on the requirements, one
can fulfill various reliability constraints. As seen in Fig. 7,
a number of cycles are considered with the normal operands

(a) the schemes are general for the needed signatures but for
clarity and without being confined to just these examples,
we use parities and (b) the memory size could vary, and the
presented examples are for 4-bit entries with two-dimension
addresses, i.e., 3-bit y and 4-bit x; however, extension to larger
memories or reduction to smaller ones follow the same trend.
Example 1: We can store the predicted parities of elements
in memories (memory macros on ASIC platform or block
memories/pipelined distributed look-up tables on FPGAs).
The parity-based scheme proposed for such architectures is
based on deriving the predicted parities as shown in Table I.
We modulo-2 add all bits for entries of such memories (note
that the entries are randomly assumed for 4-bit memories
[tabulated in hexadecimal form] to assess the details of the
scheme, and x, y are the input address bits). Then, we store
the result as parity bit in an extended look-up table with
five-bit elements. Thus, the new, protected state would consist
of 16 five-bit elements. To detect errors, this predicted parity
as shown in Table I is compared with the actual parity.
Example 2: The other signature-based error detection
scheme is based on interleaved parity bits that is proposed
in order to protect the memories. Interleaved parity-based

MOZAFFARI KERMANI et al.: RELIABLE LOW-LATENCY VITERBI ALGORITHM ARCHITECTURES BENCHMARKED ON ASIC AND FPGA

213

TABLE 1I
INTERLEAVED PARITY OF 4-bit MEMORIES IN HEXADECIMAL FORM
syl [[0o [1 [2 [3 [4 [5 T 6 [7]

0 d (10) a (00) 9 (11) b©1) [c(l) [810 401 | 6(11)
1 9 (11) b (01) d (10) a00) | 9(1) | b | cd1) | 8(10)
2 c (1) | 8(10) 9 (11) b©1) | d@0) [a0 | 9(11) | b (D
3 8 (10) 4 (01) c(11) | 8(10) 911 | b1 | d(10) | a(00)
4 c(11) | 8(10) 8 (10) 401 | can | 8710 9(11) | b1
5 4 (01) 6 (11) c(11) | 8(10) 911 | b1 | d(10) | a(00)
6 9 (11) b (01) | 8(10) 911 | b | d10) | a©0) | 91D
7 8 (10) 4(01) c(11) | 8(10) 911 | b1 | d(10) | a(00)

TABLE III

NUMBER OF DETECTED FAULTS FOR SINGLE STUCK-AT FAULTS FOR RESO AND RERO “ONLY” FOR 500000 INJECTIONS

[Architecture [[Detected RESO [Error coverage (%) [| Detected RERO | Error coverage (%) |

CSA 497,635 99.527 497,627 99.525
PCSA 497,344 99.469 497,564 99.512
TABLE IV

NUMBER OF DETECTED FAULTS FOR 2-bit, 3-bit, 4-bit, AND MULTIPLE STUCK-AT FAULTS FOR RESO AND RERO “ONLY ” FOR 500 000 INJECTIONS

[Architecture][Detected RESO [Error coverage (%) [| Detected RERO [Error coverage (%) |
CSA (2-bit) 497,836 99.567 499,578 99.915
CSA (3-bit) 498,054 99.61 499,079 99.816
CSA (4-bit) 498,666 99.733 499,103 99.82
CSA (multiple) 498,362 99.672 499,200 99.84
PCSA (2-bit) 498,482 99.697 498,993 99.79
PCSA (3-bit) 498,266 99.653 499,018 99.803
PCSA (4-bit) 498,412 99.682 499,048 99.809
PCSA (multiple) 497,957 99.591 499,039 99.808

schemes are able to detect burst faults, i.e., adjacent multiple
faults. Such faults happen in both natural defects and malicious
fault attacks. In this scheme, we compute the interleaved
parity bits for 4-bit memories in hexadecimal form as shown
in Table II (for the sake of brevity, the input sizes, i.e.,
the addresses to the memories are assumed to be smaller).
We have derived such parities by modulo-2 addition of odd
bits and even bits with each other separately. Similarly, these
2-bit interleaved parities along with 4-bit elements of each
state are stored as 6-bit elements in memories.

Reinforcing Fault Detection: Using such signature-based
schemes, e.g., parity-based and interleaved parity-based, there
is a type of internal memory error which is not detected. Faults
in the address decode circuitry which may result in accessing
a wrong location may not be detected. Although such cases
might not occur, if such faults are expected, we can add a
separate 1-bit memory to the elements (the predicted parity
bit for the correct output byte). This would detect a mismatch
between the parity bit of the correct output byte and the parity
bit of the incorrect output byte.

