
59

Fault Detection Architectures for Post-Quantum Cryptographic
Stateless Hash-Based Secure Signatures Benchmarked on ASIC

MEHRAN MOZAFFARI-KERMANI, REZA AZARDERAKHSH, and ANITA AGHAIE,
Rochester Institute of Technology

Symmetric-key cryptography can resist the potential post-quantum attacks expected with the not-so-faraway
advent of quantum computing power. Hash-based, code-based, lattice-based, and multivariate-quadratic
equations are all other potential candidates, the merit of which is that they are believed to resist both clas-
sical and quantum computers, and applying “Shor’s algorithm”—the quantum-computer discrete-logarithm
algorithm that breaks classical schemes—to them is infeasible. In this article, we propose, assess, and bench-
mark reliable constructions for stateless hash-based signatures. Such architectures are believed to be one
of the prominent post-quantum schemes, offering security proofs relative to plausible properties of the hash
function; however, it is well known that their confidentiality does not guarantee reliable architectures in the
presence natural and malicious faults. We propose and benchmark fault diagnosis methods for this post-
quantum cryptography variant through case studies for hash functions and present the simulations and
implementations results (through application-specific integrated circuit evaluations) to show the applicabil-
ity of the presented schemes. The proposed approaches make such hash-based constructions more reliable
against natural faults and help protecting them against malicious faults and can be tailored based on the
resources available and for different reliability objectives.

CCS Concepts: � Security and privacy → Cryptanalysis and other attacks; Hash functions and
message authentication codes; � Hardware → Application specific integrated circuits; Online test and
diagnostics;

Additional Key Words and Phrases: Application-specific integrated circuit (ASIC), secure hash-based signa-
tures, reliability

ACM Reference Format:
Mehran Mozaffari-Kermani, Reza Azarderakhsh, and Anita Aghaie. 2016. Fault detection architectures for
post-quantum cryptographic stateless hash-based secure signatures benchmarked on ASIC. ACM Trans.
Embed. Comput. Syst. 16, 2, Article 59 (November 2016), 19 pages.
DOI: http://dx.doi.org/10.1145/2930664

1. INTRODUCTION

It is expected that the first generation of quantum computers is developed in the
near future, suggesting secure and efficient post-quantum cryptography solutions.
It is expected that even current efficient state-of-the-art cryptographic primitives
such as those based on elliptic curve cryptography can be compromised and, thus,

This work was supported by the Texas Instruments faculty award granted to the authors.
A preliminary version of this work was presented in the Defect and Fault Tolerance in VLSI and Nanotech-
nology Systems Symposium (DFT’15).
Authors’ addresses: M. Mozaffari-Kermani, Electrical and Microelectronic Department, Rochester Institute
of Technology, Rochester, NY 14610; email: m.mozaffari@rit.edu; R. Azarderakhsh, Department of Computer
and Electrical Engineering and Computer Science and is an I-SENSE Fellow, Florida Atlantic University,
Boca Raton, FL, USA; email: razarderakhsh@fau.edu; A. Aghaie, Electrical and Microelectronic Department,
Rochester Institute of Technology, Rochester, NY 14610; email: aa6964@rit.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2016 ACM 1539-9087/2016/11-ART59 $15.00
DOI: http://dx.doi.org/10.1145/2930664

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 59, Publication date: November 2016.

http://dx.doi.org/10.1145/2930664
http://dx.doi.org/10.1145/2930664

59:2 M. Mozaffari-Kermani et al.

post-quantum security mechanisms need to be well in place to thwart post-quantum
attacks (based on “Shor’s algorithm” [Bernstein et al. 2009; Shor 1997]. Indeed, elliptic
curve cryptography would be broken in polynomial time by Shor’ s algorithm, and
scaling up to secure parameters seems impossible as the respective amount of time’s
polynomial is too small.

Shor’s quantum algorithm [Bernstein et al. 2009; Shor 1997] is not applicable to post-
quantum approaches such as lattice-based [Peikert 2014; Guneysu and Lyubashevsky
2012], hash-based [Bernstein et al. 2015], code-based [Overbeck and Sendrier 2009],
multivariate-quadratic equations [Ding and Schmidt 2005], and symmetric-key
cryptography. This, along with the fact that another quantum algorithm, “Grover’ s
algorithm” [Grover 1996], is partially applicable yet comparably very slow, makes the
aforementioned post-quantum cryptography solutions attractive.

Hash-based signature schemes have small architectures and key sizes and are viable
solutions, where every signature scheme uses a cryptographic hash function. Relativ-
ity of security proofs to the properties of hash functions and the obtained interesting
results [Song 2014] (which suggest that the classical, generic construction of hash-
tree-based signatures from one-way functions carry over to the quantum setting) have
motivated the use of hash-based signatures security in the presence of quantum ad-
versaries. We note that this matter is yet to be proven for many other post-quantum
signature proposals, and that has been a motivating factor for this research, for exam-
ple, lattice-based signature schemes are reasonably fast, yet their quantitative security
levels are highly unclear.

Active side-channel analysis attacks (where maliciously injected faults make the out-
put erroneous through which side-channel information is leaked [Boneh et al. 1997]),
natural faults, and potential countermeasures against them have been studied in clas-
sical cryptography. A paramount cause leading to natural faults in very-large-scale
integration (VLSI) constructions is hardware failures (caused by alpha particles from
cosmic rays creating energetic neutrons, thermal neutrons, and the like), for instance,
natural VLSI single event upsets, or electromagnetic waves. Previous research work
on (a) specific cryptographic architectures such as the Advanced Encryption Standard
(AES) [Tunstall et al. 2011; Ali et al. 2013; Mozaffari Kermani and Reyhani-Masoleh
2006; Mozaffari Kermani and Reyhani-Masoleh 2007; Mozaffari Kermani and Reyhani-
Masoleh 2011; Yen and Wu 2006; Malkin et al. 2006; Di Natale et al. 2009; Mozaffari
Kermani and Reyhani-Masoleh 2010; Guo et al. 2015; Mozaffari Kermani and Reyhani-
Masoleh 2011; Guo and Karri 2014; Guo et al. 2014], (b) general cryptographic archi-
tectures [Maistri and Leveugle 2008; Guo and Karri 2013], (c) reliable architectures
for lightweight cryptography [Mozaffari Kermani and Azarderakhsh 2013; Mozaffari-
Kermani et al. 2014; Mozaffari-Kermani et al. 2015; S. Bayat-Sarmadi et al. 2014], and
(d) finite field arithmetic architectures [Fenn et al. 1998; Bayat-Sarmadi and Hasan
2007] provide reliability mechanisms for crypto-systems.