IV. BENCHMARK AND ASSESSMENTS

In what follows, we present the results of our error simula-
tions. Then, both ASIC and FPGA implementation results are
presented for benchmark.

A. Simulations for Fault Injection Models

The fault coverage of the proposed architectures has been
assessed by subjecting them to a fault model which considers
permanent, transient, and single/multiple-bit stuck-at faults.

The proposed error detection schemes are capable of detecting
both permanent and transient faults. We inject faults at differ-
ent locations and monitor the error indication flags. The fault
model applied for evaluating the proposed error schemes has
been realized through linear feedback shift registers (LFSRs)
to generate pseudo-random test patterns (the 16-bit LFSR
is implemented with the polynomial x!0 4+ x!3 4+ x!!1 4 1),
Nevertheless, this does not confine the coverage of the pre-
sented work to this injection approach.

For single stuck-at faults for signature-based schemes of
CSA and PCSA blocks, the coverage is 100 percent (which can
be analytically proved as well) and simulations are performed
extensively to confirm that. In the signature-based schemes of
CSA and PCSA blocks, permanent and transient faults can be
detected and the blocks predicting the signatures are included
in different sub-parts of the architecture.

Let us finalize this section by presenting the followings:

e We have done two simulations and derived the number
of detected faults for single stuck-at faults for RESO and
RERO “only” as seen in Table III.

e We have done four simulations and derived the number of
detected faults for 2-bit, 3-bit, 4-bit, and multiple stuck-at
faults for RESO and RERO “only” as seen in Table IV.

e We have done four simulations and derived the number of
detected faults for 2-bit, 3-bit, 4-bit, and multiple stuck-
at faults for RESO and RERO combined with signature-
based scheme as seen in Table V.

In the following section, it is shown that such fault coverage

is at the expense of acceptable overheads on ASIC and FPGA
platforms.

214

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-I: REGULAR PAPERS, VOL. 64, NO. 1, JANUARY 2017

TABLE V
NUMBER OF DETECTED FAULTS FOR 2-bit, 3-bit, 4-bit, AND MULTIPLE STUCK-AT FAULTS FOR COMBINED SCHEMES FOR 500000 INJECTIONS

[Architecture [[Sig/RESO [Error coverage (%) [| Sig/RERO [Error coverage (%) |
CSA (2-bit) 499,998 99.9996 499,997 99.9994
CSA (3-bit) 499,999 99.9998 499,998 99.9996
CSA (4-bit) 499,997 99.9994 499,995 99.9990
CSA (multiple) 499,995 99.9990 499,998 99.9996
PCSA (2-bit) 499,998 99.9996 499,995 99.9990
PCSA (3-bit) 499,999 99.9998 499,998 99.9996
PCSA (4-bit) 499,998 99.9996 499,997 99.9994
PCSA (multiple) 499,997 99.9994 499,999 99.9998
TABLE VI

AREA, DELAY, AND POWER CONSUMPTION BENCHMARK ON ASIC FOR CSA ARCHITECTURE

[Architecture H Area (um?) [Gate equivalent (GE) [Delay (ns) [Power (W) H Area overhead [Delay overhead [Power overhead]
CSA 486.17 319 1.24 90.64 - - -
CSA_RESO (+ 2 bits) 603.84 396 1.51 98.60 24.20% 21.77% 8.78%
CSA_RERO (+1 bit) 547.17 359 1.26 91.04 12.55% 1.61% 0.44%
CSA_M_RESO 488.66 320 1.26 90.89 0.51% 1.61% 0.28%
TABLE VII
PCSA AREA, DELAY, AND POWER CONSUMPTION BENCHMARK ON ASIC
[Architecture H Area (um?) [Gate equivalent (GE) [Delay (ns) [Power (W) H Area overhead [Delay overhead [Power overhead]
PCSA 590.8 387 0.85 88.99 - - -
PCSA_RESO (+ 2 bits) 731.6 480 1.01 109.54 23.83% 19.39% 23.09%
PCSA_RERO (+ 1 bit) 661.7 434 0.93 100.86 12.00% 9.93% 13.34%
PCSA_M_RESO 594.7 390 0.87 89.88 0.66% 2.25% 1.00%
B. ASIC and FPGA Implementations TABLE VIII
. . CSA BENCHMARK THROUGH XILINX VIRTEX-6
We present the ASIC 1mplementat101.1 results for (xcOVIXTSL3M484 DEVICE) FPGA FAMILY
TSMC 32-nm library and the FPGA implementation

results for Virtex-6 family (xc6vIx75t-3ff484 device) using
Xilinx ISE 14.7.

For ASIC, we use Synopsys Design Compiler, and all
the design constraints are set the same for fair comparison.
Moreover, medium map and optimization efforts are used.
The overhead results are obtained for of the area [,umz], the
NAND-gate equivalency (denoted as gate equivalent [GE] and
used as the architecture area over that of a two-input NAND
gate in 32 nm TSMC which is 1.524864 um?), the delay (ns),
the power consumption (¢ W) at the typical chosen frequency
of 50 M Hz, the throughput (Gbps), energy (fJ), and the
efficiency (which is defined as the throughput over area,
i.e., Mbps/um?).

For FPGA, we use Xilinx ISE 14.7 for different architec-
tures. The overhead evaluation for FPGA is obtained for of
the area (in terms of number of occupied slices, knowing that
slice registers and look-up tables are within), the delay (ns),
the throughput (Gbps), and the efficiency (Mbps over the
number of occupied slices).

Part 1: The architectures have been designed with the design
entry Verilog HDL for the original architectures as well as
error detection schemes. The results of our benchmark on
FPGA and ASIC are presented in Tables VI-IX.

As seen in Tables VI and VII, ASIC benchmark results for
CSA and PCSA are presented for the original architectures,
RESO with two bits [CSA_RESO (42 bits) and PCSA_RESO
(+2 bits)], RERO [CSA_RERO (+1 bit) and PCSA_RERO
(+1 bit)], and modified variant of RESO in which no

[Architecture [Slices [Delay (ns) [Slice over. | Delay over.]

CSA 14 0.79 - -
CSA_RESO 16 0.89 14.29% 12.52%
CSA_RERO 16 0.85 14.29% 7.46%

CSA_M_RESO 14 0.80 negligible 1.14%
TABLE IX

XILINX VIRTEX-6 FPGA IMPLEMENTATIONS FOR PCSA

[Architecture [[Slices [Delay (ns) | Slice over. | Delay over.]
PCSA 14 0.82 - -
PCSA_RESO 19 0.92 35.71% 12.18%
PCSA_RERO 19 0.90 35.71% 9.62%

PCSA_M_RESO 14 0.83 negligible 1.10%

additional bit is added [CSA_M_RESO and PCSA_M_RESO].
RESO has higher overheads (still at most 24.20%) compared
to RERO and modified RESO variants which have 12.55%
[0.51%], 1.61% [1.61%], 0.44% [0.28%] (for area, delay,
and power consumption of CSA) and 12.00% [0.66%],
9.93% [2.25%], 13.34% [1.00%] (for area, delay, and power
consumption of PCSA). For signature-based CSA, we have
also derived the area overhead of 17.67%, the delay overhead
of 2.02%, and the power consumption overhead of 13.48%.
Furthermore, for the signature-based scheme of PCSA, the
area overhead of 21.49%, the delay overhead of 15.57%, and
the power consumption overhead of 13.62% are achieved.
Tables VIII and IX show the results of our FPGA imple-
mentations for CSA and PCSA. Similar to the ASIC results,

MOZAFFARI KERMANI et al.: RELIABLE LOW-LATENCY VITERBI ALGORITHM ARCHITECTURES BENCHMARKED ON ASIC AND FPGA 215

TABLE X
THROUGHPUT, EFFICIENCY, AND ENERGY CONSUMPTION BENCHMARK ON ASIC FOR CSA AND PCSA

Architecture H Throughput (Gbps) | Power (uWW) | Efficiency (%) H Throughput deg. | Power overhead | Efficiency deg.

CSA 6.45 90.64 14.0 - - -
CSA_RESO (+ 2 bits) 5.30 162.8 8.7 17.83% 80.0% 37.8%
CSA_RERO (+1 bit) 6.35 153.9 11.6 1.55% 71.1% 17.1%
CSA_M_RESO 6.35 154.1 13.0 1.55% 71.5% 7.1%

PCSA 9.41 88.99 15.9 - - -
PCSA_RESO (+ 2 bits) 7.92 160.9 10.8 15.80% 80.1% 32.1%
PCSA_RERO (+1 bit) 8.60 152.0 13.0 8.61% 70.7% 18.2%
PCSA_M_RESO 9.19 146.4 15.5 2.33% 64.5% 2.5%