Fault diagnosis for natural faults has been the center of attention in cryptography
research; yet it is now well known that malicious intents of the attackers need to be
taken into account in presenting fault detection schemes [Guo et al. 2015]. In other
words, providing fault diagnosis mechanisms that are proven to be efficient with respect
to natural faults may fail to detect intelligent fault attacks. For instance, if parity (or
signatures detecting specific faults) is utilized for the architectures of cryptographic
primitives, single stuck-at faults are detected, while even faults are not detected and
other mechanisms such as interleaved parity schemes need to be used. In general,
detection of randomly distributed natural faults may fail to alert fault attacks.

This work presents error detection schemes for the inner architectures of hash-
based signatures for post-quantum resistivity. We note that our choice among other
post-quantum mechanisms is due to the aforementioned security and key-size reasons;

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 59, Publication date: November 2016.

Fault Detection for PQC Stateless Hash-Based Signatures 59:3

yet it does not confine the proposed methods to be applicable to other post-quantum ap-
proaches. We refrain proposing error detection “stateful” signature mechanisms, that
is, reading a secret key/message and generating a signature and an updated secret
key, as if the secret key update fails, then security disintegrates [Bernstein et al. 2014;
Bernstein et al. 2015]. Therefore, stateless post-quantum hash-based signatures (us-
ing parameters that provide 2128 security against quantum attacks, practical usage
models, and low-cost implementations) are considered and the respective diagnosis
approaches are presented. We focus on full binary hash tree constructions within such
signature schemes to provide error detection approaches. Due to technical constraints,
an attacker may not be able to inject a single-bit fault; therefore, in practice, multi-
ple faults occur and this is considered in the (transient and permanent) fault model
assessed throughout this article. The ratios of the errors detected differ depending on
the error detection methods taken. Although we focus on VLSI defects, the high er-
ror coverage of the presented schemes would increase the difficulty for potential fault
attackers. Specifically, our main contributions are presented as follows.

—In this article, we present schemes for detecting faults in the hardware implementa-
tions of hash trees in hash-based signature constructions. We start with presenting
signature-based schemes for randomly distributed faults and then propose recom-
puting with encoded operands schemes (including swapped nodes, rotated operands,
and the like) that are proven to be more robust with respect to fault attacks for the
case study of the AES [Guo et al. 2015]. Our aim is to cover both natural faults and
detect fault attacks for the hash-based signatures presented in this article; yet it is
not always possible to cover both cases, and evaluations are needed.

—We present two different mechanisms, that is, structure-dependent and -oblivious
detection schemes, and fault resilience approaches of such signatures are presented.
We use two different hash functions for the algorithm-dependent schemes among
the current state-of-the-art lightweight hash functions. These include two hash
functions (one based on Permutation-Sponge and the other based on HAsh Iterative
FrAmework (HAIFA) construction) for which fault diagnosis is performed.

—We evaluate the false-alarm resiliency of the architectures as well as simulation-
based approaches to benchmark the efficiency of the proposed methods. Through
error simulations, the error coverage for the proposed schemes is derived, and it is
shown that, with high error coverage, reliable architectures are devised.

—Finally, we present, through application-specific integrated circuit (ASIC) eval-
uations, the overheads of the proposed approaches. These enable perfor-
mance/implementation/reliability compromise, based on reliability requirements,
overhead tolerance, and security objectives.

The remainder of this article is organized as follows. In Section 2, we present the
preliminaries related to post-quantum hash-based signatures. In Sections 3 and 4, the
proposed error detection approaches are discussed. The results of the fault injection
simulations and false-alarm resiliency are provided in Section 5. The ASIC implemen-
tations and benchmark are presented in Section 6. Finally, in Section 7, we conclude
the article.

2. PRELIMINARIES

In this section, through three subsections, we present (a) preliminaries related to hash-
based signatures and their stateless variants [Bernstein et al. 2014; Bernstein et al.
2015], (b) ChaCha (Salsa’s Variant) stream cipher [Bernstein 2007; Bernstein 2008] as
the baseline for BLAKE hash function [Aumasson et al. 2010], and (c) the SPONGENT
hash function [Bogdanov et al. 2013].

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 59, Publication date: November 2016.

59:4 M. Mozaffari-Kermani et al.

2.1. Hash-Based Signatures

Through the Lamport scheme [Lamport 1979], hash-based signatures are proposed
that include public key, consisting of two hash outputs for secret inputs. Specifically, in
Lamport’s scheme, the public key consists of two hash outputs for secret inputs; to sign
bit 0 (or 1), reveal the preimage of the first (second) output, consecutively. In Merkle’s
scheme (commonly referred to as the Merkle tree) [Merkle 1990], the process starts
with a one-time signature scheme (OTS) and continues through authenticating 2h key
pairs using a binary hash tree of height h.

In the Merkle tree, the leaves are the hashes of the OTS public keys; nevertheless,
the OTS secret keys become the secret key of the new scheme, and the root of the tree
the public key. The merit of this approach is its small signatures and secret/public
keys; nevertheless, the key generation and signature time are exponential in h (recent,
practical solutions resolve this problem [Hlsing et al. 2013; Buchmann et al. 2011]).

Stateless hash-based signature schemes have been introduced and used for providing
hash-based security mechanisms. In previous work, a binary certification tree built
from one-time signature keys is used [Goldreich 2004]. For this scheme, key generation
requires a single OTS key generation. Signing takes 2nOTS key generations and nOTS
signatures (can be done in reasonable time for secure parameters). Furthermore, this
approach proposes randomized leaf selection, that is, instead of applying a public hash
function to the message, it selects an index randomly.

2.2. Reference Stateless Hash-Based Signature

Our reference stateless hash-based signature presented in Bernstein et al. [2015] is as
follows. The functions in SPHINCS include the following: (a) Two short-input crypto-
graphic hash functions F : {0, 1}n → {0, 1}n and H : {0, 1}2n → {0, 1}n, (b) one arbitrary-
input randomized hash function H : {0, 1}n × {0, 1}∗ → {0, 1}m for m = poly(n), (c) a
family of pseudorandom generators Gλ : {0, 1}n → {0, 1}λn, (d) an ensemble of pseu-
dorandom function families Fλ : {0, 1}λ × {0, 1}n → {0, 1}n, and (e) a pseudorandom
function family F : {0, 1}∗ × {0, 1}n → {0, 1}2n that supports arbitrary input lengths.