TABLE XI Finally, Table XI presents the results of the FPGA bench-

XILINX VIRTEX-6 FPGA IMPLEMENTATIONS FOR THROUGHPUT
AND EFFICIENCY BENCHMARK FOR CSA AND PCSA

Architecture H Thro’put (Gbps) [over.] | Effic. (#glfi’cse) [over.]
CSA 10.1 721
CSA_RESO 8.9 [10.9%] 561 [22.2%]
CSA_RERO 9.4 [6.9%] 588 [18.4%]
CSA_M_RESO 10.0 [1.0%] 714 [2.4%)]
PCSA 9.7 692
PCSA_RESO 8.7 [10.3%] 457 [33.9%]
PCSA_RERO 8.8 [9.3%] 467 [32.5%]
PCSA_M_RESO 9.6 [1.0%] 687 [0.7%]

we get lower overheads for RERO and modified RESO for the
FPGA implementations, i.e., 14.29% for RERO [negligible for
modified RESO] and 7.46% for RERO [1.14% for modified
RESOQ] (for area and delay of CSA), and 35.71% for RERO
[negligible for modified RESO] and 9.62% for RERO [1.10%
for modified RESO] (for area and delay of PCSA). For
signature-based CSA, we have also derived the area overhead
of 14.89% and the delay overhead of 2.78%. Moreover, for
the signature-based scheme of PCSA, the area overhead of
29.79% and the delay overhead of 1.58% are achieved.

Part 2: Tables X and XI show the results of throughput,
efficiency, and power consumption for different architectures.
Throughput of the designs represent performance and through
the presented schemes, alleviations have been performed by
one-stage pipeline on both ASIC and FPGA. Moreover, for
the efficiency, which takes into account concurrently both the
area bloat and the performance degradations, depending on the
platform, different definitions have been used, i.e., for FPGAs,
throughput over number of occupied slices, and for ASICs,
throughput over the areas.

As seen in Table X, for ASIC, the throughput degradation
for CSA is 1.55% for RERO and modified RESO. Moreover,
we have degradations for efficiencies as 17.1% and 7.1%,
respectively, for these two architectures. Finally, the power
overheads are 71.1% and 80.0%, respectively. In addition, for
signature-based schemes, the degradations for throughput and
efficiency are 2.32% and 20.5%, respectively. For PCSA, as
seen in Table XI, the ASIC benchmark shows the throughput
degradation of 8.61% for RERO and 2.33% for modified
RESO. Furthermore, we have degradations for efficiencies as
18.2% and 2.5%, respectively, for these two architectures.
We note that higher power overheads are the expenses that
we have to pay for better throughputs and efficiencies.

marks for CSA and PCSA (for throughput and efficiency).
The lowest degradations are achieved for the modified
RESO architectures which make them suitable approaches for
high-throughput and efficient structures.

V. CONCLUSION

In this paper, we have presented error detection architectures
for the CSA and PCSA structures of low-complexity and low-
latency Viterbi decoder. The proposed approaches are based
on signatures and various, fine-tuned recomputing with rotated
operands. The simulation results for the proposed architectures
for both CSA and PCSA units show very high fault coverage
(almost 100 percent) for the utilized fault model. Moreover, the
ASIC and FPGA implementation results show that overheads
obtained are acceptable. One may tailor the proposed archi-
tectures to have fine-tuned compromise for overhead tolerance
and reliability requirements.

ACKNOWLEDGMENT

This work has been partly funded by Texas Instruments
Faculty award, granted to Mehran Mozaffari-Kermani and
Reza Azarderakhsh.

REFERENCES

[1] A. J. Viterbi, “Error bounds for convolutional codes and an asymptoti-
cally optimum decoding algorithm,” IEEE Trans. Inf. Theory, vol. IT-13,
no. 2, pp. 260-269, Apr. 1967.

[2] R. Liu and K. Parhi, “Low-latency low-complexity architectures for
Viterbi decoders,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 56,
no. 10, pp. 2315-2324, Oct. 2009.

[3] K. K. Parhi, VLSI Digital Signal Processing Systems: Design and
Implementation. Hoboken, NJ, USA: Wiley, 1999.

[4] G. Fettweis and H. Meyr, “Parallel Viterbi algorithm implementation:
Breaking the ACS-bottleneck,” IEEE Trans. Commun., vol. 37, no. 8,
pp- 785-790, Aug. 1989.

[5] V. Gierenz, O. Weiss, T. Noll, I. Carew, J. Ashley, and R. Karabed,
“A 550 mb/s radix-4 bit-level pipelined 16-state 0.25-um CMOS Viterbi
decoder,” in Proc. IEEE Int. Conf. Appl.-Specific Syst. Archit. Process.,
Jul. 2000, pp. 195-201.

[6] P. J. Black and T. H. Meng, “A 140-Mb/s, 32-state, radix-4 Viterbi
decoder,” IEEE J. Solid-State Circuits, vol. 27, no. 12, pp. 1877-1885,
Dec. 1992.