It is noted that full binary hash trees are utilized in the construction as well. In
SPHINCS, a binary hash tree of height h has 2h leaves that are n-bit strings Li, i ∈
[2h − 1]. Each node Ni, j (0 < j ≤ h and 0 ≤ i < 2h− j) of the tree stores an n-bit string.
Moreover, root computation is performed as presented in Algorithm 1 [Bernstein et al.
2015]. In this algorithm, Authi consists of all the sibling nodes of the nodes contained
in the path from Li to the root; moreover, throughout the article, the XOR function is
denoted as ⊕ and concatenation as ||. Finally, we note that we have the construction for
binary tree hash so the values for internal nodes are Ni, j = H((N2i, j−1 || N2i+1, j−1) ⊕ Qj),
where Qj ∈ {0, 1}2n are h masks. Our focus is hash-tree constructions; for a more

ALGORITHM 1: Root Computation.
Input: Leaf index i, leaf Li , authentication path Authi = (A0, . . . , Ah−1) for Li.
Output: Root node of tree that contains Li.
Initialize: P0 ← Li.
[1] for j = 0 to h do
[2] If �i/2 j−1	 ≡ 0 mod 2 then
[3] Pj = H((Pj−1 || Aj−1) ⊕ Qj).
[4] If �i/2 j−1	 ≡ 1 mod 2 then
[5] Pj = H((Aj−1 || Pj−1) ⊕ Qj).
[6] end for.
Return Ph.

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 59, Publication date: November 2016.

Fault Detection for PQC Stateless Hash-Based Signatures 59:5

detailed introduction to SPHINCS including its parameters, message signer Hash to
Obtain Random Subset with Trees (HORST), and the Winternitz one-time signature
(WOTS+), one can refer to Bernstein et al. [2015].

2.3. BLAKE Hash Function

In this article, we utilize the BLAKE hash algorithm [Aumasson et al. 2010] as the
algorithm used in the hash-tree constructions that are constructed using the concepts
of ChaCha, a variant of the Salsa20 stream cipher to increase the amount of diffusion
per round. Dan Bernstein’s SPHINCS construction is based on the hash (H) BLAKE
algorithm and utilizes ChaCha for deriving two short-input cryptographic hash func-
tions (F and H) mentioned in the previous section. The core operation in BLAKE is
ChaCha’s quarter round (function G(a, b, c, d)) as follows: a ← a + b, d ← (d ⊕ a) �
16, c ← c + d, b ← (b ⊕ c) � 12, a ← a + b, d ← (d ⊕ a) � 8, c ← c + d, b ← (b ⊕ c) � 7,
where � denotes rotation towards the most significant bits. In addition, + and ⊕
represent mod-232 addition and 32-bit XOR operations, respectively.

ChaCha20 uses 10 iterations of the double round. Google has selected ChaCha20
along with Bernstein’s Poly1305 message authentication code as a replacement for RC4
in OpenSSL. As of 2014, almost all HTTPS connections made from Android devices to
Google properties have used the new cipher suite; Google plans to make it available as
part of the Android platform.

2.4. SPONGENT Hash Function

SPONGENT is a sponge construction that, given a finite number of input bits, produces
an n-bit hash value. There are three phases in SPONGENT: (a) an initialization phase
that includes message padding, and then the message is cut into blocks of r bits;
(b) an absorbing phase in which the r-bit input message blocks are XORed into the first
r bits of the state, interleaved with applications of the permutation πb (operating on a
state of a fixed number b of bits); and (c) a squeezing phase where the first r bits of the
state are returned as output, interleaved with applications of the permutation πb until
n bits are returned.

In its permutation stage, SPONGENT has the following building blocks:

—sBoxLayerb: Includes a 4-bit to 4-bit S-box applied b/4 times.
—pLayerb: Bit permutations are performed where they move bit j of the state to bit

position Pb(j) = j.b/4 mod b− 1 for j ∈ {0, . . . , b− 2} and to bit position Pb(j) = b− 1
if j = b − 1.

—lCounterb: This is one of the four linear-feedback shift registers (LFSRs), clocked
once every time its state has been used, and its final value is all ones.

3. ALGORITHM-OBLIVIOUS RECOMPUTING WITH SWAPPED NODES

In this article, two different error detection approaches are proposed, that is, a hash
algorithm-oblivious scheme in which the fault diagnosis is performed independent
of the hash function used and mechanisms for detection of errors in ChaCha stream
cipher and SPONGENT. We would like to emphasize that although we use ChaCha and
SPONGENT in the second scheme, the proposed methods are applicable with slight
modifications to (a) similar stream ciphers and (b) hash functions that are based on
these algorithms or their variants.

The error detection approaches presented in this section are based on two new
schemes, that is, recomputing with swapped nodes (RESN) in the hash-tree construc-
tions and combined signatures. We note that recomputing with encoded operands
(REEO) is used in the next section through algorithm-dependent approaches. This

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 59, Publication date: November 2016.

59:6 M. Mozaffari-Kermani et al.

Fig. 1. Inapplicability of recomputing with rotated operands for hash tree constructions.

scheme is a subset of recomputing with permuted operands scheme [Guo et al. 2015];
yet this is a case study for implementations and the scheme is a general one.

The hash tree construction with the values for internal nodes as Ni, j = H((N2i, j−1 ||
N2i+1, j−1) ⊕ Qj), where Qj ∈ {0, 1}2n are h masks and those for leaf nodes as Ni,0 = Li
is used in post-quantum cryptographic hash-based signature systems to eventually
compute the root, that is, N0,h. We note that before applying the hash function to the
concatenation of two child nodes to compute their parent, both child nodes are XORed
with a randomly chosen mask, that is, Qj ∈ {0, 1}2n. In what follows, full binary trees,
unbalanced trees, and the relevant discussions on their error detection are presented.

3.1. Full Hash Tree Constructions

In proposing error detection schemes for hash tree constructions, we devise hash
algorithm-oblivious schemes that are capable of detecting errors for any utilized
hash function. A clear advantage here is that this does not confine us to a specific
hash algorithm while achieving high permanent and transient error coverage. We do
not use regular time-redundancy schemes because of their inability to detect perma-
nent faults, and, instead, we investigate various recomputations applicable to hash
trees.

Schemes such as recomputing with rotated/shifted operands are not applicable to
hash trees. The reason is that the n-bit strings in the nodes, for example, nodes N2i, j−1
and N2i+1, j−1, are concatenated and modulo-2 added with the respective randomly
chosen mask, that is, Qj ∈ {0, 1}2n, and then hashed; thus, a shift or rotation in any
of these nodes creates a new 2n-bit value to be added (modulo-2) and hashed, whose
output reconstruction is not readily known. Figure 1 shows a hash tree construction and
details on the inapplicability of a chosen recomputation scheme, that is, recomputing
with rotated operands to left. As seen in this figure, typical internal nodes are shown
along with hash function and mask modulo-2 addition, where rotated operands (strings)
are shown by the � symbol adjacent to the nodes. Moreover, in Figure 2, swapping

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 59, Publication date: November 2016.

Fault Detection for PQC Stateless Hash-Based Signatures 59:7

Fig. 2. Inapplicability of swapping adjacent nodes.

Fig. 3. The high-level structure of the proposed RESN scheme.

adjacent nodes results in swapped data blocks after concatenation that, in turn, after
hashing, is not suitable to reconstruct.