[7]1 T. Gemmeke, M. Gansen, and T. Noll, “Implementation of scalable
power and area efficient high-throughput Viterbi decoders,” IEEE
J. Solid-State Circuits, vol. 37, no. 7, pp. 941-948, 2002.

[8] A. Yeung and J. Rabaey, “A 210 Mb/s radix-4 bit-level pipelined Viterbi
decoder,” in Proc. IEEE Conf. Int. Solid-State Circuits, Feb. 1995,
pp- 88-89.

216

[9]

(10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-I: REGULAR PAPERS, VOL. 64, NO. 1, JANUARY 2017

K. Parhi, “An improved pipelined MSB-first add-compare select unit
structure for Viterbi decoders,” IEEE Trans. Circuits Syst. I, Reg. Papers,
vol. 51, no. 3, pp. 504-511, Mar. 2004.

J. J. Kong and K. K. Parhi, “Low-latency architectures for
high-throughput rate Viterbi decoders,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 12, no. 6, pp. 642-651, Jun. 2004.

D. Vasudevan, P. Lala, and J. Parkerson, “Self-checking carry-select
adder design based on two-rail encoding,” IEEE Trans. Circuits Syst. I,
Reg. Papers, vol. 54, no. 12, pp. 26962705, Dec. 2007.

M. Akbar and J.-A. Lee, “Comments on ‘self-checking carry-select
adder design based on two-rail encoding’,” IEEE Trans. Circuits Syst. I,
Reg. Papers, vol. 61, no. 7, pp. 2212-2214, Jul. 2014.

M. Nicolaidis, “Carry checking/parity prediction adders and ALUs,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 11, no. 1,
pp- 121-128, Jan. 2003.

C.-H. Yen and B.-F. Wu, “Simple error detection methods for hard-
ware implementation of advanced encryption standard,” IEEE Trans.
Comput., vol. 55, no. 6, pp. 720-731, Jun. 2006.

T. G. Malkin, F. Standaert, and M. Yung, “A comparative cost/security
analysis of fault attack countermeasures,” in Proc. Int. Workshop, Fault
Diagnosis Tolerance Cryptography, 2006, pp. 159-172.

M. Mozaffari-Kermani, R. Azarderakhsh, and A. Aghaie, “Reliable
and error detection architectures of Pomaranch for false-alarm-sensitive
cryptographic applications,” IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 23, no. 12, pp. 2804-2812, Dec. 2015.

M. Mozaffari Kermani and R. Azarderakhsh, “Reliable hash trees for
post-quantum stateless cryptographic hash-based signatures,” in Proc.
IEEE Int. Symp. Defect Fault Tolerance VLSI Syst. (DFT), Oct. 2015,
pp- 103-108.

M. Mozaffari-Kermani and A. Reyhani-Masoleh, “Concurrent structure-
independent fault detection schemes for the advanced encryption stan-
dard,” IEEE Trans. Comput., vol. 59, no. 5, pp. 608-622, May 2010.
M. Mozaffari-Kermani and A. Reyhani-Masoleh, “Efficient fault diag-
nosis schemes for reliable lightweight cryptographic ISO/IEC standard
CLEFIA benchmarked on ASIC and FPGA,” IEEE Trans. Ind. Electron.,
vol. 60, no. 12, pp. 5925-5932, 2013.

P. Maistri and R. Leveugle, “Double-data-rate computation as a counter
measure against fault analysis,” IEEE Trans. Comput., vol. 57, no. 11,
pp- 1528-1539, 2008.

G. Bertoni, L. Breveglieri, I. Koren, P. Maistri, and V. Piuri, “A parity
code based fault detection for an implementation of the advanced
encryption standard,” in Proc. IEEE Int. Symp. Defect Fault Tolerance
VLSI Syst. (DFT), 2002, pp. 51-59.

M. Mozaffari Kermani, R. Azarderakhsh, C. Lee, and S. Bayat-Sarmadi,
“Reliable concurrent error detection architectures for extended
Euclidean-based division over GF(2™),” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 61, no. 2, pp. 995-1003, Feb. 2014.

M. Mozaffari Kermani, R. Ramadoss, and R. Azarderakhsh, “Efficient
error detection architectures for CORDIC through recomputing with
encoded operands,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS),
May 2016, pp. 2154-2157.

M. Mozaffari-Kermani, K. Tian, R. Azarderakhsh, and
S. Bayat-Sarmadi, “Fault-resilient lightweight cryptographic block
ciphers for secure embedded systems,” IEEE Embedded Syst. Lett.,
vol. 6, no. 4, pp. 89-92, Dec. 2014.

J. Patel and L. Fung, “Concurrent error detection in ALUs by recom-
puting with shifted operands,” IEEE Trans. Comput., vol. C-31, no. 7,
pp. 589-595, 1982.

J. Li and E. Swartzlander, “Concurrent error detection in ALUs by
recomputing with rotated operands,” in Proc. IEEE Int. Workshop Defect
Fault Tolerance VLSI Syst., Nov. 1992, pp. 109-116.

T. Jamil, “An introduction to complex binary number system,” in Proc.
IEEE Int. Conf. Inf. Comput., Apr. 2011, pp. 229-232.

Y. Kim and L.-S. Kim, “A low power carry select adder with
reduced area,” in Proc. IEEE Int. Symp. Circuits Syst., May 2001,
pp. 218-221.

S. Mozafari, M. Fazeli, S. Hessabi, and S. Miremadi, “A low cost circuit
level fault detection technique to full adder design,” in Proc. IEEE Int.
Conf. Electron. Circuits Syst. (ICECS), Dec. 2011, pp. 446-450.

F. Shih, “High performance self-checking adder for VLSI processor,” in
Proc. IEEE Conf. Custom Integr. Circuits, May 1991, pp. 15.7/1-15.7/3.

Mehran Mozaffari Kermani (S’00-M’11-SM’16)
received the B.Sc. degree in electrical and com-
puter engineering from the University of Tehran,
Tehran, Iran, in 2005, and the M.E.Sc. and Ph.D.
degrees from the Department of Electrical and Com-
puter Engineering, University of Western Ontario,
London, Canada, in 2007 and 2011, respectively.
He joined the Advanced Micro Devices as a
senior ASIC/layout designer, integrating sophisti-
cated security/cryptographic capabilities into accel-
; erated processing.

In 2012, he joined the Electrical Engineering Department, Princeton Uni-
versity, NJ, USA, as an NSERC postdoctoral research fellow. Currently, he is
with the Department of Electrical and Microelectronic Engineering, Rochester
Institute of Technology, Rochester, NY, USA.

Currently, he is serving as an Associate Editor for the IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, the ACM Transactions
on Embedded Computing Systems, the IEEE Transactions on Circuits and
Systems—Part I, and the Guest Editor for the IEEE Transactions on Depend-
able and Secure Computing for the Special Issue of Emerging Embedded and
Cyber Physical System Security Challenges and Innovations (2016 and 2017).
He was the lead Guest Editor for the IEEE/ACM Transactions on Computa-
tional Biology and Bioinformatics and the IEEE Transactions on Emerging
Topics in Computing for special issues on security.

He was a recipient of the prestigious Natural Sciences and Engineering
Research Council of Canada Post-Doctoral Research Fellowship in 2011 and
the Texas Instruments Faculty Award (Douglas Harvey) in 2014.

Vineeta Singh received the B.E. degree in elec-
tronics and telecommunication from Pune Univer-
sity, India, in 2012. Later, she joined Computa-
tional Research Laboratories and designed the front
end of a DDR3 Memory Controller. In 2013, she
was awarded a Merit Scholarship by Tatachem
Golden Jubilee Foundation; a further Scholarship
was awarded by Sakal India Foundation. She
received her M.Sc. degree from the Department of
Electrical and Microelectronic Engineering under
the supervision of Prof. Mehran Mozaffari Kermani
and co-supervision of Prof. Reza Azarderakhsh at Rochester Institute of
Technology, Rochester, NY, USA, in 2015. Her research interests include high-
performance architectures, VLSI reliability, and reconfigurable computing.

Reza Azarderakhsh received the B.Sc. degree
in electrical and electronic engineering and the
M.Sc. degree in computer engineering from the
Sharif University of Technology, Tehran, Iran, in
2002 and 2005, respectively, and the Ph.D. degree
in electrical and computer engineering from the
University of Western Ontario, London, Canada,
in 2011. He joined the Department of Electrical
and Computer Engineering, University of Western
Ontario, Canada, as a Limited Duties Instructor, in
September 2011. He has been an NSERC Postdoc-
toral Research Fellow with the Center for Applied Cryptographic Research and
the Department of Combinatorics and Optimization, University of Waterloo,
Waterloo, ON, Canada.