Let us present our proposed scheme based on RESN by depicting the swapped
strings in the leaf nodes. This is shown in Figure 3. As seen in this figure, the leaf
nodes (for simplicity, we denote such leaves as ψ2(h−1) to ψ2h−1, shown by their indices
only in Figure 3) are shown, and a typical swapped structure is depicted that can
be modified based on the required specifications. Let us now prove that the proposed
RESN structure is a viable solution for permanent and transient error detection
of hash tree constructions. The swapped nodes in Figure 3 are pairs (ψ2h−2, ψ2h−1)
and (ψ2h−4,ψ2h−3). As we have the same masks for deriving the internal node strings

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 59, Publication date: November 2016.

59:8 M. Mozaffari-Kermani et al.

Fig. 4. An example for modified structure of the proposed RESN when fault location is known.

corresponding to j = 1, that is, Q0 ∈ {0, 1}2n, and then the hash algorithm acts the
same on the result, we get the same output for both of the internal nodes, that is,
N2(h−1)−1,1 = H((ψ2h−2 || ψ2h−1) ⊕ Q0) and N2(h−1)−2,1 = H((ψ2h−4 || ψ2h−3) ⊕ Q0).

It is important to consider cases for which we might have side-channel information
regarding the location of faults. For instance, let us assume that due to such informa-
tion, we add the proposed countermeasure for a part of the architecture, say, first and
last columns as shown in Figure 4. As swapping the nodes is free in hardware and the
recomputation time is intact, no gain is acquired in terms of the induced overhead with
respect to the performance. Nevertheless, comparators for RESN are reduced to just
the first and last columns, leading to savings in area and power consumption.

Finally, we note that the well-known Merkle tree, which does not include modulo-2
addition with the masks, can take advantage of the proposed RESN through swapping
nodes, for instance, pairs (ψ2h−2, ψ2h−1) and (ψ2h−4,ψ2h−3) can be swapped in Merkle
trees to get the results of the internal nodes, that is, N2(h−1)−1,1 = H(ψ2h−2 || ψ2h−1) and
N2(h−1)−2,1 = H(ψ2h−4 || ψ2h−3).

3.2. Unbalanced Binary L-Trees

In case the number of bit strings in the verification key of the chosen OTS is not a power
of 2, the resulting Merkle tree is unbalanced. Such unbalanced trees are denoted as
L-Trees, where the usage model is confined to hash public keys, for example, those in
SPHINCS. The height of an L-Tree is �log2l, and it needs �log2l bitmasks.

Error detection for L-Trees through the proposed RESN is possible; yet, one needs
to be careful to correctly swap the nodes. We have shown such a structure in Figure 5.
The l leaves of an L-Tree are the elements of a WOTS+ public key, and the tree is
constructed as full binary trees; however, a left node that has no right sibling (typically
in the last row) is lifted to a higher level of the L-Tree until it becomes the right sibling
of another node, as seen in Figure 5. The node (leaf in this case) ψ2h−2 without any right
string is lifted up and the error detection is performed through RESN for pairs (ψ2h−4,
ψ2h−3) and (ψ2h−6,ψ2h−5) to derive the same output for both of the internal nodes, that
is, N2h−1−2,1 = H((ψ2h−4 || ψ2h−3) ⊕ Q0) and N2h−1−3,1 = H((ψ2h−6 || ψ2h−5) ⊕ Q0).

3.3. Uniquely Structured Binary L-Trees

There are structures for binary L-trees that require close attention with respect to
the approaches we have presented for fault diagnosis. Here, we go over one interesting
case; nevertheless, this, by no means, confines the architectures for uniquely structured
binary L-trees to such variants.

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 59, Publication date: November 2016.

Fault Detection for PQC Stateless Hash-Based Signatures 59:9

Fig. 5. Error detection in unbalanced L-Trees through RESN.

Fig. 6. Modified structure of the proposed RESN through adjacent relocation.

Odd-Pair Node/Leaf Construction

It is possible that due to the potential unbalanced nature of L-trees or specific structure
of trees, we have an odd number of pairs in leaves, which, in turn, necessitates having
RESN modified. Two cases for which such complications could happen are (a) when
a left node that has no right sibling is lifted to a higher level of the L-Tree until it
becomes the right sibling of another node, as seen in Figure 3, resulting in odd number
of pairs or (b) when the number of nodes necessitates that the tree be structured with
odd pairs. One can adopt RESN for these cases, where if information about the location
of faults is available, then mutual swapping can be done for the nodes located in such
spots and the rest is left intact. One other possibility is to move the adjacent pairs to
the left or right and perform RESN. This is shown in Figure 6. As seen in this figure,
one can move the pairs to the left, for instance, for all the adjacent ones, so RESN can
be done for the odd number of pairs in such cases.

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 59, Publication date: November 2016.

59:10 M. Mozaffari-Kermani et al.

Fig. 7. Throughput alleviation for the proposed scheme for hash tree constructions for normal strings (N)
and swapped strings (S) of nodes for ∃n stages.

3.4. Discussions

The proposed RESN scheme is applicable to hash tree constructions for error detection
of both permanent and transient faults. Other schemes, such as recomputing with ro-
tated or shifted operands (n-bit strings), do not provide efficient approaches for error
detection of hash tree constructions as discussed in this section. One of the shortcom-
ings of such recomputation is the decreased throughput of the computation (with the
fixed applied frequency). To alleviate this problem, suppose one pipeline register has
been placed to sub-pipeline the structures to break the timing path to approximately
equal halves. Let us denote the two halves of pipelined stages by ∃1 and ∃2. The original
input is first applied to the architecture and in the second cycle, while the second half
of the circuit executes the first input, the second input (see Figure 7) or the encoded
variant of the first input is fed to the first half of the circuit. This trend (which can
be scaled to n stages as seen is Figure 7) is consecutively executed for normal strings
(N) and swapped strings (S) of nodes for ∃n stages (see Figure 7). We have shown two
possibilities for such a scheme. In the first one, output data availability has precedence
over reliability (while both are achieved, the output data are derived first and fault
diagnosis is performed after). Nevertheless, in the second approach, error detection is
performed for each sub-segment of input data while the entire output is derived after
such an order is followed. Depending on the requirements in terms of reliability and
availability, one can tailor these approaches to fulfill such constraints.

Such an approach, although it increases the latency, which may not be admissible in
some applications, ensures lower degradation in the throughput (and achieving higher
frequencies) at the expense of more area overhead.

4. ALGORITHM-DEPENDENT ERROR DETECTION APPROACHES

In this section, we present schemes based on the specific hash functions used, that is,
BLAKE and SPONGENT. In the next sections, simulation results and implementation
benchmark are presented.