Currently, he is serving as an Associate Editor for the IEEE Transactions
on Circuits and Systems—Part 1. He is the Guest Editor for the [EEE
Transactions on Dependable and Secure Computing for the special issue of
Emerging Embedded and Cyber Physical System Security Challenges and
Innovations (2016 and 2017). He is also the Guest Editor for the IEEE
Transactions on Computational Biology and Bioinformatics for the special
issue of Emerging Security Trends for Biomedical Computations, Devices,
and Infrastructures (2015 and 2016). Currently, he is with the Department
of Computer Engineering, Rochester Institute of Technology, Rochester, NY,
USA. His current research interests include finite field and its application,
elliptic curve cryptography, and pairing based cryptography. He was a recipi-
ent of the prestigious Natural Sciences and Engineering Research Council of
Canada (NSERC) Post-Doctoral Research Fellowship in 2012.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Aachen-Bold
 /ACaslon-AltBold
 /ACaslon-AltBoldItalic
 /ACaslon-AltItalic
 /ACaslon-AltRegular
 /ACaslon-AltSemibold
 /ACaslon-AltSemiboldItalic
 /ACaslon-Bold
 /ACaslon-BoldItalic
 /ACaslon-BoldItalicOsF
 /ACaslon-BoldOsF
 /ACaslonExp-Bold
 /ACaslonExp-BoldItalic
 /ACaslonExp-Italic
 /ACaslonExp-Regular
 /ACaslonExp-Semibold
 /ACaslonExp-SemiboldItalic
 /ACaslon-Italic
 /ACaslon-ItalicOsF
 /ACaslon-Ornaments
 /ACaslon-Regular
 /ACaslon-RegularSC
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /ACaslon-SemiboldItalicOsF
 /ACaslon-SemiboldSC
 /ACaslon-SwashBoldItalic
 /ACaslon-SwashItalic
 /ACaslon-SwashSemiboldItalic
 /AGaramondAlt-Italic
 /AGaramondAlt-Regular
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-BoldItalicOsF
 /AGaramond-BoldOsF
 /AGaramondExp-Bold
 /AGaramondExp-BoldItalic
 /AGaramondExp-Italic
 /AGaramondExp-Regular
 /AGaramondExp-Semibold
 /AGaramondExp-SemiboldItalic
 /AGaramond-Italic
 /AGaramond-ItalicOsF
 /AGaramond-Regular
 /AGaramond-RegularSC
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AGaramond-SemiboldItalicOsF
 /AGaramond-SemiboldSC
 /AGaramond-Titling
 /AJensonMM
 /AJensonMM-Alt
 /AJensonMM-Ep
 /AJensonMM-It
 /AJensonMM-ItAlt
 /AJensonMM-ItEp
 /AJensonMM-ItSC
 /AJensonMM-SC
 /AJensonMM-Sw
 /AlbertusMT
 /AlbertusMT-Italic
 /AlbertusMT-Light
 /Americana
 /Americana-Bold
 /Americana-ExtraBold
 /Americana-Italic
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /AvantGarde-Demi
 /BBOLD10
 /BBOLD5
 /BBOLD7
 /BermudaLP-Squiggle
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chaparral-Display
 /CMB10
 /CMBSY10
 /CMBSY5
 /CMBSY6
 /CMBSY7
 /CMBSY8
 /CMBSY9
 /CMBX10
 /CMBX12
 /CMBX5
 /CMBX6
 /CMBX7
 /CMBX8
 /CMBX9
 /CMBXSL10
 /CMBXTI10
 /CMCSC10
 /CMCSC8
 /CMCSC9
 /CMDUNH10
 /CMEX10
 /CMEX7
 /CMEX8
 /CMEX9
 /CMFF10
 /CMFI10
 /CMFIB8
 /CMINCH
 /CMITT10
 /CMMI10
 /CMMI12
 /CMMI5
 /CMMI6
 /CMMI7
 /CMMI8
 /CMMI9
 /CMMIB10
 /CMMIB5
 /CMMIB6
 /CMMIB7
 /CMMIB8
 /CMMIB9
 /CMR10
 /CMR12
 /CMR17
 /CMR5
 /CMR6
 /CMR7
 /CMR8
 /CMR9
 /CMSL10
 /CMSL12
 /CMSL8
 /CMSL9
 /CMSLTT10
 /CMSS10
 /CMSS12
 /CMSS17
 /CMSS8
 /CMSS9
 /CMSSBX10
 /CMSSDC10
 /CMSSI10
 /CMSSI12
 /CMSSI17
 /CMSSI8
 /CMSSI9
 /CMSSQ8
 /CMSSQI8
 /CMSY10
 /CMSY5
 /CMSY6
 /CMSY7
 /CMSY8
 /CMSY9
 /CMTCSC10
 /CMTEX10
 /CMTEX8
 /CMTEX9
 /CMTI10
 /CMTI12
 /CMTI7
 /CMTI8
 /CMTI9
 /CMTT10
 /CMTT12
 /CMTT8
 /CMTT9
 /CMU10
 /CMVTT10
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /Cutout
 /EMB10
 /EMBX10
 /EMBX12
 /EMBX5
 /EMBX6
 /EMBX7
 /EMBX8
 /EMBX9
 /EMBXSL10
 /EMBXTI10
 /EMCSC10
 /EMCSC8
 /EMCSC9
 /EMDUNH10
 /EMFF10
 /EMFI10
 /EMFIB8
 /EMITT10
 /EMMI10
 /EMMI12
 /EMMI5
 /EMMI6
 /EMMI7
 /EMMI8
 /EMMI9
 /EMMIB10
 /EMMIB5
 /EMMIB6
 /EMMIB7
 /EMMIB8
 /EMMIB9
 /EMR10
 /EMR12
 /EMR17
 /EMR5
 /EMR6
 /EMR7
 /EMR8
 /EMR9
 /EMSL10
 /EMSL12
 /EMSL8
 /EMSL9
 /EMSLTT10
 /EMSS10
 /EMSS12
 /EMSS17
 /EMSS8
 /EMSS9
 /EMSSBX10
 /EMSSDC10
 /EMSSI10
 /EMSSI12
 /EMSSI17
 /EMSSI8
 /EMSSI9
 /EMSSQ8
 /EMSSQI8
 /EMTCSC10
 /EMTI10
 /EMTI12
 /EMTI7
 /EMTI8
 /EMTI9
 /EMTT10
 /EMTT12
 /EMTT8
 /EMTT9
 /EMU10
 /EMVTT10
 /EstrangeloEdessa
 /EUEX10
 /EUEX7
 /EUEX8
 /EUEX9
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /Fences
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /FreestyleScript
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Giddyup
 /GreymantleMVB
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /ICMEX10
 /ICMMI8
 /ICMSY8
 /ICMTT8
 /ILASY8
 /ILCMSS8
 /ILCMSSB8
 /ILCMSSI8
 /Impact
 /jsMath-cmex10
 /Kartika
 /Khaki-Two
 /LASY10
 /LASY5
 /LASY6
 /LASY7
 /LASY8
 /LASY9
 /LASYB10
 /Latha
 /LCIRCLE10
 /LCIRCLEW10
 /LCMSS8
 /LCMSSB8
 /LCMSSI8
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LINE10
 /LINEW10
 /LOGO10
 /LOGO8
 /LOGO9
 /LOGOBF10
 /LOGOD10
 /LOGOSL10
 /LOGOSL8
 /LOGOSL9
 /LucidaBlackletter
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaBright-Oblique
 /LucidaBrightSmallcaps
 /LucidaBrightSmallcaps-Demi
 /LucidaCalligraphy-Italic
 /LucidaCasual
 /LucidaCasual-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaNewMath-AltDemiItalic
 /LucidaNewMath-AltItalic
 /LucidaNewMath-Arrows
 /LucidaNewMath-Arrows-Demi
 /LucidaNewMath-Demibold
 /LucidaNewMath-DemiItalic
 /LucidaNewMath-Extension
 /LucidaNewMath-Italic
 /LucidaNewMath-Roman
 /LucidaNewMath-Symbol
 /LucidaNewMath-Symbol-Demi
 /LucidaSans
 /LucidaSans-Bold
 /LucidaSans-BoldItalic
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /LucidaTypewriter
 /LucidaTypewriterBold
 /LucidaTypewriterBoldOblique
 /LucidaTypewriterOblique
 /Mangal-Regular
 /MicrosoftSansSerif
 /Mojo
 /MonotypeCorsiva
 /MSAM10
 /MSAM5
 /MSAM6
 /MSAM7
 /MSAM8
 /MSAM9
 /MSBM10
 /MSBM5
 /MSBM6
 /MSBM7
 /MSBM8
 /MSBM9
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MTEX
 /MTEXB
 /MTEXH
 /MTGU
 /MTGUB
 /MTLS
 /MTLSB
 /MTMI
 /MTMIB
 /MTMIH
 /MTMS
 /MTMSB
 /MTMUB
 /MTMUH
 /MTSY
 /MTSYB
 /MTSYH
 /MT-Symbol
 /MT-Symbol-Italic
 /MTSYN
 /MVBoli
 /Myriad-Tilt
 /Nyx
 /OCRA-Alternate
 /Ouch
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Pompeia-Inline
 /Postino-Italic
 /Raavi
 /Revue
 /RMTMI
 /RMTMIB
 /RMTMIH
 /RMTMUB
 /RMTMUH
 /RSFS10
 /RSFS5
 /RSFS7
 /Shruti
 /Shuriken-Boy
 /SpumoniLP
 /STMARY10
 /STMARY5
 /STMARY7
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldOblique
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Oblique
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /UniversityRoman
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /WASY10
 /WASY5
 /WASY7
 /WASYB10
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