4.1. Error Detection Schemes for ChaCha

We present the error detection approaches for the ChaCha stream cipher, which is
used in the BLAKE hash function of the hash tree construction here. Figure 8 shows
the structure of ChaCha that is the main building block of BLAKE (the three steps
for BLAKE compression function, that is, initialization, round functions, and final-
ization, as well as the control signal for selecting the initialization or round function
steps construct BLAKE). We note that based on our ASIC implementation evaluations,
initialization and finalization steps constitute less than 5% of the area of BLAKE.

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 59, Publication date: November 2016.

Fault Detection for PQC Stateless Hash-Based Signatures 59:11

Fig. 8. ChaCha’s quarter-round operations.

Fig. 9. The proposed complementary scheme for ChaCha with pipelined stages.

In what follows, we present two schemes for detection of errors in ChaCha: the
complementary scheme and the REEO approach. In the former, we embed the inverse
of the quarter round in the original structure; this is shown in Figure 9. Specifically, for
the 32-bit first and third entries, a and c (from the total of four entries to the left-hand
side of Figure 8), adder/subtractors are used instead of single adders (compare Figure 8
with Figure 9). In the hardware implementation of the adder/subtractor unit, adding
is performed as normal, while subtraction is done by complementing an input and
having carry-in as one, that is, twos complement process. The 32-bit second and fourth
entries in Figure 9(b and d) are also complemented by reverting the rotation operations
(compare Figure 9 with Figure 8). Finally, in the right-hand side, we obtain the outputs
of the original, a–d, and the reverse algorithm, ar–dr. It is shown in the next section
that with high error coverage for both transient and permanent faults, the proposed
scheme results in acceptable hardware overhead. It is noted that the pipelined stages
shown in this scheme (Figure 9) result in a large decrease in throughput degradation.

Our presented complementary scheme has high error coverage, which is of benefit
for reliability-constrained applications. Although taking advantage of our proposed em-
bedding approach reduces the hardware overhead of this scheme, resource-constrained
devices might just be able to tolerate low hardware overheads. For ChaCha and to get a
low-overhead error detection approach, one can use the alternative REEO approach in
which recomputations are performed through encoded entries (for instance, rotations).
The proposed REEO-based scheme is shown in Figure 10 (although we have shown the
recomputing with rotated operands [nodes or leaves in the hash-based construction],
encoding schemes are not certainly confined to this approach). The pipelined original
structure in this figure is executed 2 times with original and rotated inputs (for the
four 32-bit inputs in Figure 10). We note that for the XOR and rotation operations in

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 59, Publication date: November 2016.

59:12 M. Mozaffari-Kermani et al.

Fig. 10. The proposed recomputation with encoded hash tree construction nodes (leaves) scheme for ChaCha.

Figure 10, one would only need to rotate the original inputs. However, for modular
addition, based on a modification we have made, a zero is inserted between the 32-bit
rotated operands (A and B as examples) before addition and then, after addition, the
middle bit is discarded to obtain C. It is worth mentioning that after each addition, we
require to discard the middle-bit (which is the carry-out of the last-bit addition of the
non-rotated operands), because it can be non-zero. Finally, a comparison is performed
as shown in Figure 10 in which the original result is compared with back-rotated
results.

We also present fault detection schemes based on dual-rail checkers for ChaCha. In
this scheme, self-checking adders based on dual-rail encoding is utilized for modular
adders within ChaCha. A variant of self-checking adder design utilizes two n-bit ripple
carry adders to pre-compute the sum bits with complemented values of Cin, that is, 0
and 1, and the original value of Cin is used to select the actual sum bits [Akbar and
Lee 2014]. One could employ this adder for detection of faults in the modular addition
unit of ChaCha. Figure 11 shows the design module of a 4-bit self-checking carry-select
adder; an n-bit model of the same design module is employed in ChaCha. The inputs
here are given to the two-pair two-rail checker; S0N is the sum output of the full adder
with inputs (An,Bn) with the initial Cin equal to zero. The output of the XNOR and
S1N is always complementary to each other and, hence, is chosen as the inputs to the
two-pair two-rail checker. This construction can be utilized for detecting the faults in
the modular adder unit of ChaCha.

4.2. Error Detection Schemes for SPONGENT

Sponge functions, such as the one used in SPONGENT, provide a particular way to
generalize hash functions to more general functions whose output length is arbitrary.
Sponge constructions, likewise, consist of an iterated construction building a variable-
length-input–variable-length-output function based on a fixed length permutation (or
transformation) (given a finite number of input bits, it produces an n-bit hash value).

Fault diagnosis for this hash function can be presented for its individual phases, that
is, three phases in SPONGENT: (a) an initialization phase wthat includes message
padding and then the message is cut into blocks of r bits; (b) an absorbing phase
in which the r-bit input message blocks are XORed into the first r bits of the state,
interleaved with applications of the permutation πb (operating on a state of a fixed
number b of bits); and (c) a squeezing phase where the first r bits of the state are
returned as output, interleaved with applications of the permutation πb until n bits are
returned.

Let us present the scheme for the first phase. This phase includes message padding
wthat is free in hardware. In other words, there is no architecture involved in padding,
similarly to shift, rotate, and the like, and thus any added fault can be detected using
parity (or similar signatures). Specifically, here, and for the case of parity, the predicted

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 59, Publication date: November 2016.

Fault Detection for PQC Stateless Hash-Based Signatures 59:13

Fig. 11. Scheme based on self-checking carry-select adder for the modular adder of ChaCha.

Table I. The Entries for the S-box (sBoxLayerb) and the Derived Interleaved Parities

0 1 2 3 4 5 6 7 8 9 a b c d e f
E (01) D (01) B (10) 0 (00) 2 (01) 1 (01) 4 (10) F (00) 7 (10) A (11) 8 (10) 5 (11) 9 (11) C (00) 3(00) 6(11)

and actual parities would be the same and thus no cost is involved. These parities with
no cost can be used separately for the r-bit blocks in this phase.

In the second phase, absorbing, these blocks are XORed into the first r bits of the
state, the fault diagnosis of which is straightforward through signatures, for example,
parities, or recomputing with encoded/rotated/shifted operands. We will go over the
permutation πb separately. Finally, in the squeezing phase, πb is the major function
used whose fault detection is presented as follows:

Fault Diagnosis of πb: In πb, SPONGENT has the sBoxLayerb, pLayerb, and
lCounterb building blocks. Let us present the fault detection schemes devised for these
building blocks.

For sBoxLayerb, where a 4-bit to 4-bit S-box is applied b/4 times, one can utilize
signatures, for example, interleaved parities, and store them in the memory table to
detect the faults. As seen in Table I, we have derived these parities for the least/most
significant two-bit parts of each entry in the S-box, presented in parentheses. To
detect input parity errors and some internal memory (data or decode) errors, we
propose replacing the original 8-bit bit-holders with 10-bit ones. Depending on the

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 59, Publication date: November 2016.

59:14 M. Mozaffari-Kermani et al.

Fig. 12. Fault detection scheme for SPONGENT.

security objectives and overhead to be tolerated, one can tailor the detection scheme,
for example, using other signature variants.

The building block pLayerb that involves bit permutations, where they move bit j of
the state to bit position Pb(j) = j.b/4 mod b − 1 for j ∈ {0, . . . , b − 2} and to bit position
Pb(j) = b − 1 if j = b − 1 is free in hardware and any predicted signature, for example,
parities, can be derived for such constructions. Finally, in lCounterb, which is based
on LFSRs, parity predictions are done as a viable approach. The entire approach for
detecting faults in SPONGENT is shown in Figure 12. As seen in this figure, sponge
construction based on a b-bit permutation πb is shown. mi are r-bit message blocks
and hi are parts of the hash value. We have also shown the signatures, for example,
predicted/actual parity calculations using P.P (predicted parity) and A.P (actual parity)
blocks, as well as the comparison units to derive the error indication flags.

5. ERROR SIMULATIONS

Throughout this article, both single and multiple stuck-at faults have been considered.
With respect to fault analysis attacks, due to the technological constraints, single
stuck-at fault may not be applicable for an attacker to flip exactly only one bit to gain
more information. Thus, multiple stuck-at faults are also considered in this article. We
consider the BLAKE-64 structure that instantiates a variant of the ChaCha block to
construct a hash function used in hash trees. Moreover, architectures for SPONGENT
have been simulated. According to the fault model presented in this section, both stuck-
at zero and stuck-at one faults are injected in multiple random locations. We consider
the transient faults to occur at both runs independently. However, for permanent faults,
each fault can occur at the same location for both runs with the same polarity. Therefore,
the number of fault locations for this type is half of that for the transient one.

For single-bit fault injection, for BLAKE-64, we generated 1,000,000 random inputs
and, for SPONGENT, the random inputs were 350,000 and for both types of stuck-at
faults (we note that this number of random inputs was chosen to have a practical
simulation process; however, single stuck-at faults were injected exhaustively). For
multiple-bit fault injection simulations, the same number of injections were performed
(a number of multiple-bit faults were injected per each random input) with random
locations. Single stuck-at faults were detected 100% using both complementary and
REEO approaches. We note that these detection schemes consider both natural and
malicious faults and are not just capable of detecting random multiple faults. For
testing this, we have also injected double and triple adjacent faults, byte faults, and
four different types of isolated faults that mimic fault injections in specific locations.

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 59, Publication date: November 2016.

Fault Detection for PQC Stateless Hash-Based Signatures 59:15

Table II. False-Alarm Assessments for Multiple, Random Faults
in ChaCha (Signature-Based Approach)

Type of faults
Injected Detected False Percent
faults faults alarms false-alarms

Stuck-at zero

1,000 995 5 0.50%
10,000 9,945 31 0.03%
20,000 19,711 110 0.55%
25,000 24,892 198 0.79%

Stuck-at one

1,000 954 7 0.70%
10,000 9,899 67 0.67%
20,000 19,869 122 0.61%
25,000 24,950 195 0.78%

For multiple stuck-at faults, we analyzed two to eight bit faults for transient and
permanent types as well as random number of bits. The results show that for both
transient and permanent faults, the detection ratio percentage is roughly 99.9%.

5.1. False-Alarms

The cryptographic architectures that include fault detection schemes need to be im-
mune against possible false-alarms that can eventually cause distrust and may result
in falsely abandoning the infrastructure. False-alarms could have adverse effects on
the utilization of cryptographic solutions. Specifically, if such alarms get repetitive,
cryptographic architectures wthat include fault detection mechanisms may be affected
by them. Such false-alarms might hinder the normal operations of cryptographic al-
gorithms by inducing distrust to users who may eventually abandon all the security
solutions.

For the proposed schemes for ChaCha and SPONGENT, let us consider the cases
in which the fault model deals with multiple, random stuck-at faults (although this
case has been used as the case study here, it, by no means, confines the discussions
here to just these types of faults). For such cases, a number of causes may result in
having false-alarms in ChaCha and SPONGENT. For ChaCha, because we are dealing
with complementary or recomputing schemes, as two main schemes, no false-alarm
has been observed. This is because any injected fault that produces an error is detected
after all the computations are done and no intermediate detection scheme is used for
detection (which could potentially alert for faults which are masked). For the dual-
rail fault detection scheme of the modular addition units in ChaCha and also for the
SPONGENT hash function, because we are dealing with multiple signatures, there
might be cases in which we detect faults in an inner sub-part that will not be eventually
translated into errors in the output due to the masking of such faults.

Through simulations, considering different number of stuck-at zeros and ones, we
have identified such cases. The results are shown in Tables II and III for both ChaCha
and SPONGENT. As seen in these tables, different numbers of faults are injected for the
two types, and the number of masked faults and false-alarms are shown. These false-
alarms show that there exists natural defect(s) or fault attack(s) in the architectures;
nevertheless, these do not result in erroneous outputs for that particular simulation
instance. The false-alarm percentage is typically low as seen in these tables.

6. ASIC IMPLEMENTATIONS

This section presents the results of our ASIC syntheses performed for the original and
the error detection structures (constructing a hash function used in hash trees such as
L-Tree, full binary tree, Merkle tree, and the like) to benchmark the overheads induced.

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 59, Publication date: November 2016.

59:16 M. Mozaffari-Kermani et al.

Table III. False-Alarm Assessments for Multiple, Random Faults in SPONGENT

Type of faults
Injected Detected False Percent
faults faults alarms false-alarms

Stuck-at zero

1,000 987 8 0.80%
10,000 9,923 86 0.86%
20,000 19,911 160 0.80%
25,000 24,943 211 0.84%

Stuck-at one

1,000 967 9 0.90%
10,000 9,945 84 0.84%
20,000 19,918 178 0.89%
25,000 24,900 194 0.77%

Table IV. Area Overhead and Performance Degradations of the Proposed Schemes for ChaCha

Structure Area (μm2) (KGE) Overhead Frequency (MHz) Throughput (Gbps) Degradation

Original 79,772 (56.5) — 307 9.6 —
Complementary 106,191 (75.3) 33.1% 538 8.2 14.5%

REEO1 87,012 (61.7) 9.1% 551 8.6 10.4%
REEO2 92,190 (65.3) 15.5% 789 8.2 14.6%

1 and 2: One- and two-stage sub-pipelined architectures.

We note that ASIC is chosen based on the resources available to us (library and tools)
and as our presented schemes are not dependent on the hardware platform; similar
overheads are expected if FPGAs are utilized for the implementations. Through these
ASIC syntheses, the overheads in terms of hardware and timing are derived. We have
used the TSMC 65-nm standard-cell library for the original and the error detection
structures and Synopsys Design Compiler [Synopsys 2015].

To benchmark the performance of the proposed schemes, we have done implemen-
tations for the original and fault diagnosis schemes for ChaCha, whose results are
presented in Table IV. Moreover, based on the sub-pipelining approach we presented
in this article, one can alleviate the inherent performance degradations of the proposed
structures. Specifically, with the expense of adding registers for deep sub-pipelining (for
instance, one stage sub-pipelining in Table IV), higher frequencies are achieved that
make the degradations in throughput less intense. We note that, in Table IV, the areas
(in terms of μm2), maximum working frequencies (in terms of MHz), and throughputs
(in terms of Gbps) have been obtained. In order to make the area results meaningful
when switching technologies, we have provided the NAND-gate equivalency. This is
performed using the area of a NAND gate in the utilized TSMC 65-nm CMOS library,
which is 1.41μm2.

In Table IV, for the original BLAKE and the proposed schemes, the 4G BLAKE
structure is utilized. In this structure, four parallel internal operations are performed
simultaneously and twice. According to Table IV, for the complementary scheme, the
area overhead and throughput degradation are 33.1% and 14.5%, respectively. These
are lower for the REEO-based scheme, that is, 9.1% and 10.4%, respectively. We note
that, as expected, the overheads for the complementary schemes are higher than those
for REEO-based ones. However, the advantage of the complementary schemes is their
slightly higher error coverage. We have also shown the results with two-stage sub-
pipelining and as seen, higher frequencies are achieved (789MHz); nevertheless, the
throughput overhead is increased. Based on the overhead tolerance and fault detection
ratio to achieve, one can tailor the proposed approaches for various objectives to reach.

We have also shown the results of our ASIC implementations for SPONGENT and
its fault diagnosis architectures in Table V. As seen in this table, we have implemented

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 59, Publication date: November 2016.

Fault Detection for PQC Stateless Hash-Based Signatures 59:17

Table V. Area Overhead and Performance Degradations of the Proposed Schemes
for SPONGENT1 and SPONGENT2

Structure Area (μm2) (GE) Overhead Throughput (Kbps) Degradation

SPONGENT1 1,990 (1,412) — �12 —
Fault Detection 2,467 (1,750) 24% �11 8.3%
SPONGENT2 2,700 (1,915) — �8 —

Fault Detection 3,307 (2,345) 22.5% �6.5 18.7%

two variants of SPONGENT and reported the areas (GE using the area of a NAND
gate in the utilized TSMC 65-nm CMOS library, which is 1.41μm2) and throughputs
and their corresponding overheads. The first variant is SPONGENT with pre-image 80
and second pre-image 40 (hash 88 bits) and datapath 88 bits, and the second variant is
SPONGENT with pre-image 120 and second pre-image 64 (hash 128 bits) and datap-
ath 136 bits. We denote the former SPONGENT1 and the latter SPONGENT2, as seen
in Table V. From this table, for SPONGENT1, the area of the original design is 1,990
(1,412) (μm2) (GE) and its throughput is �12 (Kbps). For the corresponding fault detec-
tion architecture, these are 2,467 (1,750) (μm2) (GE) (overhead of 24%) and �11 (Kbps)
(overhead of 8.3%), respectively. Moreover, as seen in Table V, for SPONGENT2, the
area of the original design is 2,700 (1,915) (μm2) (GE) and its throughput is �8 (Kbps).
For the corresponding fault detection architecture, these are 3,307 (2,345) (μm2) (GE)
[overhead of 22.5%] and �6.5 (Kbps) (overhead of 18.7%), respectively.

7. CONCLUSIONS

Post-quantum cryptographic implementation attacks and natural faults need to be
detected through efficient countermeasures. In this article, various fault diagnosis
approaches for hash-based post-quantum signatures are proposed. The merit of the
proposed schemes is that they are a step forward towards reliability and fault attack
immunity of resistant hash trees in future potential post-quantum systems. Based on
the reliability requirements and available resources, one may select the error detection
schemes suitable for these architectures. We have developed a method for swapping
nodes and leaves in binary hash trees, L-Trees, and Merkle trees to detect faults,
where recomputations with rotated/shifted, and, in general, encoded operands fail. We
have also discussed various complications in special hash tree constructions. Moreover,
for the inner hash functions BLAKE and SPONGENT, we have presented a number
of diagnosis methods that are capable of reaching high error coverage (this includes
analysis of false-alarms) with acceptable area overhead and performance degradation.

REFERENCES

M. A. Akbar and J. A. Lee. 2014. Comments on self-checking carry-select adder design based on two-rail
encoding. IEEE Trans. Circ. Syst. I, Reg. Pap. 61, 7, 2212–2214.

S. Ali, D. Mukhopadhyay, and M. Tunstall. 2013. Differential fault analysis of AES: Towards reaching its
limits. J. Cryptogr. Eng. 3, 2, 73–97.

J.-P. Aumasson, L. Henzen, W. Meier, and R. C.-W. Phan. 2010. BLAKE hash function. Retrieved from
https://131002.net/blake/blake.pdf.

S. Bayat-Sarmadi and M. Anwar Hasan. 2007. On concurrent detection of errors in polynomial basis multi-
plication. IEEE Trans. VLSI Syst. 15, 4, 413–426.

S. Bayat-Sarmadi, M. Mozaffari-Kermani, and A. Reyhani-Masoleh. 2014. Efficient and concurrent reliable
realization of the secure cryptographic SHA-3 algorithm. IEEE Trans. Comput.-Aid. Des. Integr. Circ.
Syst. 33, 7, 1105–1109.

D. J. Bernstein, D. Hopwood, A. Hlsing, T. Lange, R. Niederhagen, L. Papachristodoulou, M. Schneider,
P. Schwabe, and Z. Wilcox-O’Hearn. 2014. SPHINCS: Practical stateless hash-based signatures. IACR
Cryptology ePrint Archive, 1–30.

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 59, Publication date: November 2016.

59:18 M. Mozaffari-Kermani et al.

D. J. Bernstein, D. Hopwood, A. Hlsing, T. Lange, R. Niederhagen, L. Papachristodoulou, M. Schneider, P.
Schwabe, and Z. Wilcox-O’Hearn. 2015. SPHINCS: Practical stateless hash-based signatures. In Proc.
EUROCRYPT. 368–397.

D. J. Bernstein. 2007. The Salsa20 family of stream ciphers Salsa. Retrieved from http://cr.yp.to/
snuffle/salsafamily-20071225.pdf.

D. J. Bernstein. 2008. ChaCha, a variant of Salsa20. Retrieved from http://cr.yp.to/chacha/chacha-
20080120.pdf.

D. J. Bernstein, J. Buchmann, and E. Dahmen (Eds.). 2009. Post-Quantum Cryptography. Springer. http://
www.springer.com/us/book/9783540887010.

A. Bogdanov, M. Knezevic, G. Leander, D. Toz, K. Varc, and I. Verbauwhede. 2013. SPONGENT: The design
space of lightweight cryptographic hashing. IEEE Trans. Comput. 62, 10, 2041–2053.

D. Boneh, R. DeMillo, and R. Lipton. 1997. On the importance of checking cryptographic protocols for faults.
In Proc.Int. Conf. Eurocrypt. 37–51.

J. Buchmann, E. Dahmen, and A. Hlsing. 2011. XMSS - a practical forward secure signature scheme based
on minimal security assumptions. In Proc. Post-Quantum Cryptogr. 117–129.

G. Di Natale, M. Doulcier, M. L. Flottes, and B. Rouzeyre. 2009. A reliable architecture for parallel imple-
mentations of the advanced encryption standard. J. Electron. Test.: Theor. Appl. 25, 4, 269–278.

J. Ding and D. Schmidt. 2005. Rainbow, a new multivariable polynomial signature scheme. In Proc. 3rd Int.
Conf. ACNS. 164–175.

S. Fenn, M. Gossel, M. Benaissa, and D. Taylor. 1998. On-line error detection for bit-serial multipliers in
GF(2m). J. Electron. Test.: Theor. Appl. 13, 29–40.

O. Goldreich. 2004. Foundations of Cryptography: Basic Applications. Cambridge University Press, Cam-
bridge, UK.

L. K. Grover. 1996. A fast quantum mechanical algorithm for database search. In Proc. ACM Symp. Theor.
Comput. 212–219.

T. Guneysu and P. Lyubashevsky. 2012. Practical lattice-based cryptography: A signature scheme for embed-
ded systems. (unpublished).

X. Guo and R. Karri. 2013. Recomputing with permuted operands: A concurrent error detection approach.
IEEE Trans.Comput.-Aid. Des. Integr. Circ. Syst. 32, 10, 1595–1608.

X. Guo and R. Karri. 2014. Low-cost concurrent error detection for GCM and CCM. J. Electron. Test. 30, 6,
725–737.

X. Guo, D. Mukhopadhyay, C. Jin, and R. Karri. 2014. NREPO: Normal basis recomputing with permuted
operands. In Proc.HOST. 118–123.

X. Guo, D. Mukhopadhyay, C. Jin, and R. Karri. 2015. Security analysis of concurrent error detection against
differential fault analysis. J. Cryptogr. Eng. 5, 3, 153–169.

A. Hlsing, L. Rausch, and J. Buchmann. 2013. Optimal parameters for XMSS. In Proc. Security Engineering
and Intelligence Informatics. 194–208.

M. Mozaffari Kermani and R. Azarderakhsh. 2013. Efficient fault diagnosis schemes for reliable lightweight
cryptographic ISO/IEC standard CLEFIA benchmarked on ASIC and FPGA. IEEE Trans. Ind. Electron.
60, 12, 5925–5932.

M. Mozaffari Kermani and A. Reyhani-Masoleh. 2006. Parity-based fault detection architecture of s-box for
advanced encryption standard. In Proc. IEEE Int. Symp. Defect and Fault Tolerance in VLSI Systems,
572–580.

M. Mozaffari Kermani and A. Reyhani-Masoleh. 2007. A structure-independent approach for fault detec-
tion hardware implementations of the advanced encryption standard. In Proc. IEEE Workshop Fault
Diagnosis and Tolerance in Cryptography. 47–53.

M. Mozaffari Kermani and A. Reyhani-Masoleh. 2010. Concurrent structure-independent fault detection
schemes for the advanced encryption standard. IEEE Trans. Comput. 59, 5, 608–622.

M. Mozaffari Kermani and A. Reyhani-Masoleh. 2011. A high-performance fault diagnosis approach for
the AES SubBytes utilizing mixed bases. In Proc. IEEE Workshop Fault Diagnosis and Tolerance in
Cryptography. 80–87.

M. Mozaffari Kermani and A. Reyhani-Masoleh. 2011. A lightweight high-performance fault detection
scheme for the advanced encryption standard using composite fields. IEEE Trans. Very-large Scale
Integr. Syst. 19, 1, 85–91.

L. Lamport. 1979. Constructing Digital Signatures from a One Way Function. Technical Report SRI-CSL-98,
SRI International Computer Science Laboratory.

P. Maistri and R. Leveugle. 2008. Double-data-rate computation as a countermeasure against fault analysis.
IEEE Trans. Comput. 57, 11, 1528–1539.

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 59, Publication date: November 2016.

http://www.springer.com/us/book/9783540887010
http://www.springer.com/us/book/9783540887010

Fault Detection for PQC Stateless Hash-Based Signatures 59:19

T. G. Malkin, F. X. Standaert, and M. Yung. 2006. A comparative cost/security analysis of fault attack
countermeasures. In Proc. Int. Workshop Fault Diagnosis and Tolerance in Cryptography, 159–172.

R. Merkle. 1990. A certified digital signature. In Proc. CRYPTO. 218–238.
M. Mozaffari-Kermani, R. Azarderakhsh, and A. Aghaie. 2015. Reliable and error detection architectures of

Pomaranch for false-alarm-sensitive cryptographic applications. IEEE Trans. VLSI Syst. 23, 12, 2804–
2812.

M. Mozaffari-Kermani, K. Tian, R. Azarderakhsh, and S. Bayat-Sarmadi. 2014. Fault-resilient lightweight
cryptographic block ciphers for secure embedded systems. Embed Syst Lett. 6, 4, 89–92.

R. Overbeck and N. Sendrier. 2009. Code-based cryptography. In Proc. Post-Quantum Cryptography, 95–145.
C. Peikert. 2014. Lattice cryptography for the Internet. IACR. (unpublished)
P. W. Shor. 1997. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum

computer, SIAM J. Comput. 26, 5.
F. Song. 2014. A note on quantum security for post-quantum cryptography. In Proc. Post-Quantum Cryptog-

raphy. 246–265.
Synopsys. 2016. Homepage. Retrieved from www.synopsys.com.
M. Tunstall, D. Mukhopadhyay, and S. Ali. 2011. Differential fault analysis of the advanced encryption

standard using a single fault. In Proc. Int. Conf. Information Security Theory and Practice, 224–233.
C. H. Yen and B. F. Wu. 2006. Simple error detection methods for hardware implementation of advanced

encryption standard. IEEE Trans. Comput. 55, 6, 720–731.

Received November 2015; revised March 2016; accepted April 2016

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 59, Publication date: November 2016.

file:www.synopsys.com

